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We investigate theoretically the band structure of a phononic crystal of finite thickness constituted of a
periodical array of cylindrical dots deposited on a thin plate of a homogeneous material. We show that this
structure can display a low-frequency gap, as compared to the acoustic wavelengths in the constituent mate-
rials, similarly to the case of locally resonant structures. The opening of this gap requires an appropriate choice
of the geometrical parameters, and in particular the thickness of the homogeneous plate and the height of the
dots. However, the gap persists for various combinations of the materials constituting the plate and the dots.
Besides, the band structure can exhibit one or more higher gaps whose number increases with the height of the
cylinders. We discuss the condition to realize waveguiding through a linear defect inside the phononic crystal
dots. The numerical simulations are performed by using the finite difference time domain and the finite element
methods.
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I. INTRODUCTION

Over the past decade, a great deal of works has been
devoted to the study of phononic crystals constituted by a
periodical repetition of inclusions in a matrix background.1

These materials have found several potential applications as-
sociated with their possibility of exhibiting absolute band
gaps,2–5 in particular in the field of confinement, wave guid-
ing, and filtering6–10 �analogously to their photonic counter-
part�, as well as in the field of sound isolation.11–16 The band
gaps may originate from the Bragg reflections resulting from
the periodicity of the structure or may be due to the existence
of local resonances in each unit cell. Several works have also
been devoted to the study of surface modes in semi-infinite
two-dimensional �2D� phononic crystals,17–21 whereas the
case of three-dimensional �3D� phononic crystals has only
been dealt very recently.22 During the last few years, a few
works have also investigated the dispersion curves of acous-
tic waves in a free or supported plate for one-dimensional
�1D� �Refs. 23–25� or 2D �Refs. 26–31� phononic crystals.
The existence of band gaps in such geometries may be useful
for the purpose of introducing functionalities such as
waveguiding and filtering in integrated structures. They can
operate at the frequencies of telecommunications �about 1
GHz� when the thickness of the plate is in the micron range.
Let us also mention two recent experiments dealing with the
study of vibrations in a periodical array of dots deposited on
a substrate in the gigahertz regime.32,33

In this paper, we are dealing with the band structure in a
new finite-thickness structure constituted by a square array of
cylindrical dots deposited on a thin homogeneous plate. The
effect observed in this geometry is the possibility of finding a
low-frequency gap, which means a frequency at which the
wavelengths in the constituting materials are much longer
than the typical lengths in the structure such as the period of
the lattice or the thickness of the plate. The opening of this
gap results from a sharp bending of the dispersion curves at
a given frequency. We shall discuss the existence and evolu-

tion of this gap as a function of the geometrical parameters
of the structure and the material parameters of the two con-
stituents, namely, the dots and the plate. The band structure
can also display one or more higher gaps, which will be also
investigated. Finally, we show the possibility of confinement
and waveguiding when a guide is created inside the phononic
crystal by removing or modifying a row of dots. The calcu-
lations presented in this paper are based on both the finite
difference time domain �FDTD� and the finite element �FE�
methods.

II. MODEL AND METHOD OF CALCULATION

As shown in Fig. 1, the physical model considered is a
square lattice of cylindrical dots deposited on a plate. The z
axis is chosen to be perpendicular to the plate and parallel to
the cylinders axis. The lattice parameter a of the phononic
crystal is chosen to be a=1 mm except if stated otherwise.
The filling factor is defined as �=�r2 /a2, where r represents
the radius of the cylinders. The height of the cylinders is
denoted by h and the thickness of the plate is denoted by e.

The materials constituting the dots and the plate �which
are taken in most of the numerical calculations to be steel
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FIG. 1. �Color online� Schematic view of a phononic crystal
made of a square lattice of finite cylinders deposited on a homoge-
neous plate. The lattice parameter is denoted as a, the height of the
cylinder is denoted as h, and the thickness of the plate is denoted as
e. The dashed cube �axaxb� represents one unit cell of the periodic
structure.
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and silicon� are assumed to be isotropic or of cubic symme-
try with their crystallographic axes oriented along the coor-
dinate axes x, y, and z. The elastic constants and mass den-
sities of the materials involved in the calculations are given
in Table I.

The band structures were computed using the finite differ-
ence time domain method, which has been proven in previ-
ous works12,34 to be an efficient method for obtaining the
dispersion curves in phononic crystals. This method solves
the elastic wave equations by discretizing time and space and
by replacing derivatives by finite differences. Dispersion
curves were calculated by using a three-dimensional unit cell
�see dashed lines in Fig. 1�, with dimensions �axaxb� which
is repeated in the three directions of space, and by using the
Bloch theorem, which introduces the wave vector k. In the z
direction, the length of the unit cell, b, is chosen in such a
way as to embed the plate and the cylinder as well as a thin
layer of vacuum on both sides in order to decouple the inter-
action between neighboring cells. Therefore, with respect to
the wave vector kz along z, the dispersion curves are flat and
the calculation can be limited to kz=0. The space is dis-
cretized in x, y, and z directions using a mesh interval equal
to �x=�y=�z=a /30. The equations of elasticity are solved
with a time integration step �t=�x / �4cl�, where cl is the
highest longitudinal velocity involving in the structure. The
number of time step in general equal to 219, which is the
necessary tested time for a good convergence of the numeri-
cal calculation. For each value of the wave vector �kx ,ky�
parallel to the plate, an initial random displacement is ap-
plied inside the unit cell at the origin of time. Then, the
displacement field is recorded at every position in the unit
cell as a function of time and finally Fourier transformed to
obtain the eigenmodes of the structure for the chosen wave
vector. Therefore, the band structures are rendered in terms
of frequency as a function of the wave vector and plotted
along the principal directions of the 2D irreducible Brillouin
zone �BZ�.

In order to test the convergence of the numerical simula-
tions, some of the dispersion curves have also been calcu-
lated using the finite element method, with the help of the
ATILA code.35 Another advantage of this software is to be
well adapted to display the deformation of the structure for
some selected modes �see Fig. 6�. In the model, only one unit
cell is meshed, thanks to the Bloch-Floquet relations. A
three-dimensional mesh is used and the structure is supposed
to be infinite and periodic in the two directions x and y. A
phase relation is applied on the lateral faces of the mesh,
defining boundary conditions between adjacent cells. This
phase relation is related to the wave number of the incident

wave in the periodic structure. By varying the wave vector in
the first Brillouin zone, the calculation gives the eigenfre-
quencies and the corresponding eigenvectors, related to the
displacement field of the mode.

III. RESULTS AND DISCUSSION

We have made the calculation of the band structure for the
system described in Fig. 1 with a propagation in the �x ,y�
plane, along the high-symmetry axes of the first BZ. The
following parameters are used: filling factor �=0.564, height
of the cylinders h=0.6 mm, and thickness of the plate e
=0.1 mm. The band structure is presented Fig. 2�a� in the
frequency range �0–2500 kHz� and magnified in Fig. 2�b� for
its lowest part �0–400 kHz�. The choice of the geometrical
parameters insures the existence of two absolute band gaps
extending, respectively, from 265 to 327 kHz and from 1280
to 2110 kHz. The direction XM of the BZ does not change
the existence and the width of the gaps and will not been
drawn in the rest of the paper so as to reduce the represen-
tations of the figures of dispersion. It should be noticed that
the lowest band gap happens in a frequency range where the
smallest wavelength in the constituent materials is ten times
larger than the period of the phononic crystal. In the vicinity
of the BZ center, the three lowest branches 1, 2, and 3, start-
ing at � point, are quite similar to those of a homogeneous
slab. They, respectively, correspond to the antisymmetric
Lamb mode �A0�, the shear horizontal �SH� mode, and the
symmetric Lamb mode �S0�. In the aim of testing the con-
vergence of the FDTD method, dispersion curves calculation
of Fig. 2 has also been performed using the finite element
method. The comparison of the results presents a good agree-
ment except for the flat band at 1280 kHz, which does not
exist in the finite element method. This discrepancy does not
affect the conclusions of the paper.

A. Behavior of the low-frequency gap

The behavior of the band structure of Fig. 2�b� has been
studied as a function of the geometrical parameters h, e, and
� for the high-symmetry axes �X and �M of the irreducible
BZ �Figs. 3–5�.

First, in Fig. 3, we fix the value of the filling fraction
��=0.564� and the thickness of the plate �e=0.1 mm� while
increasing the height h of the dots. For a small thickness h
=0.1 mm �Fig. 3�a�� the band structure does not display any
band gap in the range �0–1200 kHz� although one can notice
a bending of both shear horizontal mode �branch 2� and more
particularly of symmetric Lamb mode, which becomes a

TABLE I. Physical characteristics of the used materials: � is the density, C11, and C12 and C44 are the
three independent elastic moduli of cubic structure.

Constant Silicon Steel Tungsten Aluminum Epoxy

� �kg /m3� 2331 5825 18700 2730 1142

C11 �N /m2� 16.57�1010 26.4�1010 50.23�1010 10.82�1010 0.754�1010

C12 �N /m2� 6.39�1010 10.2�1010 20.27�1010 5.12�1010 C12=C11−2C44

C44 �N /m2� 7.962�1010 8.10�1010 14.98�1010 2.85�1010 0.148�1010
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negative slope branch �branch 3�. Increasing the height of the
cylinders from 0.1 to 0.2 mm �Fig. 3�b��, the first three dis-
persion curves shift downward and the band structure shows
the opening of a small absolute gap in the range �675.5–
695.2 kHz�, which results from a most important bending of
the shear horizontal mode �branch 2�. With increasing h, the
dispersion curves continue to shift downward. Until h
=0.6 mm, the central frequency of the first gap decreases
and its width becomes larger �Fig. 3�c��. Increasing further h,
one can notice a slower decrease in point B, situated at the
boundary X of the BZ on branch 3, with respect to the other
branch extremities, leading to the closing of the gap. This
occurs first in the �M direction for h	1.0 mm and then in
both directions of the BZ as seen for example in Fig. 3�d� for
h=2.7 mm in the magnified frequency range �0–300 kHz�.

Figure 4 presents the evolution of the dispersion curves as
a function of the thickness of the plate for constant values of
�=0.564 and h=0.6 mm. Increasing e from 0.1 to 0.4 mm,
the dispersion curves shift to higher frequencies and the gap
closes first in the �M direction �Fig. 4�b�� and finally in both
directions of the BZ as sketched in Fig. 4�c� for e
=0.6 mm. This result is due to a faster upward shift of point
B with respect to the other branch boundaries.

On the basis of a closed gap �e=0.4 mm�, we show in
Fig. 5 the influence of the filling factor � on the dispersion
curves. The reduction of the filling factor is obtained by in-
creasing the lattice parameter a from 1.0 to 1.6 mm, keeping
constant all the other parameters of the structure �r
=0.42 mm, e=0.4 mm, and h=0.6 mm�. In Fig. 5�a�, with
a=1.0 mm, the gap is closed in the �M direction of the BZ.
Increasing a to 1.2 mm, the dispersion curves move down-

ward and the gap appears in the frequency range �765.1–
778.9 kHz� �Fig. 5�b��. This result comes from a faster
downward shift of point B�, situated at the boundary M of
the BZ on branch 3, with respect to the other branch bound-
aries as seen in the �M direction of Fig. 5�c�.

To summarize the above trends, the low-frequency gap is
generated from the bending of both shear horizontal �branch
2� and symmetric Lamb mode �branch 3� of the plate. Since
the extremities A and B of these branches move differently
�although in the same direction� with the geometric param-
eters e /a and h /a, the opening of the gap requires an appro-
priate choice of these parameters. In all cases, the opening of
the gap is closely linked to the shift and bending of branch 3
and, for small h �Fig. 3�a��, to the shift and bending of
branch 2. In comparison with the other band extremities, the
evolution of point B is most importantly related to the thick-
ness of the plate and the lattice parameter rather than to the
height of the dots. The central frequency of the gap depends
upon all the geometrical parameters e, h, and a. It decreases
either by increasing h, decreasing e, or increasing a.

We have investigated the spatial distribution of the eigen-
modes inside the unit cell for the modes A and B situated at
the extremities of branches 2 and 3 in Fig. 2�b�, in which
bending is at the origin of the gap. The parameters are h
=0.6 mm, e=0.1 mm, and �=56.4%. Calculations were
performed with the help of the finite element method using
ATILA® code,35 which is well adapted to sketch the deforma-
tion of the structure. The initial excitation of the mode is
made in the �X direction. The results for mode A �wave
vector kA= �� /a ,0 ,0� and frequency fA=233.0 kHz� and
mode B �kB= �� /a ,0 ,0� and frequency fB=180.6 kHz� are
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FIG. 2. �Color online� �a� Band structure in
the frequency range �0–2500 kHz� of the model
of Fig. 1 for steel cylinders on a silicon plate,
calculated in the first irreducible BZ of the
phononic crystal. The lattice parameter is a
=1 mm ��=56.4%�, the height of the cylinders
h=0.6 mm, and the thickness of the plate e
=0.1 mm. �b� Same as �a� in the magnified fre-
quency range �0–400 kHz�. Points A and B cor-
respond, respectively, to the extremities of
branches 2 and 3 at the X point of the Brillouin
zone.
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plotted in Figs. 6�a� and 6�b� using a cut along the �y ,z� or
�x ,z� plane. In Fig. 6�a�, the mode A is clearly associated
with an oscillation of the dot in the y direction together with
a weak bending of the plate. In Fig. 6�b�, the vibration of the

mode B involves, in the z direction, an oscillation of the dot
correlated with a strong bending of the slab. In both cases,
the displacement fields are distributed in the dot, as well as
in the plate, in agreement with the dependence of the points
A and B of the dispersion curves with all the geometrical
parameters h, e, and a. More specifically, for mode A, the
stronger deformation in the dot than in the plate is related to
a stronger dependence of point A of the BZ with the height
of the dot �seen in Fig. 3� than with the other parameters. On
the contrary, for mode B, the deformation affects more the
plate than the dot. This means that the motion of point B of
the dispersion curve is more dependant of the thickness of
the plate e and the lattice parameter a �seen in Figs. 4 and 5�
than of the height h of the dot.

We have also investigated the persistence of this gap upon
different combinations of the materials constituting the dot
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FIG. 3. �Color online� Evolution of the band structure as a func-
tion of the height of the dots, keeping constant the thickness of the
plate �e=0.1 mm� and the filling factor ��=56.4%�. �a� h=0.1, �b�
0.2, �c� 0.6, and �d� 2.7 mm.
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FIG. 4. �Color online� Evolution of the band structure as a func-
tion of the thickness of the plate keeping constant the height of the
dots �h=0.6 mm� and the filling factor ��=56.4%�. �a� e=0.1, �b�
0.4, and �c� 0.6 mm.
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and the plate among a set of five materials �tungsten, steel,
silicon, aluminum, and epoxy�. Table I reports the densities
and velocities of the constituent materials. In Fig. 7�a�, we
show the limits of the gap by changing the material of the
plate when the dots are made of steel. Similarly, Fig. 7�b�
displays the gap limits for various materials in the dots and
the plate being made of silicon. One can notice the persis-
tence of this gap even if the constituting materials are iden-
tical. This supports the origin of the gap as being related to
the geometrical rather than physical parameters of the struc-
ture. On the other hand, the central frequency of the gap is
very dependent upon the choice of the materials and happens

at lower frequencies when we combine a high-density mate-
rial �steel� in the cylinders with a low-density material �ep-
oxy� in the plate. For such a system �steel dots on epoxy
plate�, the gap extends from 43 to 63 kHz. It is worthwhile to
notice that one can obtain a gap in the audible frequency
range, around 2 kHz, for a period of a=20 mm and the other
parameters being scaled accordingly. Such solid systems
could then easily be used as vibrationless environment for
high-precision mechanical systems.

In general phononic crystal studies,1–5 the band gaps may
originate from the Bragg reflections resulting from the peri-
odicity of the structure. We note that the low-frequency gap
reported here occurs at a frequency such that the wavelength
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in all constituting materials is at least one order of magnitude
larger than the geometrical sizes of the structure. Thus, it
shows some similarity with the behavior obtained in locally
resonant sonic materials.11–16 Still, from the spatial distribu-
tion of the displacement field, we cannot attribute a totally
localized character to the modes in this frequency range. In-
stead, the competitive motions of branches 2 and 3 by vary-
ing the geometrical parameters should allow the opening of
the gap.

B. Behavior of the higher gaps

The behavior of the higher gap observed in the band
structure of Fig. 2�a� has been studied as a function of the
geometrical parameters h, e, and �, along the high-symmetry
axes �X and �M of the irreducible BZ �Fig. 8�. We choose to
refer to the thickness e=0.2 mm to avoid a thin discretiza-
tion of the space thus decreases time of calculation.

In Fig. 8, we fix the values of the filling fraction �
=0.564 and the thickness of the plate �e=0.2 mm� while
increasing the height of the dots from h=0.6–2.7 mm. For
h=0.6 mm �Fig. 8�a��, we note the existence of three gaps.
The lowest one �519.3–571.7 kHz�, discussed in the previous
section, closes for h	1.0 mm. Besides, the band structure
exhibits two higher gaps, respectively, in the frequency
ranges �1560–1887 kHz� and �2092–2328 kHz�. When in-
creasing h to 1.5 mm �Fig. 8�b�� and then to 2.7 mm �Fig.
8�c��, the central frequencies of these gaps move downward
together with the dispersion curves, whereas additional abso-
lute band gaps appear at higher frequencies. It is interesting
to remark that, up to a certain frequency range, the opening
of the gaps results from the crossing of the normal acoustic
branches with almost flat bands, which is similar to the case
of locally resonant materials.

We have also studied the evolution of the gaps with the
thickness of the plate e, keeping constant h=2.7 mm and
�=56.4% �Fig. 9�a��. Increasing e from 0.1 to 1.0 mm, we
observe a slow variation of the central frequency of the gap.
In addition, most of the gaps close for e	1 mm, due to

many dispersion branches moving downward. The evolution
of the gaps with the filling factor has also been investigated.
When increasing a from 1.0 �Fig. 8�c�� to 1.4 mm �Fig. 9�b��
with the same h and e, several branches move downward
from the high-frequency region and progressively fill the
higher gaps; at the same time, the lowest remaining gaps
keep their central frequencies almost preserved.

C. Propagation of guiding waves in the slab

In this section, we study the possibility of propagating a
confined mode in a rectilinear waveguide created inside the
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phononic crystal. The geometrical parameters are the same
as in Fig. 2, i.e., �=56.4%, h=0.6 mm, and e=0.1 mm that
ensures the existence of the largest forbidden gaps. The
FDTD calculation is performed by using a supercell contain-
ing five unit cells in the y direction. The guide is created by
removing one row of dots in the third unit cell, thus consti-
tuting a linear waveguide in the x direction. The width of the
waveguide, 
, has been chosen as a variable parameter to
investigate the existence and number of localized modes in
the band gap.8 Fig. 10�a� shows the band structure in the �X
direction for the waveguide structure with 
=0.55a. The dis-
persion curve exhibits three additional branches inside the
higher gap �1287–2106 kHz� while no supplementary
branches appear inside the lowest gap. Increasing the width
of the waveguide leads to the lowering of the frequencies of
the waveguide modes. Figure 10�b� shows the band structure
for a waveguide with 
=1.05a, which presents one addi-
tional mode in the lowest forbidden band �265.2–327.9 kHz�.
To show the confinement of such modes inside the wave-
guide, we focus on the points C and D of the dispersion
curves. The maps of the displacement fields associated with
both modes are, respectively, sketched in Figs. 10�c� and
10�d�. In both cases, the acoustic field is essentially confined
in the area of the waveguide and does not leak out into the
rest of the structure.

IV. CONCLUSIONS

The purpose of this paper was to investigate, using the
finite difference time domain and the finite element methods,
the dispersion of the elastic waves of a periodic array of dots
deposited on a plate. We showed the possibility of a low-
frequency gap and its existing conditions as a function of the
geometrical parameters in the structure and the physical pa-
rameters of the constituting materials. This gap is generated
by the bending of the two plate’s modes, i.e., the SH and the
�S0� modes. The central frequency of the gap depends on all
geometrical parameters �thickness of the plate, the height of
the dots, and the filling factor�. The gap can exist for very
different combinations of the constituting materials, support-
ing the origin of the gap as being due to the geometry of the
structure. However, the central frequency and the width of
the gap are dependent upon the material properties. More
particularly, in view of acoustic isolation, it would be suit-
able to choose a high-density material for the cylinders and a
low-density one for the plate. We also showed the existence
of higher gaps, especially by increasing the height of the
cylinders. Those gaps can also appear at low frequency for
much larger values of h. Finally, we showed that plate modes
can be guided inside a linear defect created by removing one

row of dots. Similar studies should be performed for differ-
ent shapes of the dots, hollow or coated cylinders, etc. Such
system could found original application in the field of guid-
ing and filtering waves, as well as sound isolation inside
vibrating plate structures.
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