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We calculate the dynamical spin response of Kondo impurity and Kondo lattice systems within a semiphe-
nomenological Fermi-liquid description, at low temperatures T�TK, the Kondo temperature, and low magnetic
fields B�kBTK /g�B. Fermi-liquid parameters are determined by comparison �i� with microscopic theory
�numerical renormalization group� for the impurity model and �ii� with experiment for the lattice model. We
find in the impurity case that the true impurity spin resonance has a width of the order of TK and disappears
altogether if the g factors of impurity spin and conduction-electron spin are equal. However, there is an
impurity-induced resonance contribution at the conduction-electron resonance. The latter is broadened by
spin-lattice relaxation and is usually unobservable. In contrast, for the Anderson lattice in the Kondo regime we
find a sharp electron-spin resonance �ESR� line only slightly shifted from the local resonance and broadened
by spin-lattice relaxation, the latter significantly reduced by both the effects of heavy-fermion physics and
ferromagnetic fluctuations. We conjecture that our findings explain the sharp ESR lines recently observed in
several heavy-fermion compounds.
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I. INTRODUCTION

The Kondo effect is arguably the best-studied many-body
effect in condensed-matter physics.1 In its initial form,2,3 it
involves a local “impurity” spin in a d or f orbital, antifer-
romagnetically coupled to the spins of a conduction band in
a dilute magnetic alloy. At temperatures T below the dynami-
cally generated energy scale TK, the Kondo temperature, this
interaction causes a local spin 1/2 to be fully screened. This
behavior should be noticeable in the T dependence of the
spin dynamics of the system, as probed by electron-spin
resonance �ESR�. In fact, the local spin resonance in dilute
Kondo compounds at T�TK had been observed even before
the Kondo effect was understood. Afterward there were a
number of systematic experimental investigations and pertur-
bative calculations for the ESR at T�TK in dilute Kondo
systems.4

At low temperatures T�TK, on the other hand, neutron-
scattering studies revealed the existence of a broad spin ex-
citation peak of width TK, interpreted as the Kondo bound
state.5 Within the isotropic s-d exchange �Kondo� model the
total spin is conserved. Therefore, in the limit of equal g
factors of local moments and conduction-electron spins, one
expects a single spin-resonance line at all temperatures, only
broadened by spin-lattice relaxation. As we shall show be-
low, in this limit the weight of the broad local spin resonance
tends to zero.

In several recent experiments6,7 low-temperature ESR has
been observed in some heavy-fermion metals, in particular
YRh2Si2 �YRS�.8 The phase diagram of YRS has a magnetic-
field induced quantum critical point and is a model system
for the study of quantum criticality in the Kondo lattice.
Consequently, the observation of a narrow ESR resonance in
this compound aroused great interest, especially since it was
commonly believed that heavy-fermion ESR would be unob-
servable due to an enormous intrinsic linewidth �B of order
kBTK /g�B.6 Here TK is the lattice coherence �“Kondo”� tem-

perature for the onset of heavy-fermion behavior and g�B is
the gyromagnetic ratio for the resonance. These were the first
observations of ESR in Kondo lattice systems at T�TK.

In YRS, the observed narrow Dysonian9 ESR line shape
was originally interpreted6 as indicating that the resonance
was due to local spins at the Yb sites. Therefore, initially the
authors speculated that the appearance of a narrow ESR line
might indicate the suppression of the Kondo effect near the
quantum critical point, since, as explained above, carrying
over Kondo impurity physics to the Kondo lattice one might
expect the local spins to be screened by the Kondo effect,
giving rise only to a broad spin excitation peak, too wide to
be observed in ESR experiments. However, a closer look10

revealed that itinerant �heavy� electron ESR could give rise
to a similar line shape since the carrier diffusion in YRS is
quite slow. Thus, whether the resonance was that of localized
or itinerant spins remains an open question.

Now, a common feature of the compounds in which ESR
has been observed appears to be the existence of ferromag-
netic fluctuations7 These findings challenge our understand-
ing of heavy-fermion compounds: How does a sharp
electron-spin resonance emerge despite Kondo screening and
spin-lattice relaxation, and why is this process influenced by
ferromagnetic fluctuations? We shall address these questions
in the framework of Fermi-liquid theory, taking the relevant
parameters from numerical studies and experiment.

II. ANDERSON IMPURITY MODEL IN THE KONDO
SCREENED REGIME

In the Kondo regime an impurity spin is screened by the
conduction-electron spins at �or near� the impurity. The dy-
namics of the impurity spin is governed by the energy scale
of the corresponding many-body resonance, the Kondo tem-
perature TK. Nonetheless the conduction electrons in the vi-
cinity of the impurity show the influence of the Kondo
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screened state in their dynamical behavior. In the Anderson
model, the local spin is that of a localized f electron. We
assume that the Zeeman splittings � f and �c induced by a
magnetic field acting on the local and conduction-electron
spins are small compared to the Kondo temperature TK. Then
the Kondo screened state is only weakly perturbed by the
magnetic field. At temperatures T�TK, the spin-resonance
behavior of the impurity may then be described by Fermi-
liquid theory.11

We start from the bare Anderson model Hamiltonian

H = Hc + �
k,	


k	ck	
† ck	 + �

	


 f	nf	 + Unf↑nf↓

+ V�
k,	

�f	
†ck	 + H.c.� , �1�

where Hc is the conduction-electron Hamiltonian and ck	
† , f	

†

are creation operators of the conduction electrons in momen-
tum and spin eigenstates �k	�, and of electrons in the local f
level, respectively. The operator nf	= f	

† f	 counts the number
of electrons on the local level, and 
 f	=
 f −� f	 /2, 	=�1.

The effect of the interaction U is to renormalize the pa-

rameters 
 f	 ,U ,V to 
̃ f	 , Ũ , Ṽ in the renormalized Fermi-
liquid-type low energy Hamiltonian, Eq. �1�, with the renor-
malized parameters that may be calculated using the
numerical renormalization group �NRG� method.12 To keep
the algebra simple, we assume particle-hole symmetry in the

following. Then 
̃ f	=−�Ũ+� f	� /2. The hybridization of the
local level with the conduction band leads to an f-level

broadening �̃=Ṽ2N0�TK with N0=1 /W the local
conduction-electron density of states �DOS� at the Fermi
level �in the model with flat DOS, W is the bandwidth�. The
initially rather large bare level width is renormalized down to
the very narrow width of the Kondo resonance. The NRG

calculation shows that Ũ=�̃ and Ṽ2 is O�TK /TF�, where TF
is the Fermi temperature of the conduction electrons.

In the framework of Fermi-liquid theory, the interaction
has two major consequences: �i� it gives rise to a molecular
field renormalizing the collective response of the system and
�ii� it leads to a finite lifetime of quasiparticles. However, the
quasiparticle relaxation rate is limited by the available phase
space and vanishes quadratically as the excitation energy
goes to zero. Therefore, at temperatures T�TK the Landau
quasiparticles are well defined. The quasiparticle decay con-
tributes to the spin-relaxation rate. As we shall show, the
local-moment relaxation is governed by rapid spin flips on
the frequency scale of TK, occurring as part of the many-
body resonance. Then at temperatures T�TK we may ne-
glect the additional relaxation caused by the quasiparticle
decay.

We now consider the effects of the molecular field caused

by the Fermi-liquid interaction Ũ. We treat the interaction
term in the Hamiltonian in mean-field approximation:

Ũnf↑nf↓� 1
2Ũ��nf�nf − �mf�mf +const	, where we defined the

density and spin-density operators nf =nf↑+nf↓ and mf =nf↑
−nf↓. In the case of particle-hole symmetry, when �nf�=1,
the density term is canceled by the single-particle energy.
The spin-density term gives rise to an effective magnetic

field so that 
̃ f	+ 1
2Ũ��nf�−	�mf�	=−	� f, which amounts to

a doubling of the Zeeman energy. Here we have used that the

spin polarization is given by m= �mf�=� f f
+−�0�� f /2=� f /�̃,

with � f f
+−�0�=2 /�̃ the static susceptibility of the local spin

and Ũ=�̃, as obtained from NRG calculations. Then the
local electron Green’s function, including the coupling to the
conduction electrons, is given by

Gf	�i�n� = �i�n + 	� f + i�̃ sgn��n�	−1. �2�

The local spectral function is given by Af	���=ImGf	

��+ i0�= �̃ / ���+	� f�2+ �̃2	, describing the Kondo reso-
nance. We see that in a magnetic field the resonance is
shifted from its zero-field position �=0 to the spin depen-
dent position �=−	� f, which is double the Zeeman shift.

We use the definitions � f =gf�BB, �c=gc�BB, and take
� f f

+−, etc. to be response functions of spin 1/2 operators. The
dynamical conduction-electron susceptibility �cc is charac-
terized by a resonance peak broadened by spin-lattice relax-
ation. We follow Barnes and Zitkova-Wilcox13 and model the
spin-lattice relaxation mechanism by a local random mag-
netic field hi that fluctuates in both direction and magnitude.
Then the conduction-electron Hamiltonian is

Hc = �
k,	


k	ck	
† ck	 + �

k,	,k�,	�
�

i

hi · ck	
† 			�ck�	�e

i�k−k��·Ri.

�3�

The random-field components are assumed to be Gaussian
correlated, with �hi�=0 and �hi

mhj
n�=�ij�mnh2. In Born ap-

proximation the average conduction-electron Green’s func-
tion is then given by

Gc↑
0 �k,i�n� = �i�n − �k + �c/2 + i� sgn��n�	−1, �4�

where �=N0h2.
The impurity-induced component of the dynamical trans-

verse susceptibility �imp
+− ���, where � is the frequency of an

ac electromagnetic field polarized transverse to the static
magnetic field, is a sum of three contributions, from the con-
duction electrons �cc�, the local electrons �f f�, and the mixed
response of conduction electrons to a spin polarization of the
local electrons or vice versa �cf�:

�imp
+− ��� = �B

2
gf
2� f f

+−��� + 2gcgf�cf
+−���

+ gc
2��cc

+−��� − �cc
bulk���	� . �5�

The partial susceptibilities may be calculated using standard
many-body techniques; see the Appendix. One finds reso-
nances at the two frequencies � f and �c. They have very
different widths: the local electron-spin resonance is broad-

ened by �̃, whereas the bulk and the impurity-induced
conduction-electron resonances are broadened by 4�. The
results are given in the Appendix, Eqs. �A1�–�A3�. Assuming

that �̃�4�, it makes sense to consider the behavior at higher
frequencies �� �� f ,c ,�� �regime I� and low frequencies �re-
gime II� separately. In regime I one finds
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�imp
+− ��� =

2�B
2�gf − gc�2

�̃

i�̃

� − � f + i�̃
. �6�

Neutron scattering data on diluted magnetic alloys show a
broad resonance in �imp

+− ��� of width TK,5 in accordance with
the above result. Note that this broad peak vanishes in the
case of equal g factors, as a consequence of the conservation
of magnetization in that case �leaving aside spin-lattice re-
laxation for the moment�. The result in regime II is

�imp
+− ��� =

2�B
2

�̃
��gf − gc�2 + gc�3gf − 2gc�

− �c

� − �c + 4i�

+ gc
2 − �c�� f − �c�
�� − �c + 4i��2 . �7�

The last term carries vanishing spectral weight. The second
term on the right–hand side represents an impurity-induced
enhancement �3gf�2gc� or reduction of the bulk
conduction-electron-spin resonance. This contribution van-
ishes if gf =

2
3gc. The static susceptibility takes the form

�imp
+− �0�=2�B

2gf
2 / ��̃�.

To summarize, the impurity-induced component of the to-
tal dynamical spin susceptibility of a Kondo ion is character-

ized by a broad excitation peak of width �̃�TK at �=� f and
a narrow peak or dip of width 4� at �=�c, where � is the

conduction-electron relaxation rate. The relative weights of
the two components depend sensitively on the ratio of g
factors. This structure is not easily detected in an ESR ex-
periment. The narrow resonance line has the same position
and width as the bulk ESR line. Its weight per atom is, how-
ever, enhanced by the large factor TF /TK, which comes from

the renormalized susceptibility scale prefactor �1 / �̃. There-
fore, the ESR response of a diluted magnetic alloy with a
concentration of Kondo ions c�TK /TF will be dominated by
the impurity contribution determined in the above Eqs. �6�
and �7�.

III. ANDERSON LATTICE MODEL IN THE KONDO
SCREENED REGIME

The Hamiltonian of the simplest Anderson lattice model,
assuming momentum independent hybridization and an iso-
tropic conduction band with flat density of states is given by

H = Hc + �
i,	

 f	f i	

† f i	 + U�
i

nfi↑nfi↓

+ V �
i,k,	

�eik·Ri f i	
† ck	 + H.c.� . �8�

Here Hc and 
 f	 ,V, U have been introduced in Sec. II and the
Ri are lattice site vectors. Single-particle Green’s functions
are given by Dyson’s equation

�i�n − 
 f	 − � f	�i�n,k� − V

− V i�n − 
k	 − �c	�i�n,k� ��Gk	
f f Gk	

cf

Gk	
fc Gk	

cc � = 1. �9�

We assume Fermi-liquid theory to hold. Then the self-energy
� f	�� ,k� has a power-series expansion in � at the Fermi
surface, and its imaginary part is small ��2, and may be
neglected in lowest order. One may use �−
 f	−� f	�� ,kF�
=z	

−1��− 
̃ f		, with the quasiparticle weight factor
z	= �1− ��� f	�� ,kF� /���0	−1 and the renormalized energy

̃ f	=z	�
d	+� f	�0,kF�	. The conduction-electron self-
energy may be approximated by �c	��+ i0,k�=−i�, where �
is the spin-lattice relaxation rate defined earlier. Then for low
energies one has a quasiparticle description, with Gk	

f f ���
=z	G̃k	

f f , Gk	
cf =�z	G̃k	

cf , and the renormalized hybridization

amplitude Ṽ2=z	V2. The full matrix of quasiparticle Green’s
functions is given by

�G̃k	
f f G̃k	

cf

G̃k	
fc Gk	

cc � =
1

det�� − 
k	 + i� V˜

V˜ � − 
̃ f	
� , �10�

where det= ��− 
̃ f	���−
k	+ i��− Ṽ2= ��−�k	
+ ���−�k	

− �.
The complex energy eigenvalues are given by

�k	
� =

1

2
�
̃ f	 + 
k	 − i�� ��1

4
�
̃ f	 − 
k	 + i��2 + Ṽ2

= 
k	
� − i�k	

� , �11�

where 
k	
� =Re �k	

� and �k	
� =−Im �k	

� . We note that �k	
� �0.

There are two energy bands separated by an �indirect� gap
�
k	

min,max denote the minimum or maximum of the conduction
band�:

�g	 = 
k	
min − 
k	

max + ��
̃ f	 − 
k	
max�2 + 4Ṽ2

+ ��
̃ f	 − 
k	
min�2 + 4Ṽ2 �� f ,c. �12�

We assume that the renormalized f-level 
̃ f	 is inside the
conduction band, close to the Fermi level, and consider the
case of almost half-filling, i.e., n�2 electrons per lattice site.
Then only the lower band is occupied in the ground state. We
assume an isotropic band structure for simplicity. Then near
the Fermi level at k=kF, the quasiparticle energy �we drop
the spin dependence� has the form
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k
− − 
kF

− =
1

2
�k − kF�vF�1 +

�
̃ f − 
kF
�

��
̃ f − 
kF
�2 + 4Ṽ2�

� �k − kF�vF
� , �13�

where the renormalized Fermi velocity is defined by vF
�

=vFṼ2 / �
̃ f −
kF
�2=vF�m /m���vFzV2 / �
kF

�2, and we used
the fact that 
kF

�
̃ f. Note that 
kF
is the bare conduction-

band energy at k=kF, which is far above the true Fermi en-
ergy. When z�1, the Fermi velocity is renormalized to very
low values and one has a “heavy-fermion liquid” �effective
mass m��m�. The effective Fermi temperature of the heavy
quasiparticles is given by TF

� = 1
2kFvF	

� �TF.
To first order in � the level widths are given by

�k	
� =

1

2
��1 �


̃ f	 − 
k	


k	
+ − 
k	

− � . �14�

We note that the hybridization induced width �̃ of the
f-electron energy level in the impurity problem is now ab-
sorbed in the electronic band structure: the coherent super-
position of contributions from all lattice sites to

� f	��+ i0,k� removes the large constant i�̃. The remaining
imaginary part of the self-energy at finite temperatures may
be approximated by a constant �FL=cT2 /TF

� . We shall com-
ment on the effect of quasiparticle scattering on the ESR
linewidth at the end. Using partial fraction decomposition,
we get retarded Green’s function

G̃k	
f f �� + i0� =

ak	
f f ,+

� − �k	
+ +

ak	
f f ,−

� − �k	
− �15�

and similar expressions for G̃k	
cf and Gk	

cc , where, with
uk	=�k	

+ −�k	
− ,

ak	
f f ,� = � ��k	

� − 
̃k	�/uk	,

ak	
cc,� = � ��k	

� − 
 f	�/uk	,

ak	
cf ,� = � Ṽ/uk	.

For sufficiently small spin-lattice relaxation, �� �Ṽ , 
̃ f	�, we
may neglect the imaginary parts in the weight factors
ak	

f f ,� , . . . and replace �k	
� by 
k	

� .
The quasiparticles interact via the Fermi-liquid interac-

tion. For ESR, the relevant component of the Fermi-liquid
interaction is the isotropic spin-antisymmetric part described
by the Landau parameter F0

a. An important contribution to F0
a

comes from the renormalized value Ũ of the bare interaction

U, F0
a=−2N0Ũ, similar to the single impurity case discussed

in Sec. II. For the lattice case, exact numerical results on Ũ
are not available. We note, however, that the onsite repulsion
U is likely to be screened down to a positive value of order
N0

−1, which would lead to a ferromagnetic Landau parameter
0�F0

a�−1. Additional contributions to F0
a may be generated

by nonlocal interactions such as the RKKY interaction,
which may be ferromagnetic or antiferromagnetic. We em-
phasize that this Fermi-liquid interaction always leads to a

ferromagnetic contribution to the fluctuation spectrum,
which may be more or less important depending upon the
other contributions.

Following the way in which the interaction was included
in the impurity model, we may express the fully screened
f-electron susceptibility in terms of the unscreened one

� f f
+−�i�m� = � f f ,H

+− �i�m�/�1 − Ũ� f f ,H
+− �i�m�	 , �16�

where

� f f ,H
+− �i�m� = − T�

�n

�
k

G̃k↓,H
f f �i�n + i�m�G̃k↑,H

f f �i�n� .

�17�

The one-to-one correspondence of quasiparticles and bare
particles, on which Landau’s Fermi-liquid theory rests, al-
lows one to calculate the spin susceptibility from the quasi-
particle Green’s functions defined above, without taking the
incoherent parts into account. Here the subscript H indicates
that the Zeeman energy � f is replaced everywhere by

�̃ f = � f�1 + Ũ� f f
+−�0�	 = � f�1 − Ũ� f f ,H

+− �0�	−1. �18�

Using the representation of G̃k↓,H
f f in terms of eigenstates,

the summation in Eq. �17� on �n and k may be done. In the
case that only the lower band is occupied, the low-frequency
response is given by, see the Appendix, Eq. �A4�:

�+−�� + i0� =
�+−�0��− �r + i�r�
� − �r + i�r

, �19�

where �+−�0� is defined in the Appendix, Eq. �A5�. The
mean-field shift largely cancels out of the resonance fre-
quency

�r =
1

2
� f�1 −

�
̃ f − 
kF
�

��
̃ f − 
kF
�2 + 4Ṽ2� � � f�1 − m/m�� ,

�20�

The linewidth, however, is reduced by the exchange interac-
tion, provided the interaction is ferromagnetic.

�r = ��1 +

̃ f − 
kF

��
̃ f − 
kF
�2 + 4Ṽ2��1 − Ũ� f f ,H

+− �0�	

� 2�
m

m� �1 − Ũ� f f ,H
+− �0�	 � � . �21�

It is seen that the main narrowing mechanism is provided by

the hybridization through the renormalized amplitude Ṽ,
which gives the small factor m /m�. In simple terms, the qua-
siparticles at the Fermi surface have mainly f character, with
only a small admixture �fraction m /m�� of conduction elec-
tron component. Since only the conduction electrons feel the
spin-lattice relaxation, the total spin relaxation is a fraction
m /m� of the spin-lattice relaxation. Vertex corrections to the
spin-lattice relaxation are likely to increase �r somewhat as
they do in the impurity case, Appendix Eq. �A1�, where 2�
becomes 4�.
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In order to discuss the temperature and magnetic-field de-
pendence of the linewidth it is necessary to incorporate qua-
siparticle scattering effects14 and inelastic contributions to
the spin-lattice relaxation. In the case that the g factors are
sufficiently different, the contribution to the linewidth from
quasiparticle scattering will vary with temperature as T2 /TF

�

and with magnetic field H as H2 /TF
� . In the case of equal g

factors the latter contribution will be cancelled by vertex
corrections. Additional temperature dependence may arise
from coupling to phonons.

IV. CONCLUSION

This paper is motivated by the recent observations of
electron-spin resonance at low temperature in some heavy-
fermion compounds. We have calculated the dynamical sus-
ceptibility, which describes the resonance, at low tempera-
ture in the fully screened Kondo regime for both a single
Kondo impurity spin as well as for the Kondo lattice, de-
scribed here by the Anderson lattice model.

We have not addressed the behavior of the susceptibilities
at temperatures in the neighborhood of the Kondo tempera-
ture, where linewidths are expected to be very large due to
rapid spin fluctuations in that temperature range. Rather, we
deal with the very low-temperature regime, where a Kondo
impurity is fully screened and where the heavy-electron
Fermi liquid has formed in the Anderson lattice.

For the realistic case in which the g factors of f electrons
and conduction electrons are different, we find for the single
impurity that structure persists at both the f electron and
conduction-electron resonance frequencies. The impurity
resonance continues to have a large width, of order TK, while
for the conduction-electron resonance there is an impurity-
induced contribution that increases or decreases the ampli-
tude depending on the ratio of g factors.

The situation is quite different for the lattice case. Here,
the hybridization of the f and conduction electrons and
Fermi-liquid interaction lead to modifications of the suscep-
tibility that can lead to substantial line narrowing and hence
the possibility of experimental observation. We find a sharp
ESR line near the underlying local f electron resonance. The
line is substantially narrowed by a factor of the mass ratio
m /m� and by the effect of the Fermi-liquid interaction Fa

0

provided it is negative �ferromagnetic�.
We note that the ESR has only been seen in heavy-

fermion compounds for which there is independent evidence
for ferromagnetic fluctuations.7,8 We suggest that our analy-
sis accounts for this observation.
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APPENDIX

1. Anderson impurity model in the Kondo screened regime:
Green’s function approach to �+−(�)

As derived in the main text, Eq. �2�, Green’s functions of
conduction electrons and local electrons, including the
Fermi-liquid interaction, are given by

Gf	�i�n� = �i�n + 	� f + i�̃ sgn��n�	−1,

Gc	�k,i�n� = �i�n − �k + 	�c/2 + i� sgn��n�	−1,

The dynamical transverse susceptibility �+−���, where �
is the frequency of an ac electromagnetic field polarized
transverse to the static magnetic field, is given by

�+−��� = �B
2�gc

2�cc
+−��� + gf

2� f f
+−��� + 2gcgf�cf

+−���	 .

The partial susceptibilities are obtained by evaluating
Feynman bubble diagrams dressed by vertex corrections of
the ladder type referring to the Fermi-liquid interaction �local
electrons� and the spin-orbit interaction �impurity correlation
lines for the conduction electrons�.

The local susceptibility in the absence of vertex correc-
tions is obtained as

� f f ,H
+− �i�m� = − T�

�n

Gf↓�i�n + i�m�Gf↑�i�n�

=
2

�̃

− � f + i�̃

i�m − 2� f + 2i�̃
.

The vertex corrections are obtained from the Bethe-Salpeter
equation

��i�m� = 1 + Ũ� f f ,H
+− �i�m���i�m� =

� − 2� f + 2i�̃

� − � f + i�̃
,

where we used Ũ=�̃. Then

� f f
+−�i�m� = � f f ,H

+− �i�m���i�m� =
2

�̃

− � f + i�̃

i�m − � f + i�̃
.

The conduction-electron susceptibility consists of four
contributions:

�cc
+−�i�m� = �cc

bulk�i�m� + �cc
�1��i�m� + �cc

�2��i�m� + �cc
�3��i�m� .

The bulk contribution has the form �cc
bulk�i�m�

=N�cc
0 ��+ i0���i�n , i�m�, where N is the number

of atoms in the system and �cc
0 ��+ i0�

= −T ��n,k Gc↓�k , i�n + i�m�Gc↑�k , i�n� = N0� −�c + 2i�� /
��−�c+2i��, where N0 is the conduction-electron density of
states at the Fermi level. The vertex function ��i�n , i�m� is
found as the solution to the equation

��i�n,i�m�

= 1 − h2�
k

Gc↓
0 �k,i�n + i�m�Gc↑

0 �k,i�n���i�n,i�m�

as
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��i�n,i�m� = ��− �n����n + �m�
i�m − �c + 2i�

i�m − �c + 4i�

+ �1 − ��− �n����n + �m�	 .

Note that the minus sign in front of h2 is generated by the
Pauli matrices that appear in Hc, Eq. �3� of the main text �in
the case of potential scattering there would be no sign
change�: �i,�,�	�↓

i 	↑�
i Gc�

0 Gc�
0 =−Gc↓

0 Gc↑
0 . As a consequence,

the vertex corrections double the linewidth: 2�→4�. In the

case of potential scattering the vertex corrections cancel the
self-energy induced linewidth, so that potential scattering
does not contribute to the spin relaxation, as expected. Com-
bining the above results we find

�cc
bulk�� + i0� = NN0

− �c + 4i�

� − �c + 4i�
. �A1�

The remaining contributions are obtained from

�cc
�1��i�m� = − V2T�

�n

�
k


�Gc↓
0 �k,i�n + i�m�	2Gc↑

0 �k,i�n�Gf↓�i�n + i�m� + Gc↓
0 �k,i�n + i�m��Gc↑

0 �k,i�n�	2Gf↑�i�n�� ,

�cc
�2��i�m� = − T�

�n
�V2�

k
Gc↓

0 �k,i�n + i�m�Gc↑
0 �k,i�n���i�n,i�m��2

Gf↓�i�n + i�m�Gf↑�i�n� ,

�cc
�3��i�m� = − �V2T�

�n

�
k

Gc↓
0 �k,i�n + i�m�Gc↑

0 �k,i�n���i�n,i�m�Gf↓�i�n + i�m�Gf↑�i�n��2
�− Ũ��i�m�	 .

Using

�
k

�Gc↓
0 �k,i�n + i�m�	2Gc↑

0 �k,i�n� = N0
2i

�i�m − �c + 2i��2 = − �
k

Gc↓
0 �k,i�n + i�m��Gc↑

0 �k,i�n�	2

and the identity

Gf↓�i�n + i�m� − Gf↑�i�n� = − �i�m − 2� f + 2i�̃�Gf↓�i�n + i�m�Gf↑�i�n�

as well as

��i�m� = T �
−�m��n�0

Gf↓�i�n + i�m�Gf↑�i�n� =
1

�̃

i�m

i�m − 2� f + 2i�̃

we get

�cc
�1��i�m� =

2

�̃

�

� − 2� f + 2i�̃
,

�cc
�2��i�m� =

2

�̃

2�̃2

�i�m − �c + 4i��2

�

� − 2� f + 2i�̃
,

�cc
�3��i�m� = −

2

�̃

�2

�i�m − �c + 4i��2

�̃2

�� − 2� f + 2i�̃��� − 2� f + 2i�̃�
.

Adding the three contributions we find

�
i=1

3

�cc
�i��i�m� =

2

�̃

��� − � f�
�i�m − �c + 4i��2

i�̃

� − � f + i�̃
. �A2�

The mixed susceptibility may be calculated from the bubble diagram beginning with a conduction-electron particle-hole line
and ending with a local electron p-h line, dressed by vertex corrections at both ends:
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�cf
+−��m� = − T �

�n,k
Gc↓

0 �k,i�n + i�m�Gc↑
0 �k,i�n���i�n,i�m�V2Gf↓�i�n + i�m�Gf↑�i�n���i�m�

=
2

�̃

− i�̃

i�m − �c + 4i�

i�m

i�m − 2� f + 2i�̃
. �A3�

After analytical continuation to the real frequency axis and
combining the contributions, the total impurity susceptibility
is obtained as given in the main text, Eqs. �6� and �7�.

2. Anderson lattice model in the Kondo screened regime:
Green’s function approach to �+−(�)

As derived in the main text, the matrix of quasiparticle
Green’s functions is given by

�G̃k	
f f G̃k	

cf

G̃k	
fc Gk	

cc � =
1

det�� − 
k	 + i� V˜

V˜ � − 
̃ f	
� ,

where det= ��− 
̃ f	���−
k	+ i��− Ṽ2= ��−�k	
+ ���−�k	

− �.
The complex energy eigenvalues are given by

�k	
� =

1

2
�
̃ f	 + 
k	 − i�� ��1

4
�
̃ f	 − 
k	 + i��2 + Ṽ2

= 
k	
� − i�k	

� ,

where, expanding to leading order in �, as well as in � f ,�c,


k	
� = Re �k	

� �
1

2
�
̃ f	 + 
k	� ��1

4
�
̃ f	 − �k	�2 + Ṽ2

� 
k
� −

1

2
�k
�	

and

�k	
� = − Im �k	

� �
1

2
��1 �


̃ f	 − 
k	


k	
+ − 
k	

− � � �k
� −

1

2
 k
�	 ,

with


k
� =

1

2
�
̃ f + 
k� �

1

2
��
̃ f − 
k�2 + 4Ṽ2,

�k
� =

1

2
��̃ f + �c� �

1

2


̃ f − 
k

��
̃ f − 
k�2 + 4Ṽ2
��̃ f − �c� ,

�k
� =

1

2
��1 �


̃ f − 
k

��
̃ f − 
k�2 + 4Ṽ2� ,

 k
� = �

1

2
�

�̃ f − �c

��
̃ f − 
k�2 + 4Ṽ2

4Ṽ2

�
̃ f − 
k�2 + 4Ṽ2
.

The susceptibility is, as in the case of the impurity, given
by the sum of three contributions: f f , cc, and �cf , fc�:

�+−��� = �B
2�gc

2�cc
+−��� + gf

2� f f
+−��� + 2gcgf�cf

+−���	 .

Here the f f susceptibility is screened by the Fermi-liquid
interaction

� f f
+−�i�m� = � f f ,H

+− �i�m���i�m�,

with

��i�m� = 1/�1 − Ũ� f f ,H
+− �i�m�	 ,

where

� f f ,H
+− �i�m� = − T �

�n,k
G̃k↓,H

f f �i�n + i�m�G̃k↑,H
f f �i�n� .

Similarly,

�cf
+−�i�m� = �cf ,H

+− �i�m���i�m�,

where

�cf ,H
+− �i�m� = − T �

�n,k
G̃k↓

cf �i�n + i�m�G̃k↑
cf �i�n�

and

�cc
+−�i�m� = �cc,H

+− �i�m� + Ũ��cd,H
+− �i�m�	2��i�m�,

where

�cc,H
+− �i�m� = − T �

�n,k
Gk↓

cc �i�n + i�m�Gk↑
cc �i�n� .

Using the representation of Green’s functions in terms of
the eigenstates !=�, and the fact that low energy excitations
are only possible close to the Fermi energy, which we as-
sume to lie in the lower band �!=−�, only the
�−�-components contribute to �ij,H

+− �i�m�:

� f f ,H
+− �� + i0� = − �

k
ak↓

f f ,−ak↑
f f ,− f��k↑

− � − f��k↓
− �

� − �k↓
− + �k↑

− + i0
,

where in the arguments of the Fermi function f�
�, the
complex-valued energy �k↓

− appears. Employing

�k↓
− − �k↑

− � �k
− − 2i�k

−,

and

�
k

�f��k↑
− � − f��k↓

− �	 � �
k

�� f/�
k
−��− �kF

− + 2i�kF

− �

= N0��kF

− − 2i�kF

− � ,

we get
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� f f ,H
+− �� + i0� = N0akF↓

f f ,−akF↑
f f ,−

− �kF

− + 2i�kF

−

� − �kF

− + 2i�kF

−

and hence

� f f ,H
+− �0� = N0akF↓

f f ,−akF↑
f f ,−.

Equivalent expressions hold for the f f and cf components.
The vertex function follows as

��� + i0� =
� − �kF

− + 2i�kF

−

� − ��kF

− − 2i�kF

− ��1 − Ũ� f f ,H
+− �0�	

and the renormalized f f susceptibility takes the form

� f f
+−�� + i0� = � f f

+−�0�
− �r + i�r

� − �r + i�r
,

where

�r − i�r = ��kF

− − 2i�kF

− ��1 − Ũ� f f ,H
+− �0�	

and

� f f
+−�0� = � f f ,H

+− �0�/�1 − Ũ� f f ,H
+− �0�	

as discussed in the main text, Eqs. �20� and �21�. The total
susceptibility consists of two resonance terms:

�+−�� + i0� = �r
+−�0�

− �r + i�r

� − �r + i�r
+ gc

2
− �kF

− + 2i�kF

−

� − �kF

− + 2i�kF

− ��cc,H
+− �0� + Ũ��cf ,H

+− �0�	2 − �r + i�r

� − �r + i�r
 , �A4�

where �r
+−�0�=gf

2� f f
+−�0�+2gcgf�cf

+−�0�. In the case that �kF

− ��r, the resonance part simplifies to

�+−�� + i0� = �+−�0�
− �r + i�r

� − �r + i�r
, �A5�

where

�+−�0� = �r
+−�0� + gc

2Ũ��cf ,H
+− �0�	2
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