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to strain localization and to change in character—from elliptic to hyperbolic—of the governing equations.
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I. INTRODUCTION

Effective-medium approximations �EMAs� for nonlinear
composites1–10 �i.e., multiphase materials�, which aim to pre-
dict their overall �i.e., macroscopic� behavior, are pushed to
their limits of validity as the nonlinearity and/or the hetero-
geneity contrast become large.7 Typical examples of this sort
of phenomenon in continuum mechanics include porous,11–13

and rigidly reinforced,13,14 plastic or nonlinearly elastic me-
dia. In the idealized model of perfect plasticity, plastic ma-
terial flow takes place at constant stress intensity �the yield
stress�. In such circumstances, the flow preferentially con-
centrates �localizes� in shear bands.15 Formally, these shear
bands are closely related to other types of minimal break-
down manifolds in heterogeneous media �mechanical sys-
tems, as well as nonlinear electrical networks�.16–18 How-
ever, nonlinear EMAs which address plasticity rely on a
quasiequilibrium hypothesis, which means that the character-
istic time of an individual “breakdown” �or slip� event is
longer than that of wave propagation through the medium19

�in nonlinear dielectrics, such conditions are met, as well as
in the reversible diode network experiment20�. Plastic defor-
mation being a strongly irreversible process, applications of
such EMAs to plasticity should therefore be restricted to in-
cipient deformation in an incremental framework.12,15 None-
theless, upon neglecting elasticity and assuming plastic in-
compressibility, the quasiequilibrium hypothesis may extend
to full-grown deformations, such as in the slip-line theory of
perfect plasticity, but the governing equations are then
hyperbolic.15

Efficient nonlinear EMAs rely on the use of an underlying
linear comparison medium,21,22 which may consist in a “se-
cant” �isotropic� approximation23 to the nonlinear response
of the composite. In the most recent approaches the compari-
son medium is anisotropic, of direction determined by the
applied field,6 and of strength being consistently determined
by the covariance tensors of the local fields in the phases.8–10

How these methods cope with localization at the overall

level in heterogeneous media is not well understood �see
Ref. 24 and references therein�.

To address this issue, this paper is devoted to the signature
of incipient localization in an EMA for periodic
composites.25 Because for periodic media efficient methods
of solution have been developed,24,26–34 our focus here is
on such materials. Thus, a system consisting of a two-
dimensional �2D� periodic lattice of voids embedded in a
deformable matrix is considered. Aimed at understanding the
hallmarks of localization in the underlying linear medium of
nonlinear EMAs, we focus on the case of an elastically an-
isotropic linear matrix of variable anisotropy.24,35

The problem, described in Sec. II, admits an exact ana-
lytical solution in the particular case of infinite anisotropy,
where the governing equations acquire an hyperbolic
character.24,35 As a consequence, the overall elastic moduli
depend on the porosity f �the volume fraction of voids� as
powers of f1/2, in particular in the dilute limit f →0.24 This
result is at odds with usual effective-medium results, in
which the first correction to a homogeneous medium is an
O�f�,30,36 due to its proportionality to the number of
inclusions.37

But for finite anisotropy, the governing equations are
elliptic, and no exact solution is available. The crossover
to the regime of high anisotropy and its link to localiza-
tion, of direct interest for nonlinear EMAs, and more gener-
ally for understanding the nature of the macroscopic yield
transition,17 are investigated hereafter. For lack of exact so-
lutions, the following are compared: �i� quasiexact numerical
results obtained by fast Fourier transform �FFT� calculations,
�ii� outcomes of an EMA for linear periodic media whose
predictive capabilities are assessed, and �iii� the exact results
of Ref. 24. The case of a nonlinear �visco-�plastic matrix is
examined elsewhere.38

The notation used is as follows: A denotes a tensor of
components Aijkl, the sans-serif a is the tensor of components
aij �except for the strain and stress � and �, and the strain
polarization �, written in boldface�, and the boldface a is the
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vector of components ai. A colon denotes a double contrac-
tion, e.g., A :B has components AijmnBmnkl, etc. For conve-
nience, indices i=x ,y or 1, 2 are used indifferently hereafter.

II. PROBLEM FORMULATION

The composite, described in Fig. 1, consists of an elastic
matrix �phase �=1, of volume fraction c�1�=1− f�, contain-
ing a square array of voided cylinders of radius a �phase �
=2, of volume fraction c�2�� f =�a2�. Here and henceforth,
the size of the unit cell is L=1. A set of duality relations39

allows one to translate the following results for the overall
behavior of this porous medium in the context of rigidly
reinforced composites, which is another interesting case of
infinite elastic contrast.

In the composite ��x�=L�x� :��x�, where L�x� is the
position-dependent elasticity tensor, of components Lijkl
=Lijlk=Lklij. The equilibrium equation �i�ij =0 holds, and the
strain derives from the displacement u as �ij = ��iuj +� jui� /2
�small perturbations are assumed�. In two dimensions, �xx
=�xux, �yy =�yuy, and �xy = ��xuy +�yux� /2. In the voids, L�x�
=L�2��0, the stress vanishes and the strain is arbitrary: any
continuation matching the displacements at the void bound-
aries is admissible. Only its volume average over the void is
physically relevant.

The matrix material can be thought of as a “mixture” of
two basic types of anisotropic media:24 �i� one where the
eigendirections of anisotropy coincide with the reference
axes of unit vectors e1�ex and e2�ey, and �ii� one where
they coincide with the diagonals �see Fig. 1�. Such a medium
is invariant under the dihedral point-symmetry group D4.
Then, its elastic tensor L�1� is of the form

�L1111 + L1122�J + 2L1212E
SS + �L1111 − L1122�EPS, �1�

where J, EPS,SS are mutually orthogonal projectors defined by
�I, of components �ij, is the 2�2 identity matrix�

J � �1/2�I � I , �2a�

ESS,PS � �1/2�eSS,PS
� eSS,PS. �2b�

The identity is I=J+ESS+EPS. The definitions involve the
so-called simple shear �SS� and pure shear �PS� eigenmodes
of deformation:

eSS � e1 � e2 + e2 � e1, �3a�

ePS � e1 � e1 − e2 � e2, �3b�

such that ESS,PS:eSS,PS=eSS,PS. Their eigenvectors are related
by a 45° rotation �see Fig. 1�. Also J : I= I. This decomposi-
tion relates to that of a 2�2 symmetric tensor a into one
equibiaxial �i.e., compressive� mode and two orthogonal
shear modes:

a = amI + aSSe
SS + aPSe

PS, �4�

of respective components am��axx+ayy� /2 �called mean
stress or strain hereafter�, and aSS�axy, aPS��axx−ayy� /2.
Thus, in the matrix we write

L�x� = L�1� � 2�J + 2	ESS + 2
EPS. �5�

� is the bulk compressibility modulus, and 	, 
 are in-plane
anisotropic shear moduli. With this medium of a special
orthotropic type, the interpretation of the 2D problem as a
limiting one of plane stress ��xz=�yz=�zz=0, �zz�0� or of
plane strain ��xz=�yz=�zz=0, �zz�0� is irrelevant from a
theoretical standpoint, although the expression in terms of �
and of 
 of the Young modulus and Poisson ratio relative to
the pure shear mode differ in both cases.40

With applications to volume-preserving plastic deforma-
tion in mind, this study mostly focuses on the limiting case
of an incompressible matrix for which �=�. Introducing in
this limit the dimensionless anisotropy ratio k=	 /
, the me-
dium is isotropic when k=1, and is infinitely anisotropic
when either k=0 or k=�. In each of the latter limits, the
medium possesses one infinitely hard and one infinitely soft
eigenmodes of strain: when k=0 �i.e., 	=0 or 
=�� the
medium is soft for SS loadings and resists PS loadings,
whereas when k=� �i.e., 	=� or 
=0� the medium is soft
for PS loadings and resists SS loadings. We accordingly call
these loading modes “hard” and “soft” hereafter. This model
provides a convenient framework for studying the coupling
between porosity and localization.

Volume averages over the whole system are denoted by
brackets �·�. Hereafter, �·���� stands for a volume average
over phase �. By definition, the effective �overall� tensor of

elastic moduli, L̃, relates the macroscopic strain �̄= ��� to the
macroscopic stress �= ���:

� = L˜:� . �6�

The square void lattice also being invariant under D4 and L˜
is of a form analogous to Eq. �5�, where �, 	, and 
 are

replaced by the effective moduli �̃, 	̃, and 
̃. The latter are
the main quantities of interest. They depend on �, 	, 
, and
f . Even when �=�, the effective modulus �̃ is finite for the

porous medium. Then, the normalized moduli 	̃ /	, 
̃ /
 de-
pend only on k, and on f . Convenient normalizations for �̃
are �̃ /
 when 	→�, or �̃ /	 when 
→�.

III. FULL-FIELD FFT APPROACH

A. Numerical method

Full-field numerical solutions of the problem are obtained
using the Fourier transform method,41 applied to linear com-

FIG. 1. Left, periodic porous medium with unit cell and refer-
ence axes. Right, black arrows depict eigenmodes of strain: simple
shear �SS� and pure shear �PS�.
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posites. The method amounts to solving iteratively the
Lippmann-Schwinger equation for the strain,42

��x� � �+� d2y G�x − y�:��y� , �7a�

��x� � �L�x� − L�0��:��x� , �7b�

where L�0� is some arbitrary background elastic tensor. The
position-dependent elastic tensor of the medium, L�x�, is 0
�=L�2�� in the void and L�1� in the matrix. In all the numerical
calculations of the paper, the latter is assumed nearly incom-
pressible with �	103, and no appreciable differences were
observed for �	102. The tensor G is the periodic Green
function of the background medium, such that 
d2xG�x�=0.
In the method, the convolution in Eq. �7a� is evaluated in
Fourier space, whereas Eq. �7b� is computed in direct space.
The unit cell of the periodic composite is finely discretized
as an L�L array of pixels. The bad iterative properties of
�A� are alleviated through various improvements allowing
for high or even infinite contrast.43 These schemes are used
here. Fast convergence is achieved by taking L�0� of type �5�,
with the same anisotropy ratio k as L�1�, but with consider-
ably lower moduli, namely �0 /�	5.10−4 and 
0 /
		0 /	
	0.2 �not necessarily optimal values�. The Fourier transform
of G reads44

Gijkl�q� = − �qi�N−1�q�� jkql�sym, �8�

where �·�sym indicates a symmetrization so that Gijkl=Gklij
=Gjikl, and where Nij�q�=qkLiklj

�0� ql is the acoustic tensor.
Calculations are carried out for various anisotropy ratios

�10−4�k�104� and porosities �0 f  fc� using FFT rou-
tines. Three sizes L=512, 1024, and 2048 are considered to
monitor size effects. The smallest one leads to results with
satisfactory convergence properties, except in cases of high
anisotropy, where a better resolution was required to render
the fine structure of the field patterns. We used L=2048
whenever an appreciable difference was found between L
=512 and 1024.

Once the strain �ij�q� is computed, the displacement u�q�
is deduced from �q�0� �Ref. 45�

ux�q� = − i�qx��xx�q� − �yy�q�� + 2qy�xy�q��/q2,

uy�q� = i�qy��xx�q� − �yy�q�� − 2qx�xy�q��/q2.

Only SS or PS macroscopic strain loadings are considered
��m=0�. Other shear states follow from linearity. For both
modes, the linear elastic problem is solved for various aniso-
tropy ratios 0�k��. Effective moduli are computed using

one component at a time, e.g., 	̃= ��xy� / �2��xy��.

B. Overview: displacement and stress maps

Typical displacement and stress maps obtained by �isoch-
oric� FFT calculations are as follows. Since first-order infini-
tesimal displacements are used, it should be borne in mind
that however singular, the displacement patterns are at most
incipient ones. In limits of infinite anisotropy k→0,�, the
structure of the solutions tends toward one that is schema-

tized in Fig. 2, being organized into bands of width one void
diameter. Two remarkable types of structures are found, de-
pending on the loading direction and on the type of aniso-
tropy. They differ essentially by the presence of zones in the
matrix where the bands cross �denoted by c in Fig. 2�.

With the above mentioned caveat, the following approxi-
mate symmetry holds between the maps:24

R45°�void lattice� ⇔  k ↔ 1/k
PS loading ↔ SS loading,

�
�9�

where the R symbol denotes a 45° rotation of the lattice of
voids, with all other parameters �material constitutive law
and loading� conserved. These field structures, already re-
vealed by the analytical calculations of Ref. 24 for infinite
anisotropy �to which we refer the reader for further details�,
are retrieved here for finite, but high, anisotropy.

Table I displays full-field calculations of the reduced �pe-
riodic� displacement field u��x��u�x�− �̄ ·x, indicated by ar-
rows, superimposed on a representation of the unit cell de-
formed using a rescaled displacement �u��x�, for anisotropy
ratios k=10−3, 1, and 103 in SS and PS loadings, for a mod-
erate porosity f =0.1. To highlight the deformation pattern,
the magnification factor � lies between 1 and 10. Lighter
gray tones in the deformed matrix indicate regions subjected
to a strong extension. The unit cell is replicated in order to
emphasize the displacement �“flow”� pattern. For low and
high k, the features of the displacement maps are in agree-
ment with the exact results derived at infinite anisotropy in
Ref. 24, which they enlighten.

The flow pattern is organized in closed convection cells of
square shape, delimited by black boxes. Two types of cells,
rotated �� with respect to the Cartesian axes, and related by
a mirror symmetry, suffice to account for the flow pattern in
SS �maps A, B, and C�. As a consequence, and due to the
high anisotropy, the edges of the unit cells in �A� and �C�
undergo nonzero and quasi-piecewise-linear deformation. On
the other hand, four types of convection cells, aligned along
the Cartesian axes, related by mirror symmetries with respect
to these axes, and fully enclosed within one unit cell, are
required to produce the flow pattern in PS �D, E, F�.

Compared to the k=1 isotropic solutions of �B� and �E�,
solutions for highly anisotropic situations are either: �i� lo-
calized in strain, with a displacement field discontinuous at
places �maps �C� and �D��; �ii� localized in stress, with con-

a

bd

a

b

d

v v

c

FIG. 2. Structure of unit-cell field patterns for high anisotropy.
Left, pattern for SS loading and k=�. Right, pattern for PS loading
and k=0. In these figures, v=void; b, c, d=deformation bands in
the matrix �not intersecting, intersecting far from the void, and in-
tersecting around the void, respectively�; a=remaining parts of the
matrix.
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tinuous displacement as in �A� and �F�. Strain localization
arises whenever loading along a “hard” mode takes place.
Then, the highly anisotropic medium resists most the applied
strain and undergoes both a high induced stress and a weak
induced strain. In the limit of infinite anisotropy, a rigid
“block sliding” incipient pattern results, where the flow is
organized in bands of width one void diameter �see also Fig.
2�, where the tangential component of u� is discontinuous,
and where strain concentrates as Dirac distributions along the
sliding lines. This pattern is tantamount to a breakdown
mechanism. In turn, block sliding leaves four incipient voids
in the matrix in �C� and �D�, at locations where the sliding
lines intersect at 90°. One such void is enlarged in �D�. One
important difference between cases �C� and �D� is that in �C�,
the flow bands �of width one void diameter� cross inside the
matrix due to their 45° orientation. Flow redistribution then
takes place in the intersection zones. On the contrary, in �D�
such zones do not exist in the matrix, and flow redistribution
requires a nonzero displacement component normal to the
band boundaries. As a result, the gradient of the tangential
component of u� is higher in �C� than in �D�.

Solutions with a continuous displacement field are ob-
tained instead when loading is applied along the soft defor-
mation mode. With the remaining deformation mode being
harder, this leaves less possibilities for easy deformation than
in the isotropic case; this explains why the unit cells of �A�
and �F� are much less deformed—a magnification �=10 is

used—than the cells �B� and �E� of the isotropic material–
plotted with �=1.

Table II displays, for f =0.1 and for increasing anisotropy
ratios k, maps of the independent stress components �m, ��,
and ��, under SS and PS loadings. Hereafter, the maps are
referred to by their individual number �1 to 30�. Each map
goes along with its own field scale at its right, in correspon-
dence with the color scale at the extreme right of the rows.
The “parallel” ��� and “perpendicular” ��� notations refer to
the “direction” of the applied macroscopic loading. The SS
and PS shear components of the stress are defined in Eq. �4�.
In PS loading, we have �� ��PS, ����SS, whereas in SS
loading: �� ��SS, ����PS �hereafter, a similar notation is
used for strain components�. In both cases, the volume aver-
age of the nonparallel components vanishes: ����= ��m�=0.
The maps display rescaled stresses, such that ����=1. Due to
linearity, the strain fields are the same, up to a change of
scale �although the scales are different in the parallel and
perpendicular directions due to the anisotropy�.

The following observations are relevant to the regime of
high anisotropy, where the stress patterns follow that of Fig.
2. The zones where bands cross depicted in this figure �either
in the matrix �zones c� or close to the voids �zones d+v�� are
places of additive screening or enhancement of the stress.
Thus, the parallel stress in zone c of map 20 reaches its
highest values there, and is twice that in the two crossing
bands �however, a much higher transverse stress is encoun-

TABLE I. Reduced displacement field u� �arrows� and resulting elastic deformation of the unit cell �to lowest order of perturbations�
in SS and PS loadings for anisotropy ratios k=10−3, 1, and 103. Four unit cells are represented. An enlargement of a void is shown in map
�D�.
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tered in the immediate vicinity of the void �see map 25��. In
a similar way, the vanishing stress in zone c in map 5 is the
difference between the stresses in the bands. Two remarks,
strictly valid for infinite anisotropy, are in order at this point:
First, zones of vanishing stress are squares, of size deter-
mined by the void cross section transverse to the bands, so
that the disklike shape of the voids is no longer relevant.
Second, the buildup of zones of zero stresses �i.e., analogous
to porous zones� in the matrix in SS loading leads to an
effective doubling of the porosity in the effective shear

modulus 	̃ at infinite anisotropy, whereby an effective “close
packing” threshold, twice as small as the geometric one,25 is

reached as f increases, leading to a “mechanically advanced”

percolative behavior. As a consequence, 	̃ decays rapidly
with f �see next section�.

The stress is less singular than the strain in the limit of
infinite anisotropy. Indeed, in a strain-localized situation
�loading along a “hard” mode �maps 5, 16��, the displace-
ment is discontinuous. Accordingly, the transverse strain has
Dirac singular components along the band frontiers. They
abruptly change sign at the special points ��a ,0� and
�0, �a� on the void boundary in PS and at points
��a , �a� /�2 in SS, where a is the void radius. Because of
the stress-strain proportionality, these strain singularities can

TABLE II. �Color online� Parallel ����, transverse ���� and mean ��m� stress field maps for SS and PS loadings, with anisotropy ratios
k=0.01, 0.2, 1, 5, and 100 �porosity f =0.1�. The stress fields are rescaled such that −3.58.
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be traced in maps 10 and 21. However, since the perpendicu-
lar stress vanishes in the limits k→0,�, so do its Dirac
singularities, as shown by the small values on the scales. The
special points, termed hot spots in Ref. 24 are points of ex-
treme matter separation, or crushing, which bear the main
cost of the “block sliding” patterns. On the other hand, the
incipient secondary voids in maps �C� and �D� of Table I
appear �somehow paradoxically� as regions of moderate
stress levels.

More generally, the stress field undergoes the following
types of singular behavior in the limiting cases of infinite
anisotropy:

�i� loading along a hard mode: discontinuous �� compo-
nent along band frontiers in the direction normal to the fron-
tiers, with finite jump, accompanied by hot spots at the void
boundary �maps 5, 16�;

�ii� loading along a soft mode: discontinuous derivative of
�� in the same direction, with infinite jump �maps 1, 20�, and
discontinuous �� with infinite jump across the band frontiers
�maps 6, 25�.

The mean stress is always singular with the most singular
behavior: it has the singularity of the parallel stress in the
case of loading along a soft mode, and the singularity of the
transverse stress in the case of loading along a hard mode
�but the mean strain vanishes in the limit of an incompress-
ible medium�.

IV. EFFECTIVE MEDIUM APPROACH

Nemat-Nasser and Taya26 proposed an approximate �dipo-
lar� Fourier-mode approach to the periodic problem, which
proved excellent for isotropic components.28,31 We apply a
similar method to the anisotropic case. More accurate
schemes going beyond the dipolar level, however less suit-
able to analytical treatment, are available.26,29,32

The following developments are inspired from a straight-
forward approach by Suquet,31 and result in an EMA of the
Clausius-Mossoti, or Maxwell-Garnett �MG� type.27,46–48 Its
bounding character can be established31 using the variational
principle of Hashin-Shtrikman49 under a form due to Milton
and Kohn.50 In principle, the technically more involved spec-
tral method of Kantor and Bergman for periodic elastic
media27 could also have been used to address the present
problem. Its actual connection to the present approach and
results below however remains to be investigated.

Consider first the general case of a binary composite of
volume V→�, the inclusions of which, in proportion to c�2�,
have an elastic tensor L�2�, and set �L=L�2�−L�1�. The char-
acteristic function �� of an infinite periodic array of identical
inclusions, of characteristic function �, is ���x�=�i��x−ri�,
where ri are lattice vectors. Then, L=L�1�+���L. Equations
�7� and �8� apply, with L�0�=L�1�, and �=���L :�. At the
dipolar level of approximation, it is assumed that the defor-
mation is a constant in the inclusions so that ���x���x� is
replaced by ���x�����2�. This approximation is exact for non-
interacting ellipsoidal elastic inclusions only.51 Under this
approximation, multiplying Eq. �7a� by ���x� and integrating
over V results in the equation ����2�= �̄−P :�L : ����2�, or
����2�= �I+P :�L�−1 :�, where P is the Hill depolarization
tensor52,53 of the inclusion lattice:

P = −
1

Vc�2�� d2x d2x����x�G�x − x�����x��

= − VI� d2q

�2��2�
i

eiq·riG�q���eix·q�I�2, �10�

=− c�2� �
q=2�p

p�R.L.

� G�q���eix·q�I�2. �11�

Here, �·�I denotes a volume average �with respect to x� over
one individual inclusion of volume VI. The sum in Eq. �10� is
over inclusions “centers” in the inclusion lattice �where one
inclusion center ri0

coincides with the origin of coordinates�.
The last equality stems from the Poisson summation formula.
The primed sum in Eq. �11� is over nonzero reciprocal lattice
vectors p= �px , py� �with integer components�. It should be
noted that in the above formulation, the array of inclusions as
a whole is considered as one unique �albeit nonconnex� in-
clusion whose overall depolarization properties are described
by P.

In the same way, the average stress �= �L :�� in V is
directly computed from Eqs. �7a� and �7b�, by observing that

d2x d2x�G�x−x�����x�� :�L :��x��=0 since by definition of
G, 
d2x G�x�=0. This results in

� = �L�1� + c�2��L�:� − c�2��L:P:�L:����2�. �12�

Inserting in this expression the above-obtained ����2�, and
using definition �6�, entails the effective elastic tensor

L˜ = L�1� + c�2��L:�I + P:�L�−1. �13�

The formula for the void lattice with L�2�=0 follows. For
void inclusions, Eq. �13� provides an upper bound to the
exact result.31

It is convenient to recast Eq. �13� as follows. We separate
P into one- and two-body contributions P1 and P2,54 by set-
ting P�P1−c�2�P2, where P1 is the ri0

=0 term in Eq. �10�
and where P2 is defined from the remainder. Introducing

�L˜ =L˜ −L�1�, Eq. �13� takes on, after a simple algebraic trans-
formation, the more familiar form of a MG-type equation for
a nonisotropic microstructure:55

T˜ = c�2�T1, �14�

where

T˜ � �L˜:�I + P2:�L˜�−1, T1 � �L:�I + P1:�L�−1. �15�

There, T1 is the elastic polarizability �or T matrix, in the
language of multiple scattering theory56,57� of one single in-

clusion embedded in the matrix, whereas T˜ is that of an
effective inclusion embedded in the effective medium. The
use of different depolarization tensors in T1 and T2 indicates
that the effective inclusion has an “elastic shape” determined
by two-body correlations and matrix anisotropy, whereas that
of the single inclusion solely follows from its own geometri-
cal shape and matrix anisotropy. In classical MG-type ap-
proaches, both P1 and P2 �or their dielectric counterparts� are
sometimes taken equal47—especially in the prototypical case
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of homogeneously distributed spherical inclusions—thus
conveying a hypothesis of strong correlations between the
shape of the individual inclusions and their spatial organiza-
tion. In general however, the two depolarization tensors need
not be equal �see Refs. 44, 54, and 56 for a systematic dis-
cussion of these issues�. Note that for ease of interpretation
in the MG framework, our definitions of P1 and P2 slightly
differ from that of Ref. 54 as to their normalization with
respect to the matrix concentration.

The above decomposition of P proves useful whenever
some eigenvalue of T1 should blow up. Then, the corre-

sponding eigenvalue of �L˜, hence of L˜, is simply provided
by that of −P2

−1 as Eqs. �14� and �15� make clear. Further use
will be made of P1,2 in Sec. V B.

For cylindrical voids of radius a, with J1 the Bessel func-
tion, �eiq·x�I=2J1�aq� / �aq�. Setting

m � 
/�, � � 	/� , �16�

one finds from Eqs. �8� and �11� that Pijkl= �QipqlRjpqk�sym,
where R=J− �1+m�ESS− �1+��EPS, “sym” denotes a sym-
metrization with respect to indices �i , j� and �k , l�, and

Q =
2

�
�

p�R.L.

�
J1

2�2�ap�
p2��p�

p � p � p � p , �17a�

��p� = 	�1 + m��px
2 − py

2�2 + 4
�1 + ��px
2py

2. �17b�

The reciprocal lattice is a square lattice. Hence Q is also
invariant under D4. Being completely symmetric, it is of type
�1� with L1122=L1212 and is determined by two independent
scalar lattice sums only. One obtains

Q =
1


�1 + ��
��S	 + S
�J + S
ESS + S	E

PS� , �18�

where after having reduced the lattice sums to sums over the
positive quadrant,

S	

S

� =

4

�
�

px�0

py�1

J1
2�2�ap�

p2�4px
2py

2 + k�px
2 − py

2�2��px
2 − py

2�2

4px
2py

2 � .

�19�

These sums bring in the anisotropy parameter

k � ��1 + m�	�/��1 + ��
� , �20�

which reduces to 	 /
 in the incompressible limit �→�. We
remark in passing that

kS	 + S
 = S2�a� �
4

�
�

px�0,py�1
�J1�2�ap�/p�2 �21�

is independent of k. After some algebra, one arrives at

P =
1

2
�1 + ��
���S	 + mS
�J + �mS
 + �1 + m�S	�ESS

+ ��S	 + �1 + ��S
�EPS� . �22�

The one-body P1 is read from this expression, provided
that S	,
 are computed in the continuum limit, by making the
substitutions �→ 1

4 lim�−�0
�
�d2q / �2��2, p→q / �2�� in Eq.

�19�. Then �in the continuum limit�, S	,
→

S1
 �
1

1 + �k
, S1	 �

1

�1 + �k��k
. �23�

Equation �19� shows that S	 blows up when k→0 due to the
contribution of the Cartesian axis px=0. On the other hand,
S
 remains finite or goes to zero in all cases.

The limit of an isotropic matrix where k=1, �=m=� /

provides P1= �2mJ+ �1+2m�K� / �4
�1+m��, where K�ESS

+EPS. This expression can be recovered directly from Eq. �8�
and from the usual definition in terms of an angular integral58

P1=−
d2�q̂G�q̂� / �2��, where q̂=q /q �the independence
with respect to � stems from the rotational symmetry of the
voids�.

From Eqs. �13� and �22�, the effective moduli of the void
lattice read, with f =c�2�,

�̃/� = 1 − f/�1 − ��	/
�S	 + S
�/�1 + ��� , �24a�
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FIG. 3. Effective shear �	̃, 
̃� and compressibility ��̃� moduli vs anisotropy ratio k. Incompressible matrix. Comparisons between the
EMA �solid lines� and FFT results �dots� for porosity f =0.1. The quantity �̃ is normalized with respect to the most appropriate modulus,
depending on the range of k considered.
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	̃/	 = 1 − f/�1 − k�S	 + mS
/�1 + m��� , �24b�


̃/
 = 1 − f/�1 − �S
 + mS	/�1 + ���� . �24c�

Henceforth, incompressibility is assumed for simplicity so
that k�	 /
 from now on, unless explicitly stated.

V. RESULTS

A. Effective moduli

The numerical results at various values of k and f dis-
cussed in this section are obtained using brute force numeri-
cal computations of the sums S	,
, with convergence checks.
The sums S	,
 are conditionally �and slowly� convergent and
the following suitable prescription is used. Sums are carried
out over concentric square shells of points Sn= ��px ,n� �0
� px�n−1�� ��n , py� �1� py �n� for 1�n�N, with N suf-
ficiently large. Huge numbers of terms are required for accu-
racy, especially in the dilute limit.

Figure 3 shows comparisons between the effective moduli
computed numerically from the above maps and the
effective-medium approximation �EMA� of Sec. IV for f
=0.1. The agreement is excellent near the case of an isotropic
matrix k=1 �as is expected for such a small porosity�, but
also up to high anisotropy. In all cases, the EMA is seen to
provide an upper bound for the corresponding full-field esti-

mates, as emphasized in the previous section.
Near k=1, the orientation of the void lattice makes the

medium harder under PS loading than under SS loading �i.e.,

̃�k=1��	̃�k=1��. Indeed, the anisotropic matrix can be
thought of as containing rigidifying fibers �of strength 
�
oriented at �� along the diagonals that resist PS deformation,
and fibers �of strength 	� oriented along the Cartesian axes
that resist SS deformation. In the void lattice, the nearest-
neighboring voids and consequently the largest “directional
damage” lie along the Cartesian axes, which explain the dif-
ference. We emphasize that while this observation remains
true as k→0, the situation changes as k→�: in this limit,
due to the presence of the fictitious voids produced by band
crossing mentioned in the previous section, the nearest-
neighboring “voids” become located along the diagonals so
that the pure shear �PS� direction becomes, for k higher than
some value k=k1 �discussed below�, the most damaged one,
hence the softest.

As k→0 �Fig. 3�a��, the curvature of the plots indicates

that 
̃ increases slower than 
, whereas 	̃ decreases slower
than 	. As k→� �Fig. 3�b��, the parts played by 	 and 
 are
reversed. Moreover, the compressibility modulus �̃ decreases
as anisotropy increases in a way comparable to the hardest
shear modulus �Figs. 3�c� and 3�d��.

At high anisotropy k, 1 /k�0.1, discrepancies between
full-field calculations and the EMA arise for the hardest

shear modulus �i.e., 
̃ when k→0, and 	̃ when k→��,
whereas the softest one remains extremely well reproduced.
This may indicate that the lattice sums have problems deal-
ing accurately with the effect of second-nearest-neighboring
voids. Indeed, the softest direction is always the one where
the voids �real or fictitious� are nearest neighbors, whereas
the hardest one corresponds to second-nearest neighbors.
Note that �̃, which behaves as the hardest effective modulus,
suffers similar discrepancies at high anisotropy.

To discuss the crossing of the curves that takes place in

Fig. 3�a�, consider the effective anisotropy ratio k̃� 	̃ / 
̃.

Crossing occurs when k̃�k��=k� for some k=k��f�, where the
overall medium and the matrix have the same anisotropy
ratio. The point k�, as estimated by the EMA, is represented
vs f in Fig. 4 �no attempt has been made to use full-field
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FIG. 4. Anisotropy ratios k1 and k� vs porosity f in the EMA.
Incompressible matrix.
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FIG. 5. �Color online� Effective shear �	̃, 
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matrix. Comparisons between the EMA for k=1 �solid�, and k=0.01, 100 �dotted�; FFT results for k=0.01 �green triangle dots�, k=0.01 �red
circle dots�, and k=100 �blue losange dots�; and exact results at k=0, � taken from Ref. 24 �dash dotted�.
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calculations for computational cost reasons�. The k��f� curve
shows that crossing only occurs for porosities f  f�	0.13:

as f increases, the curve 	̃ /	 in Fig. 3�a� goes down to zero
faster than 
̃ /
, while the crossing point shifts to the left
until it vanishes. Remark that k�1 whenever it exists. For
kk�1, the matrix is more anisotropic than the composite;
the inverse situation prevails for k�k� and in particular for
f � f�, where k��0, so that void-induced anisotropy domi-
nates in this regime.

The other remarkable anisotropy ratio is the aforemen-

tioned k1, defined by the equation k̃�k1�=1, where the overall
behavior is isotropic in the plane. This point, also repre-
sented on Fig. 4, exists at least up to high porosity values.
However, since the EMA is expected to fail around f =0.5
�see below�, the irrelevant part of the k1�f� curve is sketched
with dashed lines in Fig. 4. In the relevant porosity range, the
fact that k1�f��1 indicates that the matrix needs to be made
harder along the simple shear �SS� �	� mode than along the
PS �
� mode in order to reach isotropy, so as to compensate
for higher softening in this direction due to newly appearing
nearest-neighboring voids, as is explained above.

Figure 5 illustrates the behavior of the moduli with the
porosity f , for finite anisotropy ratios k=0.01, 1, and 100,
together with the exact results of Ref. 24 at k=0, �. The
exact curve for 
̃ at k=�, almost superimposed with the
EMA curve for k=100 in Fig. 5�b�, is available up to f
=� /8 only.24 First, the EMA is again seen to systematically
overestimate the moduli. Next, all the elastic moduli must
vanish at most at the geometrical close-packing threshold of
the voids,25 f = fc=� /4	0.78. The fast Fourier transform
�FFT� points in Figs. 5�a� and 5�b� are consistent with this
fact, whereas the EMA fails by producing nonzero results at
this point. This is not surprising since dipolar EMAs of the
Clausius-Mossoti �CM� type are known not to be able to
account for percolative-type behavior.25 Moreover, the exact
result in Fig. 5�a� for k=� shows the shear modulus in the

hard direction, 	̃, to vanish at f = fc /2 due to the fictitious
voids produced by band crossing. Accordingly, for large but

finite k, 	̃ decreases rapidly with f up to f = fc /2, then with a
lower slope up to f = fc. The EMA again fails to account for

the threshold at fc /2, although the local minimum of 	̃ at f
	0.55 in Fig. 5�a� may indicate that at least part of the
phenomenon is captured by the dipolar lattice sums. Interest-
ingly enough, when available, the exact results for infinite
anisotropy at k=0 �respectively, k=�� are seen to provide
tight lower �respectively, upper� bounds to the effective
moduli for all values of k, and in particular to the isotropic
case k=1. As far as the effective moduli are concerned, Fig.
5 clearly shows that the EMA can be trusted quantitatively
up to f =0.30 at most, and is qualitatively reasonable �as long
as the matrix is not too anisotropic� up to f =0.5.

B. Continuous transition in the dilute limit f™1

1. Finite anisotropy

For a finite anisotropy ratio k, the dilute expressions for
the effective shear moduli at sufficiently small f are read
from expressions �24a�–�24c� with S	,
 replaced by the one-

body contributions S1	 and S1
 defined in Eq. �23�. For the
incompressible medium, the EMA estimates of the shear
moduli are

	̃/	 = 1 − f�1 + �k� + O�f2� , �25a�


̃/
 = 1 − f�1 + 1/�k� + O�f2� . �25b�

As to the effective compressibility modulus, the incompress-
ible limit leads to the situation described above �Eq. �16��,
where one eigenvalue of T1 blows up. This requires us to go
beyond the one-body approximation. However, Eq. �A8� in
Appendix shows that S2�a� in Eq. �21� is exactly S2=1− f for
f � /4. Replacing, e.g., S
 by S1
+O�f� and computing S	

via Eq. �21�, then letting �→� in Eq. �24� �with k read from
Eq. �20�� provides

�̃ = �	
/f + O�1� . �25c�

Remark that “extended” dilute approximations, which ex-
trapolate the above formulas for moderate anisotropy to fi-
nite �but small� porosities, result from taking P2=P1 in Eq.
�15�, i.e., from using in Eq. �23�,

S
,	 = S
,	
dil � �1 − f�S1
,	. �26�

This amounts to assuming pair correlations between the
voids dictated by the void shape,54 and provides expressions
of the classical MG type in which the lattice structure is
ignored �see Sec. IV�.

2. Infinite anisotropy

After the incompressible limit �→� is taken �with k read
from Eq. �20��, the limit of infinite anisotropy k→0 is ob-

tained by letting 
→� in 	̃, and 	→0 in 
̃, �̃. Conversely,

k→� requires 
→0 in 	̃, �̃, and 	→� in 
̃. In these limits,
the sums S	, S
 in Eq. �19� are computed in Appendix. The

obtained effective moduli 	̃, 
̃, and �̃ are compared to the
exact results of Ref. 24. One finds for k→0

	̃

	
= 1 − f −

32

3
� f

�
�3/2

+ 2�1 −
512

9�3� f2 + O�f5/2� ,

�27a�


̃



= 1 −

3�2

32
� f

�
�1/2

−
9�3

1024
f + O�f3/2� , �27b�

�̃



=

32

3�2��

f
�1/2

− 2 �no correction� , �27c�

while exact expressions are

	̃

	
= 1 − f −

32

3
� f

�
�3/2

+ �1 −
6

�
−

8

�2� f2 + O�f5/2� ,

�27d�


̃



= 1 − � f

�
�1/2

−
f

�
+ O�f3/2� , �27e�
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�̃



= ��

f
�1/2

− 2 �no correction� . �27f�

For k→�, the EMA estimates read

	̃

	
= 1 −

3�2

16�2
� f

�
�1/2

−
9�3

512

f

�
+ O�f3/2� , �28a�


̃



= 1 − f −

16�2

3
� f

�
�3/2

+ 2�1 −
256

9�3�� f

�
�2

+ O�f5/2� ,

�28b�

�̃

	
=

16�2

3�2 ��

f
�1/2

− 2 �no correction� , �28c�

whereas exact expressions are

	̃

	
= 1 − �2f

�
�1/2

−
2f

�
+ O�f3/2� , �28d�


̃



= 1 − f −

16�2

3
� f

�
�3/2

+ �1 −
3

�
−

4

�2� f2 + O�f5/2� ,

�28e�

�̃

	
= � �

2f
�1/2

− 2 �no correction� . �28f�

The above comparisons show that the EMA estimates do an
excellent job of capturing the presence of half-integer powers
of f in limits of infinite anisotropy at lowest orders in the
dilute limit. Moreover, even when the numerical coefficients
are not exact, they are close to the exact values. The less

singular character of 	̃ in Eqs. �27a� and �27d� when k→0
�respectively, 
̃ in Eqs. �28b� and �28e� when k→�� is dis-
cussed in Ref. 24.

3. Dilute transition

Obviously, a crossover takes place between sets �1� on
one hand and �2� �Eq. �27�� on the other hand. Balancing the
“extended dilute” sum S


dil �Eq. �26�� with S

k→0 �Eq. �A9��,

then with S

k→� �Eq. �A9�� and solving for k, provides a

discontinuous crossover porosity fr�k� curve, which defines
in the �f ,k� plane boundary lines between dilute and high-
anisotropy regions. Owing to the approximations at play, this
boundary cannot be trusted for k of order one �for this reason
we do not display the curves�. On the other hand, we
find fr�k�	�9�3 /1024�k	k /� for k�1 and fr�k�
	�9�3 /512�k−1	2 / �k�� for k�1.

Due to the relation f =�a2, the crossover porosity in the
highly anisotropic regime stems from a length scale −4.82
such that ��a /k1/2 for k�1, and ��ak1/2 for k�1. From a
mathematical standpoint, these length scales originate from a
scaling property of the lattice sums. We focus here on the
case k→0. The case k→� can be discussed by adapting this
argument. Introducing K=k / �1−k�, the sum S
 in Eq. �19�
can be written with a summand proportional to
�1+K��p̂��−1, where the dimensionless quantity ��p̂� reads

��p̂� =
�px

2 + py
2�2

4px
2py

2 . �29�

Singling out the contribution of the main diagonal to S
, the
remainder of this sum can be brought down to a sum over
px�2 and 1� py � px−1, in which 1 /4���p̂�� �px /1�2.
Hence, ��p̂�� p2 so that K��p̂� provides an appreciable
k-dependent contribution only for p�1 /�K�1 /�k. More-
over, �2J1�x� /x�2 is appreciable only when x�2. In terms of
p, this reads p�1 / ��a� �see Eq. �19��. Hence k-dependent
terms contribute provided that 1 /�k� p�1 / ��a�. In turn,
this is possible only if ��k��1. For ��k��1, a k-independent
regime instead takes place in S
.

From a physical standpoint, the length scale � represents
an effective inclusion size. Figure 6 indeed displays three
maps of the parallel strain field in PS loading, computed by
FFT at fixed anisotropy ratio k=10−3 with varying porosity
f 	 fr /10, fr, and 10fr. It is seen that localized shear bands
develop from the void as porosity increases. At regime
change, they coalesce and span the entire medium. The void
can be considered as an isolated inclusion only for f  fr . A
similar effect takes place for high k values. We checked nu-
merically that in both cases, before coalescence, the strain
intensity in the bands �along the band direction� has a strong
exponentially decaying component ��exp�−br /��, where r
is the distance from the void, and b is a numerical coefficient
of order one. This component is superimposed on a weak,
f-dependent, constant, background component that tends to
the average value �̄ as f →0.

C. Average fields and standard deviations

1. General considerations

The first two moments of the fields are required for appli-
cations to nonlinear EMAs, and can be consistently com-
puted from any linear homogenization estimate.7 Hereafter,
�̄e

���������� / �̄ denotes the phase average of a strain compo-
nent �, normalized by the applied macroscopic field. Like-
wise, we denote by SD������ its standard deviation �SD� in
phase �, normalized by �̄. Similar notations apply to stress
components.

The phase-averaged fields in the porous composite are
deduced from the set of equations

FIG. 6. �Color online� FFT computations of �PS=�� in PS load-
ing, for a material with strong anisotropy ratio k=10−3�1. Porosi-
ties from left to right: f = fr /10 �regular “dilute” regime�; f = fr

�crossover regime�; f =10fr �“strongly anisotropic” regime�, where
fr	k /� is the crossover porosity. Incompressible matrix. Black
represents the highest field values �arbitrary color scale�.
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L̃:� = �1 − f�L�1�:����1�, �30a�

� = �1 − f�����1� + f����2�. �30b�

Moreover, assuming single mode loading, the second mo-
ments in each phase are obtained by taking a derivative of
the strain energy with respect to the elastic moduli of the
phases, as7,59

��m,SS,PS
2 ���� =

1

c���
�L̃

�L��� ��m,SS,PS�2, �31�

where L̃ is �̃ �respectively, 	̃ and 
̃� when the index in the
left-hand side is m �respectively, SS and PS� and where L���

is ���� �respectively, 	��� and 
���� when the index in the
right-hand side is −4.01 �respectively, SS and PS�. The vari-
ances follow. If need be, the incompressibility limit is taken
after these quantities are computed.

Table III displays for f =0.1 the normalized phase-average
strains �̄e

��� for �=1, 2 and SDs of the strain and stress com-
ponents in the matrix, as computed by the EMA and by full-
field calculations. The overall agreement is again excellent,
the most important observed deviations, if any, occurring at
small k. The table layout emphasizes the qualitative corre-
spondence between case �k, SS� and case �1 /k, PS� explained
in Ref. 24.

Some trends in the data are explained by appealing to the
variational expression of the elastic energy W:

W��̄;k; f� = inf
��K��̄�

1

2
� �:L:�� =

1

2
�̄:L̃:�̄ , �32�

where K��̄�= �� ;�ij = ��iuj +� jui� /2, ���= �̄� is the set of ad-
missible strain fields. For instance, for an incompressible
material under SS loading, Eqs. �30� and �32� imply

TABLE III. SS and PS loadings. Comparisons between EMA estimates �solid lines� and FFT results �dots� at porosity f =0.1 for
averages of the strain along the loading direction in each phase and standard deviations �SD� of stress and strain components in the matrix
vs matrix anisotropy ratio k=	 /
. Strains and stresses are normalized by the appropriate macroscopic component in the loading direction
�macroscopic strain �̄= ��� or stress �̄= ����. SDs in the voids are irrelevant.
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�̄�����1� = ���
2��1� + �1/k����

2 ��1�. �33�

Hence the standard deviation SD�1����� of the parallel com-
ponent of the strain is essentially finite since �����1� is, in
agreement with the analytical expressions of the SDs in the
next section to which we refer the reader for this discussion.
Consider now another strain field ��, solution for an aniso-
tropy ratio k��k. Using it as a trial field for problem �32�
with k provides one inequality. Duplicating the argument
with k and k�, and � and �� interchanged yields after some
easy algebra involving Eq. �33�,

SD�1�����2 �
������1� − �����1�

�1/k�� − �1/k�
� SD�1����� �2, �34�

which entails Eq. �31� for k�→k. Thus, the standard devia-
tion SD�1����� of the transverse �PS� component of the
strain field increases with k at f fixed, consistently with Table
III. Moreover, using Eq. �34� and the equality �k���

2 ��1�

=−k�k���
2��1� �from Eq. �31�� shows that under SS loading,

���
2��1� is a decreasing function of k. These considerations

hold for any fixed microstructure.
Analyzing FFT calculations at f =0.1 for various values of

k in log-log plots �not shown�, we observe that �for this f� the
SDs behave as powers of k with numerical exponents close
to 1 /4 or 3 /4: For instance, under SS loading, SD�1�����
decays as k3/4 when k→0, and blows up as k1/4 when k
→�; meanwhile, SD�1�����=SD�1����� /k�k−1/4 as k→0
and �k−3/4 as k→�. The “soft” case k→0 is in agreement
with the dilute analytical expressions �Eqs. �35a� and �35b��

below, which indicates that the computed systems remained
in the dilute regime f � fr�k��k. On the other hand, the
“hard” case k→�, where strong strain localization takes
place �see map C in Table I�, is consistent with Eqs. �35a�
and �35b� only if we replace f by fr�k��k−1 in these expres-
sions. Thus, here, SD�1����� blows up �see Eq. �36��, but
behaves as though the system remained in the crossover re-
gime. This information, extracted numerically, is not con-
tained in expressions �37� and �40� for which we could only
produce limiting values.

Actually, in the limit k→�, infinite SDs in the transverse
component of the strain result from its concentration as Dirac
lines �see Sec. III B�, and are linked to discontinuities
�jumps� in its parallel component.24 This results in a defor-
mation pattern by a “rigid-block-sliding” mechanism, the
“rigid blocks” here being connected parts of matter separated
by discontinuity lines. This block-sliding effect only takes
place provided that the strain jump lines have “percolated.”
Below percolation, sliding is impossible in a linear material
and the transverse strain fluctuations described by Eq. �35�
strongly increase with k as SD�1������k3/4. On the contrary,
beyond percolation, sliding takes place and SD�1������k1/4

increases in a weaker way since sliding makes deformation
easier. Analogous properties are found under PS loading,
provided that k is replaced by 1 /k: For instance, SD�1����� is
a decreasing function of k and blows up in the hard loading
mode as �k−1/4 when k→0.

Table IV shows numerical results for the strain and stress
field averages and SDs, plotted for various anisotropy ratios
k=0.01, 1, and 100. EMA estimates are provided for com-

TABLE IV. �Color online� Average shear strains �̄e
��� in the matrix ��=1� and in voids ��=2� vs porosity f . Comparisons between EMA

estimates �solid lines�, FFT results �dots�, and exact analytical results at k=0, � �dash-dotted lines� for particular values of the matrix
anisotropy ratio k=	 /
, in pure shear �PS� and simple shear �SS� loadings. The normalization is the same as for Table III �see legend�.
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parisons. Except when SDs blow up at strong anisotropy, the
EMA estimates are in good agreements with FFT results for
porosities up to f �0.4. It is worth observing that in situa-
tions of high anisotropy ratios, a change in the structure of
the strip patterns in the material coincides with a change of
concavity of the standard deviations SD�1����� of the parallel
component of the strain field. For instance, when SS loading
is applied at k�1, the bands cover the whole medium at
f �� /8�0.4. Around this value, the quantity SD�1�����
changes from a concave to a convex function of f . Such a
change also occurs at f �� /8 for the same SDs when k�1
and PS loading is applied. FFT field maps then indicate that
the structure of the strain pattern also undergoes an abrupt
change at this point �with the appearance of thinner strips
linking closest neighboring voids—not shown�.

2. Standard deviations in the dilute limit

For completeness, we include the standard deviations in
the dilute limit �of relevance to nonlinear EMAs� computed
from the EMA.

For SS loading, we find for f � fr�k� �low anisotropy or
low porosity�,

SD���� � SD���� � f1/2k1/4, �35a�

SD���� � f1/2k3/4, �35b�

SD���� � f1/2k−1/4, �35c�

where the f1/2 proportionality of the SDs goes along “classi-
cal” O�f� dilute corrections to the effective moduli. In limits
of infinite anisotropy, where necessarily f � fr�k�=0, the
EMA estimates provide

SD���� = SD���� 	
4�2

�3/4�3
f3/4

+ � 64�2

3�9/4�3
−

�3�3/4

4�2
� f5/4, k → 0, �36a�

SD���� = 0, SD���� = �, k → 0, �36b�

SD���� = SD���� 	
�3/4�3

29/4 f1/4, k → � , �36c�

SD���� = �, SD���� = 0, k → � , �36d�

while exact results read24

SD���� = SD���� 	
4�2

�3�3/4 f3/4 +
�3�3/4

8�2

�� 6

�
+

8

�2 − 1� f5/4, k → 0, �37a�

SD���� = 0, SD���� = �, k → 0, �37b�

SD���� = SD���� 	 �2f/��1/4, k → � , �37c�

SD���� = �, SD���� = 0, k → � . �37d�

For PS loading, the EMA gives for f � fr�k�

SD���� � SD���� � f1/2k−1/4, �38a�

SD���� � f1/2k−3/4, �38b�

SD���� � f1/2k1/4. �38c�

For infinite anisotropy where f � fr�k�=0, the EMA estimates
provide

SD���� = SD���� 	
�3/4�3

4�2
f1/4, k → 0, �39a�

SD���� = �, SD���� = 0, k → 0, �39b�

SD���� = SD���� 	
29/4

�3�3/4 f3/4

+ � 23/432

33/2�9/4 −
�3�3/4

29/4 � f5/4, k → � , �39c�

SD���� = 0, SD���� = �, k → � , �39d�

while exact results are24

SD���� = SD���� 	 �f/��1/4, k → 0, �40a�

SD���� = �, SD���� = 0, k → 0, �40b�

SD���� = SD���� 	
29/4

�3�3/4 f3/4 +
�3�3/4

21/48

�� 3

�
+

4

�2 − 1� f5/4, k → � , �40c�

SD���� = 0, SD���� = �, k → � . �40d�

Thus, the EMA correctly reproduces the scaling behavior of
the SDs in all cases.

VI. CONCLUDING DISCUSSION

To summarize, we compared the results of an EMA of the
Clausius-Mossoti �Maxwell-Garnett� type to FFT calcula-
tions, and showed that the agreement is excellent, even in the
nontrivial case of localizing behavior as far as effective
moduli and averaged fields are concerned, and provided that
the void concentration lies below 0.3. This result is relevant
to the study of nonlinear effective-medium techniques: the
latter involving both an anisotropic EMA and a specific self-
consistent linearization procedure �which determines the ef-
fective anisotropy of the former�. The present study shows
that strong deviations between FFT and EMA results in non-
linear media should be observed �in the similar setup of a
periodic voided medium and in similar conditions of porosity
and effective anisotropy�. They ought to be attributed to the
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linearization procedure rather than to the underlying liner
EMA, even in limits of high effective anisotropy �determined
by the field fluctuations in the nonlinear theory�. Also, the
present work provides a useful independent confirmation of
the involved analytical analysis of Ref. 24.

As a by-product of the study, of possible practical appli-
cations, we showed that by combining a regular lattice of
voids �which makes the structure lighter� and an anisotropic
matrix, properties could be tuned so as to make the overall
medium elastically isotropic in plane strain.

We also studied analytically the lattice sums which under-
lie the EMA approach, and showed that they possess a scal-
ing property which, in the dilute limit of small porosity and
at high �but finite� anisotropy, allows for a crossover between
regular and singular porosity dependence of the effective me-
dium. A length scale � was associated to this scaling and
interpreted as an effective heterogeneity size. It mathemati-
cally diverges in the limit of infinite anisotropy. However, its
physically associated counterpart being constrained by the
finite size of the cell in the periodic medium, crossover oc-
curs when the effective heterogeneities “percolate,” i.e.,
when � is trivially of order one. This corresponds to a
strongly correlated regime of strain localization bands span-
ning the system.

Actually, scaling properties of lattice sums similar to the
one considered here, have already been pointed out by
Barber,60 elaborating on Hall’s work,61 in a purely math-
ematical context �in particular, no explanation in terms of
length scales was given�. Here, we make a connection be-
tween this phenomenon and strain localization in anisotropic
elastic media. Barber’s paper also provides a means to com-
pute the crossover function. However, our lattice sums lead
to technical difficulties which preclude the straightforward
obtention of a similar result, and we leave this issue for
future work.

Moreover, we found that under loading in a “hard” direc-
tion of the anisotropic medium, standard deviations of the
transverse strain component blow up continuously as a
power of the anisotropy ratio, as though the system remained
in a crossover regime. This absence of finite threshold for
diverging fluctuations and the above-described behavior sug-
gest the existence of a special type of continuous phase tran-
sition, of infinite order �called a “weak phase transition” by
Hall61�, here obviously without symmetry breaking. The
presence of logarithmic terms in k �identified numerically in
Appendix� also hints in this direction since logarithmic cor-
rections to scaling constitute a hallmark of transitions of in-
finite order.62 However, a random version of the system
should be investigated before reaching definite conclusions.

Finally, it was observed in Ref. 24 that the singular effec-
tive moduli in the limit of infinite anisotropy are directly
connected to the hyperbolic character of the governing equa-
tions in this limit. The very existence of a crossover shows
without ambiguity that the problem, although elliptic from a
strict mathematical point of view, presents a “quasihyper-
bolic” character at short distances for high but finite aniso-
tropy. This observation may be of relevance to theoretical
investigations of granular materials, for which a model with
a similar anisotropic matrix has been proposed.35
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APPENDIX: ASYMPTOTICS OF LATTICE SUMS AND
DILUTE LIMITS

We extract the dilute expansions of the lattice sums S	,

when k→0,� as follows. With the notation

A�a,x� = �2J1�2�ax�/x�2, �A1�

write the lattice sums, with p= �px
2+ py

2�1/2, as

S	 =
1

�
�

px�0

py�1,py�px

A�a,p��px
2 − py

2�2/D�p� , �A2�

S
 =
1

�
�

px�1

py�1

A�a,p�4px
2py

2/D�p� , �A3�

where D�p�=4px
2py

2+k�px
2− py

2�2. The above expressions ex-
plicitly acknowledge the fact that the principal diagonal px
= py does not contribute to S	, and that the Cartesian axis
px=0 does not contribute to S
. Introducing the lattice sums

S1�a� =
1

�
�
n�1

A�a,n�, S2�a� =
1

�
�

px�0

py�1

A�a,p� , �A4�

provides for k→� ,0

kS	
k→� =

1

�
�

px�0

py�1,py�px

A�a,p� = S2�a� −
1

2
S1��2a� ,

S

k→0 =

1

�
�

px�1

py�1

A�a,p� = S2�a� − S1�a� . �A5�

In S	
k→� �respectively, S


k→0� the contribution of the principal
diagonal �respectively, Cartesian axis px=0� has been sub-
tracted from S2�a�. The factors �2 and 1 /2 result from n
being replaced by �2n on the main diagonal.

One privileged tool for exact asymptotic expansions is the
Mellin transform.63 The transform and its inverse are defined
by

M�f�x�;z� = �
0

�

dx xz−1f�x� ,

f�x� =
1

2i�
�

c−i�

c+i�

dz x−zM�f�x�;z� ,

where c lies within the analyticity strip �parallel to the imagi-
nary axis� of M�f�x� ;z� in the z plane. Shifting the inversion
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contour to the left encircles the poles on the negative z axis
and provides the asymptotic series expansion around x=0 in
positive powers of x. Conversely, shifting the contour to
the right provides the asymptotic expansion near x=� in
negative powers of x. The Mellin transform provides for
0c3

A�a,p� =
1

2i�
�

c−i�

c+i� dz

�2�a�z−2

1

pz

2
��

��z/2���3/2 − z/2�
��2 − z/2���3 − z/2�

.

Next appealing to the definition of the Zeta function for z
�1, ��z�=�n�11 /nz, and to Hardy’s lattice sum,64,65

�
px�0

py�1

1

�px
2 + py

2�z/2 = ��z/2���z/2�, �z � 2� , �A6�

where ��z�=�n�0�−1�n / �2n+1�z is the Dirichlet �or Catalan�
function,65 and interchanging the lattice sums and the con-
tour integral yields

S1�a� =
− i

�5/2�
c1−i�

c1+i� dz

�2�a�z−2��z�
��z/2���3/2 − z/2�

��2 − z/2���3 − z/2�
,

�A7a�

S2�a� =
− i

�5/2�
c2−i�

c2+i� dz

�2�a�z−2��z/2���z/2�

�
��z/2���3/2 − z/2�

��2 − z/2���3 − z/2�
, �A7b�

where 1c13 and where 2c23 as the result of the
above restrictions. The following properties hold: ��z� has
simple poles at negative integers z=−k�0 and has no zeros;
��z� has only one simple pole at z=1 and has �so-called
“trivial”� zeros at even, nonzero, negative integers; ��z� has
no poles and has zeros at odd negative integers. Then, by
shifting the contour to the left in both integrals, only the
poles z=1 and 0 contribute to S1, and only the poles at z
=2 and 0 contribute to S2. Eventually we obtain

S1�a� =
32

3�
a − 2�a2, �A8a�

S2�a� = 1 − �a2. �A8b�

The polynomial form of these expressions indicates that they
are actually exact since for such functions the asymptotic
expansion coincides with the function itself.

The validity of �A8� is linked to the decay of

f�z� = �s−z��z�
��z/2���3/2 − z/2�

��2 − z/2���3 − z/2�
� as Rez → − � .

We have in the limit f�z��s−z���z���z /2���z� /��−z /2��. Ow-
ing to the reflection formula

�−z/2��z/2���z� = �−�1−z�/2���1 − z�/2���1 − z� ,

���z /2���z� /��−z /2����z���−z����z. Hence the contribu-
tion of the integration line in the limit c1→−� is negligible
only if s�. In terms of a, this amounts to a1 /2. The
breakdown of the obtained expressions thus corresponds to
the close-packing limit a=1 /2. A similar reasoning using the
corresponding reflection formula for ��z� provides the same
range of validity for S2.

Combining Eqs. �A5� and �21� then results to

kS	
k→0 =

32

3�
a − 2�a2, �a  1/2� �A9a�

S

k→0 = 1 −

32

3�
a + �a2, �a  1/2� �A9b�

kS	
k→� = 1 −

16�2

3�
a + �a2,�a 

1
2�2� �A9c�

S

k→� =

16�2

3�
a − 2�a2,�a 

1
2�2� . �A9d�

The restrictions a1 /2 and a1 / �2�2� correspond to criti-
cal concentrations f =� /4 and f =� /8. At these points, either
the voids percolate �k=0, pure shear �PS� or simple shear
�SS� and k=�, SS� or the shear bands undertake a configu-
rational change �k=�, PS�.24 An illustration of the break-
down of expression �A9� is provided by Fig. 7.

We could not compute analytically the leading corrections
in k to these sums. However, by carefully analyzing brute
force numerical computations of the sums for k down to
10−5 or up to 106 for f =0.1, we found that corrections to
Eqs. �A9a�–�A9d� are of the form O�k log k�, O�−k log k�,
O�k−1 log k�, and O�−k−1 log k�, respectively.

0 0.2 0.4 0.6 0.8 1f

0.2

0.4

0.6

0.8
kSλ(k,f)

k=∞
(analytical)

k=106
(numerical)

FIG. 7. Quantity kS	�k ,a� vs void concentration f =�a2 as
k→�: comparison between Eq. �A9�, dashed line, and a numerical
calculation of the lattice sum, solid line, for k=106. Breakdown of
Eq. �A9� occurs at f =� /8	0.39.
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As a final remark, we emphasize that only �divergent�
asymptotic series for S1�a�, S2�a� at a�1 /2 can be obtained:
then, the integrand in both contour integrals blows up as
�z / �4�ae��z, where e is Euler’s constant. These asymptotic

expansions are easily extracted. We do not provide them here
since the region a�1 /2 cannot be examined without appeal-
ing to additional investigation procedures �e.g., Padé ap-
proximants�, which lie outside the scope of this paper.

*Present address: Mines Paristech, Centre de Morphologie Mathé-
matique, Mathématiques et Systèmes, 35 rue St-Honoré, F-77305
Fontainebleau Cedex, France; francois.willot@ensmp.fr.

†yves-patrick.pellegrini@cea.fr
‡Present address: Departamento de Aeronáutica, Facultad de In-

genería, Universidad Nacional de La Plata, Calle 1 y 47, �1900�
La Plata, Argentina; mii23@cam.ac.uk.

§ponte@seas.upenn.edu
1 X. C. Zeng, D. J. Bergman, P. M. Hui, and D. Stroud, Phys. Rev.

B 38, 10970 �1988�.
2 R. Blumenfeld and D. J. Bergman, Phys. Rev. B 40, 1987

�1989�.
3 N. C. Kothari, Phys. Rev. A 41, 4486 �1990�.
4 T. K. Ballabh, M. Paul, T. R. Middya, and A. N. Basu, Phys.

Rev. B 45, 2761 �1992�.
5 P. Ponte Castañeda, G. deBotton, and G. Li, Phys. Rev. B 46,

4387 �1992�.
6 P. Ponte Castañeda, J. Mech. Phys. Solids 44, 827 �1996�.
7 P. Ponte Castañeda and P. Suquet, Adv. Appl. Mech. 34, 171

�1998�, and references therein.
8 Y. P. Pellegrini, Phys. Rev. B 64, 134211 �2001�.
9 P. Ponte Castañeda, Phys. Rev. B 64, 214205 �2001�.

10 P. Ponte Castañeda, J. Mech. Phys. Solids 50, 737 �2002�; 50,
759 �2002�.

11 R. F. Bishop, R. Hill, and N. F. Mott, Proc. Phys. Soc. London
57, 147 �1945�.

12 K. Weinberg, A. Mota, and M. Ortiz, Comput. Mech. 37, 142
�2006�, and references therein.

13 M. Idiart and P. Ponte Castañeda, C. R. Mec. 333, 147 �2005�.
14 O. Lopez-Pamies and P. Ponte Castañeda, J. Mech. Phys. Solids

54, 807 �2006�; 54, 831 �2006�.
15 L. M. Kachanov, Fundamentals of the Theory of Plasticity �Do-

ver, New York, 2004�.
16 S. Roux and D. François, Scr. Metall. Mater. 25, 1087 �1991�.
17 S. Roux and A. Hansen, J. Phys. II France 2, 1007 �1992�.
18 A. Donev, C. E. Musolff, and P. M. Duxbury, J. Phys. A 35,

L327 �2002�.
19 J. Boksiner and P. L. Leath, Phys. Rev. E 67, 066610 �2003�.
20 L. Benguigui, Phys. Rev. B 38, 7211 �1988�.
21 D. R. S. Talbot and J. R. Willis, IMA J. Appl. Math. 35, 39

�1985�.
22 P. Ponte Castañeda, J. Mech. Phys. Solids 39, 45 �1991�.
23 P. Suquet, C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron.

320, 563 �1995�.
24 F. Willot, Y.-P. Pellegrini, and P. Ponte Castañeda, J. Mech. Phys.

Solids 56, 1245 �2008�.
25 S. Torquato, Random Heterogeneous Materials, 2nd ed.

�Springer, New York, 2005�.
26 S. Nemat-Nasser and M. Taya, Q. Appl. Math. 39, 43 �1981�;

43, 187 �1984� �Erratum�.
27 Y. Kantor and D. J. Bergman, Appl. Phys. Lett. 41, 932 �1982�;

J. Mech. Phys. Solids 32, 41 �1984�.
28 K. C. Nunan and J. B. Keller, J. Mech. Phys. Solids 32, 259

�1984�.
29 Ruibao Tao and Ping Sheng, J. Acoust. Soc. Am. 77, 1651

�1985�.
30 A. Sangani and W. Lu, J. Mech. Phys. Solids 35, 1 �1987�.
31 P. Suquet, C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci.

Terre Univers 311, 769 �1990�; Méthodes de calcul simplifiées
pour la détermination des propriétés élastiques de composites à
structure périodique �unpublished�.

32 D. J. Bergman and K.-J. Dunn, Phys. Rev. B 45, 13262 �1992�.
33 R. C. McPhedran and A. B. Movchan, J. Mech. Phys. Solids 42,

711 �1994�.
34 V. A. Buryachenko, Int. J. Solids Struct. 42, 4811 �2005�.
35 M. Otto, J.-P. Bouchaud, P. Claudin, and J. E. S. Socolar, Phys.

Rev. E 67, 031302 �2003�.
36 D. A. G. Bruggeman, Ann. Phys. 29, 160 �1937�.
37 We emphasize however that for periodic lattices in an isotropic

medium noninteger powers of f show up at higher orders, see,
e.g., Refs. 25 and 30 and R. C. McPhedran and D. R. McKenzie,
Proc. R. Soc. London, Ser. A 359, 45 �1978�.

38 M. Idiart, P. Ponte Castañeda, F. Willot, and Y. P. Pellegrini
�unpublished�.

39 G. A. Francfort and P. M. Suquet, Proc. - R. Soc. Edinburgh,
Sect. A: Math. 131, 351 �2001�.

40 Specifically, E=
�3−
 /��, �= ��−
� / �2�� for plane strain; E
=4�
 / ��+
�, �= ��−
� / ��+
� for plane stress; the shear
modulus 	 of the simple shear mode is unchanged.

41 H. Moulinec and P. Suquet, C. R. Acad. Sci., Ser. IIb: Mec.,
Phys., Chim., Astron. 318, 1417 �1994�.

42 J. Korringa, J. Math. Phys. 14, 509 �1973�.
43 J. C. Michel, H. Moulinec, and P. Suquet, Comput. Methods

Appl. Mech. Eng. 172, 109 �1999�; Int. J. Numer. Methods Eng.
52, 139 �2001�; H. Moulinec and P. Suquet, Physica B �Amster-
dam� 338, 58 �2003�.

44 J. R. Willis, J. Mech. Phys. Solids 25, 185 �1977�.
45 F. Willot and Y. P. Pellegrini, in Continuum Models and Discrete

Systems CMDS 11, edited by D. Jeulin and S. Forest �École des
Mines, Paris, 2008�, p. 443.

46 J. C. Maxwell Garnett, Philos. Trans. R. Soc. London, Ser. A
203, 385 �1904�.

47 R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys.
Rev. B 8, 3689 �1973�.

48 The form is also that of the “Quasi-Crystalline Approximation,”
exact here as far as the correlations are concerned. See, e.g., U.
Frisch, in Probabilisitc Methods in Applied Mathematics, edited
by A. T. Bharucha-Reid �Academic, New York, 1968�, Vol. 1, p.
75.

49 Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11, 127
�1963�.

50 G. Milton and R. V. Kohn, J. Mech. Phys. Solids 36, 597 �1988�.

WILLOT et al. PHYSICAL REVIEW B 78, 104111 �2008�

104111-16



51 J. D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 �1957�.
52 R. Hill, J. Mech. Phys. Solids 13, 89 �1965�.
53 J. R. Willis, Adv. Appl. Mech. 21, 1 �1981�.
54 P. Ponte Castañeda and J. R. Willis, J. Mech. Phys. Solids 43,

1919 �1995�.
55 G. A. Niklasson and C. G. Granqvist, J. Appl. Phys. 55, 9

�1980�, and references therein.
56 J. E. Gubernatis and J. A. Krumhansl, J. Appl. Phys. 46, 1875

�1975�.
57 T. R. Middya, M. Paul, and A. N. Basu, J. Appl. Phys. 58, 4095

�1985�.
58 G. Kneer, Phys. Status Solidi 9, 825 �1965�.
59 D. J. Bergman, Phys. Rep., Phys. Lett. 43, 377 �1978�.
60 M. N. Barber, J. Phys. A 10, 2133 �1977�.
61 G. L. Hall, J. Stat. Phys. 14, 521 �1976�.
62 M. Weigel and W. Janke, J. Phys. A 38, 7067 �2005�.
63 R. Wong, Asymptotic Approximations of Integrals �Academic,

Boston, 1989�.
64 G. H. Hardy, Mess. Math. 49, 85 �1919�.
65 M. L. Glasser, J. Math. Phys. 14, 409 �1973�.

EFFECTIVE-MEDIUM THEORY FOR INFINITE-CONTRAST… PHYSICAL REVIEW B 78, 104111 �2008�

104111-17


