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A major bottleneck in first-principles calculations of excited and spectroscopic properties of materials is the
evaluation of dielectric matrices. We show that by computing a relatively small number of eigenvectors via
iterative linear-response calculations, we may construct the dielectric matrix of a system to high numerical
accuracy. We demonstrate the procedure on several systems. The proposed method bypasses the need for the
calculation of large numbers of excited states required by widely used expressions within the random-phase
approximation and opens the way to efficient calculations of excited-state properties in materials and
nanostructures.
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Atomic-scale variation in the dielectric screening proper-
ties of materials and nanostructures is central in understand-
ing many phenomena. These include electronic excitations,1

several forms of spectroscopy,2,3 gate insulation in devices,4

and electronic stopping in ion implantation.5 In the linear
regime, the atomic-scale static dielectric screening is ex-
pressed by the dielectric matrix ��r ,r��, which relates the
external potential applied to a system, Vext, and the screened
potential Vscr which forms in response:

Vscr�r� =� ��r,r��−1Vext�r��dr�. �1�

Static dielectric matrices for bulk insulators and semiconduc-
tors have been calculated in works dating back to the
1970s.6–9 More recently calculations for nanostructures as
large as 1 nm Si dots10 have appeared in the literature. How-
ever, computations of dielectric matrices are still limited to
systems with relatively few atoms. Their efficient evaluation
for larger systems would be particularly desirable, for ex-
ample, to obtain the electronic self-energy � and thus quasi-
particle and optical properties1 within many-body perturba-
tion theory �MBPT� and to evaluate spectroscopic properties
of materials and nanostructures. Once the static dielectric
matrix is known, in many cases the frequency-dependent re-
sponse may be determined from the static response via a
plasmon-pole model.11

In most prior studies,6–10 dielectric matrices have been
calculated via an approach based on perturbation theory un-
der the random-phase approximation �RPA�, or an extension
thereof to include exchange-correlation effects.9 Under this
formalism and within a reciprocal-space representation, � is
given by12,13

��G,G�� = �G,G� +
8�e2

N��q + G�2 �
k,v,c

1

Ec�k + q� − Ev�k�
�k

+ q,c�ei�q+G�·r�k,v��k,v�e−i�q+G��·r�k + q,c� , �2�

where the conduction- and valence-band wave functions are
indexed by c and v, respectively, k and q are wave vectors,
and G and G� denote plane-wave components. The so-called
direct methods for the calculation of the dielectric response

have also been explored, but so far they have been restricted
to special cases �q points with high symmetry�.14,15

Calculation of dielectric matrices via RPA is computation-
ally very demanding. First, the perturbation summation re-
quires the evaluation of a large number of empty states
�c ,k+q�, which in calculations carried out within density-
functional theory �DFT� is usually a time-consuming proce-
dure and the convergence of � with respect to the number of
empty states in the sum is slow.9 Second, the evaluation of
Eq. �2� involves the calculation and summation of a large
number of terms, with every combination of c, v, and k
treated separately. Third, within the RPA approach, one cal-
culates the dielectric matrix �. However, it is the inverse �−1

that is required for most purposes �for example, self-energy
calculations within MBPT�, necessitating a costly large ma-
trix inversion. For these reasons, calculations of dielectric
matrices are possible for only relatively small systems. Con-
sequently MBPT �e.g., GW calculations and solutions of the
Bethe-Salpeter equation� has so far been applied to systems
containing a few tens of atoms at most.

In this Brief Report, we present an ab initio method �re-
ferred to as the projective dielectric eigenpotential or PDEP
method� for the calculation of dielectric matrices, based on
an iterative projection of the eigenvectors of � via repeated
linear-response computations within density-functional per-
turbation theory �DFPT�.16 This approach bypasses the need
for the costly calculation of and summation over unoccupied
states and also avoids the inversion of the � matrix. Thus, it
opens the way to calculating dielectric matrices and perform-
ing many-body perturbation theory calculations for systems
much larger than is presently feasible. We begin by investi-
gating the dielectric eigenvalues of a variety of representa-
tive solid and molecular systems and showing that � may be
reconstructed to high numerical accuracy from a relatively
small number of the most highly screened eigenvectors. We
then use an orthogonal iteration procedure within DFPT to
calculate these eigenvalues and eigenvectors, and we show
that they match those obtained via direct diagonalization
within the RPA. Finally, we demonstrate the application of
the PDEP method to calculate the � matrix of a realistic
silicon nanostructure, and we discuss the efficiency and scal-
ing of the proposed algorithm.

The eigenvectors of the dielectric matrix represent poten-
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tials which, when applied to the system, yield a screened
potential of the same spatial form. Although � is not a Her-
mitian matrix, a Hermitian form denoted �̃ may be obtained6

by a similarity transformation, �̃�q ,G ,G��= ��q+G� / �q
+G�����q ,G ,G��. Note that � and �̃ have the same eigenval-
ues �i, and the corresponding eigenvectors are simply related
by a diagonal transformation. The matrix �̃ may be repre-
sented in terms of its eigenvectors ṽi and eigenvalues �i as

�̃ = �
i

ṽi
H�iṽi = �

i

ṽi
H��i − 1�ṽi + I . �3�

All eigenvalues of the dielectric matrix are real and are
known to be greater than or equal to 1.8 From the form of Eq.
�3�, we may see that those eigenvalues which are very close
to 1 will not have a significant impact on this sum. Thus the
full dielectric matrix may be constructed to high accuracy
using only those eigenvectors corresponding to eigenvalues
significantly greater than 1. In practice we find that the num-
ber of such eigenvalues is relatively small: For the various
systems examined so far, the eigenvalue spectrum decays to
1 quite rapidly, with a decay constant which appears to be
proportional to the number of filled states in the system. This
is illustrated in Fig. 1, which shows � eigenvalue spectra
�generated using the method described below� for three
silicon-based systems �bulk, a 1.2 nm slab, and a Si5H12
cluster� as well as bulk diamond and an isolated water mol-
ecule. The x axis is scaled by the number of filled states for
each system. The decay rates for the eigenvalues of the three
silicon-based systems are almost identical, and the decay is
slightly faster for the other two. Using a larger plane-wave
basis set or a larger vacuum spacing for the molecular sys-
tems increases the size of the dielectric matrix and hence the
total number of eigenvalues. However this does not signifi-
cantly change the eigenvalue spectrum—the new eigenval-
ues thus added are very close to unity.

In order to efficiently perform the summation in Eq. �3�, it
is desirable to find a way of computing the few most signifi-

cant dielectric eigenvectors without the diagonalization of
the full matrix. We note that the eigenvectors of � are the
same as those of �−1, and computing the latter is equivalent
to computing the response to an applied field to a given
system using the DFPT �Ref. 16� linear-response formalism.
By applying the method of orthogonal iteration �with Ritz
acceleration as described in Ref. 17� with repeated applica-
tions of the operator �I− �̃−1� to an initial set of orthogonal
potentials, we may extract the most screened eigenvectors of
�−1 and use them to reconstruct the full matrix via Eq. �3�.
This procedure has been implemented in a code based on the
linear-response DFPT subroutines of the QUANTUM-
ESPRESSO �Ref. 18� package. In order to obtain results di-
rectly comparable to RPA results, the exchange-correlation
part of the potential in the DFPT formalism has been dis-
abled. However it may be easily included in this method.

As an initial demonstration of this scheme, we apply it to
the calculation of the highest dielectric eigenstates of an
eight-atom bulk silicon unit cell and compare them to the
dielectric eigenstates obtained by diagonalization of the RPA
� matrix using DFT wave functions. Both calculations used
norm-conserving pseudopotentials, a regular grid of 64 k
points, and a q value of 0.01 in the z direction; the DFT-RPA
calculations used 304 empty states. The PDEP iterations
started from an orthogonal set of plane-wave potentials with
a small random component added. These were considered to
be converged when the difference between eigenvalues cal-
culated at successive iterations was less than 0.01%. The top
20 eigenvalues found by the two methods are compared in
Table I and are found to be identical to within 0.1%. Lower-
lying eigenvalues are also found to be in close agreement,
although the lower eigenvalues obtained within the RPA are
highly sensitive to the number of empty states used in the
summation.

Since the eigenstates of the � matrix may have high de-
generacy, it is not sensible to compare the eigenvectors ob-
tained within RPA and PDEP directly. Instead we compare
properties computed from the � matrices reconstructed from
finite sets of RPA and PDEP eigenpotentials. We denote these
matrices as �M, where M is the number of eigenvectors in-
cluded in the summation of Eq. �3�. In Fig. 2 we plot the
xy-planar-averaged dielectric response �the local ratio be-
tween the screened and applied fields� of bulk Si to a con-
stant field in the z direction, as obtained from reconstructed
�M matrices including the highest 1 �upper panel� and 256
�lower panel� eigenvectors, from both PDEP and RPA meth-
ods. The same quantity as obtained from the unreconstructed
DFT-RPA � calculation is also shown. The peaks in the
graphs correspond to the planes which cut through the highly
screening Si-Si bonds, while the troughs correspond to the
planes which cut through the atomic cores. Figure 2 shows
that the computed responses from �M matrices reconstructed
using PDEP or RPA procedures with the same M are basi-
cally identical. Moreover, the lower panel shows that as the
number of eigenvectors is increased, the �M matrix converges
to the full RPA �.

In Fig. 3 we demonstrate the application of the PDEP
scheme to a larger nanostructured system, consisting of a 1.2
nm hydrogen-terminated Si16H8 slab with 1 nm of vacuum
spacing. Again, the PDEP procedure was iterated until the
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FIG. 1. �Color online� Eigenvalue spectra of the dielectric ma-
trices of bulk Si, two Si nanostructures, bulk eight-atom diamond
carbon, and an isolated water molecule, plotted on a logarithmic
scale as a function of eigenvalue index. The x axis is normalized for
each structure to the number of filled states in the system. All ei-
genvalues were calculated using the PDEP method described in the
text.
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difference between eigenvalues at successive iterations was
less than 0.01%. As in the bulk silicon case, it was found
that, e.g., the highest 20 eigenvalues matched those from an
RPA calculation to within 0.5%. Figure 3 shows the
xy-planar-averaged dielectric response to a uniform field in
the z direction �normal to the slab� as computed from an �M
matrix reconstructed from 100, 250, and 600 eigenvectors,
compared to the response calculated from the full RPA �
matrix. It is apparent that calculation of the lowest 600
eigenstates for this system is sufficient to reproduce all the
features of the full � �with dimensionality of �3000�3000�
to a high accuracy, and that inclusion of 250 eigenstates may
for many applications be sufficient to reproduce the features
of the response to an acceptable tolerance. The small remain-
ing discrepancy between the 600-eigenvector PDEP and RPA
curves must be attributed partially to incomplete conver-
gence in the number of eigenstates in the PDEP calculation
and partially to incomplete convergence in the number of
empty states in the RPA calculation.

We now turn to a discussion of the efficiency of the PDEP
method in comparison with that of the RPA. In an RPA cal-
culation, the dominant term is the summation in Eq. �1�,
which takes a time proportional to Npw�

2 NvNc, where Npw� is
the size of the basis set used to represent the � matrix and Nv
and Nc are the number of filled and empty states in the sum,
respectively. In the PDEP calculation, the most time-
consuming part of the calculation consists of the repeated
application of the potentials to the system via DFPT. Each
linear-response calculation takes a time proportional to
Npw�Nv

2, with Npw� as the number of plane waves in the basis

set used to represent the wave functions. The total number of
linear-response calculations equals the desired number of
eigenstates �Neig� times the number of iterations �Niter� re-
quired to reach convergence. The latter of these factors is
independent of system size, while the former is proportional

TABLE I. Top 20 eigenvalues of the dielectric matrix for the
eight-atom silicon cubic cell calculated via the RPA and PDEP
methods, using 64 k points.

Index RPA PDEP

1 14.7432 14.7538

2 3.4231 3.4237

3 3.3908 3.3914

4 3.3908 3.3914

5 3.3908 3.3914

6 3.3908 3.3914

7 3.3589 3.3596

8 2.4910 2.4925

9 2.4910 2.4925

10 2.4910 2.4925

11 2.4910 2.4925

12 2.4905 2.4920

13 2.4905 2.4920

14 2.4716 2.4721

15 2.1964 2.1972

16 2.1960 2.1968

17 2.1959 2.1966

18 2.1959 2.1966

19 2.1958 2.1966

20 2.1958 2.1966
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FIG. 2. �Color online� Planar-averaged D /E ratio of the induced
�D� and applied �E� electric field magnitudes for an eight-atom Si
cell subjected to a constant electric field along the z axis, calculated
using �M reconstructed from 1 �upper panel� and 256 �lower panel�
eigenvectors determined via the RPA and PDEP methods. The re-
sponse calculated from an RPA-DFT calculation is shown for
comparison.
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FIG. 3. �Color online� xy-planar-averaged dielectric response to
a constant normally oriented field for a 1.2 nm H-terminated Si slab
computed using the PDEP method �see text� with 100, 250, and 600
dielectric eigenstates. Also plotted is the same quantity computed
from the RPA � using 584 empty electronic states.
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to it, and so the total scaling of the PDEP method is propor-
tional to Npw�Nv

2Neig. Thus, both methods scale with the
fourth power of the size of the system.

However, the PDEP method has many significant advan-
tages for many classes of system. Due to the iterative nature
of the method, eigenstate convergence is reached rapidly if
the initial guess of the dielectric eigenpotentials is close to
the true eigenpotentials. This means that one may save con-
siderably on CPU time by first finding the eigenpotentials for
the same system using looser convergence parameters �e.g.,
basis set and k-point sampling� and then using these eigen-
potentials as input into more refined calculations. As an il-
lustrative example, in the above eight-atom Si calculations, it
was found that fully converged eigenvalues could be ob-
tained for the system with 64 k points in only two or three
iterations if the eigenpotentials from a fully converged
gamma-point calculation were used as the initial set of po-
tentials. This makes the PDEP calculation significantly faster
than the RPA calculation in our implementation. Further-
more, since the eigenstates of ��G ,G� ,q� are similar to those
of ��G ,G� ,q+�q� for small �q, the method allows us to
easily calculate � matrices at a closely spaced set of q vec-
tors, as required for several important applications.1 In a
similar fashion, the method allows the efficient calculation of
dielectric properties of a series of steps in a molecular-
dynamics trajectory. The PDEP method is extremely efficient
in situations where only the few most highly screened eigen-

potentials are required, such as, for instance, in the calcula-
tion of dielectric band structures.6,8,19 Since the method al-
lows for the construction of either � or �−1 with equal ease,
the need for the time-consuming and difficult-to-parallelize
matrix inversion step is bypassed, which is particularly ad-
vantageous for large systems. We note also that the PDEP
procedure may be very efficiently parallelized, especially
when the number of eigenstates to be calculated is greater
than or equal to the number of CPUs. Finally, since the full �
matrix need never be calculated or stored, the PDEP method
is efficient in memory use and disk space, again a particular
advantage for large systems.

In summary, we have presented an iterative method for
the calculation of static dielectric matrices of materials and
nanostructures, based on the projection of the most highly
screened dielectric eigenmodes. The method allows for the
construction of either � or �−1 matrices at arbitrary q while
bypassing the need for the calculation of empty electronic
states and the inversion of �. This opens the way to calcula-
tions of optical and excitonic properties of systems much
bigger than are presently treatable using RPA-based tech-
niques.
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