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Surface states of dx2−y2-wave superconductors are studied using the Ginzburg-Landau �GL� theory. For a
�110� surface it has been known that the time-reversal symmetry �T� breaking surface state, �d� is�-wave state,
can occur if the bare transition temperature of the s-wave order parameter �OP� is positive. We show that even
if this bare Tc is negative, it is possible to break T because the coupling to the spontaneously generated
magnetic field may induce the s-wave OP. The T-breaking state is favored when the GL parameter � is small.
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I. INTRODUCTION

Superconducting �SC� states of high-Tc cuprates are
known to have dx2−y2-wave symmetry.1,2 Since the pair wave
function of such an unconventional SC state has strong an-
gular dependence, the effects of the presence of surfaces,
impurities are different from those in conventional s-wave
superconductors. For example, it is possible to break the
time-reversal symmetry �T� near a surface or a Josephson
junction by inducing the second component of the SC order
parameter �OP� �Refs. 2–14� with a nontrivial phase differ-
ence between the two OPs. In the case of a Josephson junc-
tion it may occur when the surface has �110� orientation,
because the second SCOP induced by the tunneling process
can have phase difference �� /2 leading to a T-breaking
state.8,9 For a �110� surface faced to a vacuum the necessary
condition to break T seems to be that the bare transition
temperature �Tc� of the second OP is positive.7,10–12,14

In this paper we examine the possibility to have a
T-breaking surface state near the �110� surface of a
dx2−y2-wave superconductor when the bare Tc of the addi-
tional OP is negative, namely, the second OP will not occur
in the bulk even at zero temperature. We take an s-wave
SCOP as the second component, since dx2−y2-wave and ex-

tended s-wave symmetries are natural candidates for super-
conducting states in the models with nearest-neighbor inter-
actions �e.g., the t-J model�. We will show that this kind of T
violation is possible, and that both the SCOPs and the mag-
netic field �vector potential� should be treated self-
consistently in order to describe this situation correctly. It
also turns out that the T violation may occur for a relatively
small GL parameter � �i.e., of the order of 10�, when Tc of
the second OP is negative. Then the present mechanism may
not be relevant to the T violation in hole-doped cuprates in
which ��100. However, we expect the surface states of
electron-doped cuprates may be described by the present
theory, because some of the latter systems have much smaller
� values.15,16

II. GINZBURG-LANDAU EQUATION

We consider a superconductor with tetragonal symmetry
and assume only a dx2−y2-wave SCOP, �d, is present in the
bulk. An s-wave SCOP, �s, is taken into account as a pos-
sible second component when �d is suppressed near the sur-
face. For such a system the Ginzburg-Landau �GL� free en-
ergy is given as3
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where A is the vector potential and D=�−�2�i /
0�A is the
gauge-invariant gradient with 
0=hc /2e being the
magnetic-flux quantum. Coefficients ����T−Tc��, ��, K�,
�1, �2, and Kds are real, and we assume Tcd�0, while Tcs can
be both positive and negative. The �2 is one of the terms
which determine the relative phase of OPs, 
ds�

d

−
s ;��= 
��
exp�i
���. We take �2�0, because this choice

would lead to the �d� is�-state �
ds= �� /2� instead of the
�d�s�-state �
ds=0,��. In the former case the nodes of the
d-wave state are removed and the more condensation energy
can be gained. It is also to be noted that �1�2�2 is positive
in usual weak-coupling model, since two OPs compete each
other. Now we rewrite F in the dimensionless unit17 to see
the parameter dependence of the model more clearly,
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where ��=�� /�0 ��=d ,s� with �0=�
�d
 /�d being the
bulk d-wave OP. r was rescaled using the coherence length

for the d-wave OP, �d�=�Kd / 
�d
�, as r→r /�d, and D̃
�

−ia /�. Here a=A / ��2Hc�d�, and the magnetic field is mea-

sured in units of �2Hc, where Hc=�4��d
2 /�d is the thermo-

dynamic critical field. �=�d /�d is the GL parameter with
�d=
0 / �2�2�Hc�d� being the penetration depth for the bulk
d-wave superconductor. The parameters in Eq. �2� are de-

fined as �̃s=�s / 
�d
, �̃s=�s /�d, K̃s=Ks /Kd, �̃1=�1 /�d, �̃2

=�2 /�d, and K̃ds=Kds /Kd.
Usually the surface effect is described by the second-

order surface GL free energy, Fsf =�sfdS��,�=d,sg����
� ��,

where integration is carried out on the surface. Using the
symmetry argument we find gds=gsd=g0 cos 2� where � is
the angle between the surface and the crystal a axis with g0
being a constant. This term could also determine 
ds, and it
leads to the �d�s�-state in the case of a �100� surface ��
=0�, since the �2 term is higher order than the gds term.
However, gds vanishes for a �110� surface ��=45°� which we
consider in the following. The g�� term will represent the
suppression of �� near the surface. Instead of using gdd we
impose the condition �d=0 at the �110� surface, because the
dx2−y2-wave SCOP should vanish there. Since the s-wave
SCOP is only little affected by the presence of the surface,
we take gss=0. �In numerical calculations we have checked
that taking small positive gss will not change the results
qualitatively.� In order to consider the �110� surface we trans-
form the coordinate system, �x ,y ,z�→ �x̃ , ỹ ,z�. Here x �y� is
parallel to the crystal a �b� axis �z is parallel to the surface�,
and x̃ and ỹ axes are perpendicular and parallel to the sur-
face, respectively. �See Fig. 1.� In the free-energy density

only the K̃ds term is changed under this transformation to

2K̃ds

�
aỹ Im��s

��x̃�d − �d�x̃�s
�� , �3�

where we have assumed that the system is uniform along the
surface, and the gauge freedom was taken as a=aỹ�x̃�eỹ.

The expression for the supercurrent is obtained by varying
the electronic part of F �i.e., except the last term� with re-
spect to a. Since the surface is faced to the vacuum, the x̃
component, Jx̃, should obviously vanish. �We have numeri-
cally checked that Jx̃ actually vanishes.� The ỹ component,
Jỹ, and that in the dimensionless unit, jỹ, are given as

jỹ = Jỹ���2Hcc
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III. SURFACE STATE AND SPONTANEOUS CURRENT

We numerically solve the problem by employing the
quasi-Newton method18 to minimize the free energy F under
the condition �d�x̃=0�=0. We minimize F with respect to all
variables, i.e., �d, �s, and aỹ. Note that the Maxwell’s equa-
tion is taken into account in this procedure, and we call this
as “fully self-consistent calculation.” For the sake of com-
parison we will also show the results by treating only �d and
�s self-consistently.

First let us consider the case of �̃s�0 �i.e., T�Tcs�. In
this case, we would get finite �s if �d were absent. However,
for Tcd�Tcs the stability condition for �s in the bulk is given
as, �̃s+ ��̃1−2�̃2�
�d
2�0, so the transition temperature of �s
is lower than the bare one, Tcs, and �s would be totally sup-
pressed if Tcd�Tcs. Near the surface or impurities the situa-
tion can be different. There �s may be finite because the
dominant SCOP, �d, is suppressed. In Fig. 2 the spatial varia-
tions of the SCOPs near the surface are shown. �s gets finite
near the surface while �d is suppressed. The relative phase


ds will be determined by �̃2 and K̃ds terms, and the former
favors 
ds= �� /2 as mentioned. From Eq. �3� we see that

the K̃ds term also favors 
ds= �� /2, and aỹ will be sponta-
neously generated. �We take �d to be real and aỹ =0 in the
bulk, i.e., x̃→�.� Numerical calculations show that �d is real
for all x̃, and that 
ds= �� /2 where �s is finite. This indi-
cates that a T-violating �d+ is�-wave surface state with a

FIG. 1. Schematic of a �110� surface of a dx2−y2-wave supercon-
ductor with tetragonal symmetry. x and y are parallel to the crystal
a and b axes, respectively.
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spontaneous magnetic field bz �=�x̃aỹ� and a supercurrent jỹ
occurs near the surface. The spatial distributions of bz and jỹ
are presented in Fig. 3.

In order to see the role played by the vector potential, we
investigate the same problem by setting aỹ =0 everywhere.
Namely we treat only SCOPs self-consistently. When aỹ is
set to zero, the spontaneous current jỹ has contributions from
only the spatial variations of SCOPs �i.e., the last line of Eq.
�4��, and we calculate the magnetic field from jỹ using Max-

well’s equation, jỹ�x̃�=− 1
4�

�bz�x̃�
�x̃ . For �̃s�0, the results for

the SCOPs look similar as in the fully self-consistent calcu-
lations. The T-breaking �d+ is�-state occurs as shown in Fig.
2. On the contrary, the behaviors of bz and jỹ are different in
that jỹ always has the same sign, and that bz is a monotonous
function of x̃. These results are not correct even qualitatively
as well as in a quantitative sense. Integration of the Max-
well’s equation with the boundary condition bz����=0 leads
to �−�

� dx̃jỹ�x̃�=0, implying that the averaged current should
vanish.9 This is the case for the fully self-consistent calcula-

tion but not in the case where the magnetic field is not
treated self-consistently, because of the absence of the
screening effect in the latter.

Next we consider the case of �̃s�0, i.e., T�Tcs. Note
that Tcs may be negative, in which case �s will not occur in
the bulk at T=0 even when �d is absent. The results for the
SCOPs are depicted in Fig. 4. �Here the GL parameter is
taken to be �=16.� It is seen that finite Im��s� is obtained,

though we naively expect �s=0. This is because the K̃ds term
couples �x̃ Re��d� bilinearly to aỹ Im��s�. It may induce the
state with Im��s��0 and bz�0, but the state with �s=0 and
bz=0 may also be a self-consistent solution. Numerical cal-
culations show that the former one has the lower energy, and
thus the time-reversal symmetry is violated spontaneously.

Here 
�̃s
, �̃s, and K̃s were taken to be much smaller than
those in Fig. 2. Otherwise the T violation will not occur,
because these terms cost the energy for �̃s�0 and the energy

gain is solely coming from the K̃ds term. The spatial varia-
tions of bz and jỹ are shown in Fig. 5.

In the case of �̃s�0, the results with or without treating
the vector potential self-consistently are completely differ-
ent. If we do not take into account the aỹ term, �s will never
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FIG. 2. Spatial variations of SCOPs for �̃s=−0.2, �̃s=0.2, K̃s

=0.5, �̃1=0.5, �̃2=0.1, K̃ds=0.3, and �=16. Note that all SCOPs are
normalized by the bulk d-wave OP, and x̃=0 corresponds to the
surface faced to the vacuum. �a� Re �d and �b� Im �s in the fully
self-consistent calculation. �c� Re �d and �d� Im �s in the simplified
one without treating aỹ self-consistently.
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FIG. 3. Spatial variations of bz and jỹ. Parameters used are the
same as in Fig. 2. �a� jỹ and �b� bz in the fully self-consistent
calculation. �c� jỹ and �d� bz in the simplified one without treating aỹ

self-consistently. Note bz and jy are in the dimensionless unit.
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FIG. 4. Spatial variations of SCOPs for �̃s=0.01, �̃s=0.01, K̃s

=0.04, �̃1=0.5, �̃2=0.1, K̃ds=1.0, and �=16. �a� Re �d and �b�
Im �s in the fully self-consistent calculation. �c� Re �d in the sim-
plified one without treating aỹ self-consistently.
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FIG. 5. Spatial variations of bz and jỹ. Parameters used are the
same as in Fig. 4. �a� jỹ and �b� bz in the fully self-consistent
calculation.
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appear, since there is no mechanism to derive finite �s. Thus
neither the spontaneous current nor the spontaneous field can
occur. It implies that the T-violation near the surface cannot
be described in this kind of simplified treatment for the su-
perconductors in which the second SCOP has negative Tc.

In order to see the dependence on � we show the results
for a larger � ��=19� in Fig. 6 and 7. It is seen that 
�s
, 
bz
,
and 
jỹ
 are much smaller than those for �=16. This � de-
pendence can be understood as follows. �d is suppressed in
the region near the surface �x̃��d�, and �s and aỹ would be
finite there if T is broken. On the other hand the magnetic
field bz would be finite in the region x̃��d. When � is large,
the loss of energy due to finite bz in the large region ��d

� x̃��d� overwhelms the energy gain coming from the K̃ds
term which acts only in the small region x̃��d. Thus for
large � the T violation is not favored. If the larger value of

K̃ds is taken, the T-breaking state can occur for larger �. But

the natural assumption seems to be Kds�Kd �K̃ds�1�, so
that the T violation may occur for � of the order of 10. �On
the contrary the T violation may occur for much larger � in
the case of �̃s�0, because the energy can be gained by not

only K̃ds but also �̃s term.� It implies that the present mecha-
nism may not be relevant to hole-doped cuprates in which
��100, but it may describe the surface states of electron-
doped cuprates which have smaller �.

If we assume Hc=1 T, the maximum values of 
Bz
 and

Jỹ
 are 2.5	10−1 T and 3.7	10 A /cm2, respectively,
for �=16. For �=19 they are 8.6	10−2 T and 1.2

	10 A /cm2, respectively. These values rapidly decrease as
� increases, and the T-breaking state disappears as � exceeds
19 for the parameters used here. If we compare these values
with experiments, it should be noted that surface roughness
will reduce 
Bz
 and 
Jỹ
, because T violation is most favored
in the case of �=45°.12 �When ��45°, gds will be finite and
the T violation is not favored.�

IV. SUMMARY

We have examined the role played by the vector potential
concerning the occurrence of surface states with spontane-
ously broken T in dx2−y2-wave superconductors. It has been
known that the T-breaking state may naturally appear if the
bare Tc of the additional OP is positive. For the Josephson
junction composed of dx2−y2-wave and other superconduct-
ors, tunneling may induce second component of SCOP and
thus T may be broken. In these cases the T-breaking states
may be described without treating the vector potential self-
consistently. In this paper it was shown that the surface state
of a dx2−y2-wave superconductor may break T even when the
bare Tc of the second SCOP is negative. However, to de-
scribe this situation correctly not only the SCOPs but also
the vector potential must be treated on an equal footing. In
the present mechanism the T violation may occur for rather
small values of the GL parameter � ��20�, so that it may not
be relevant to hole-doped cuprates. We expect that the
present theory may be used to describe the surface states of
electron-doped high-Tc cuprates, because their � are much
smaller than those of hole-doped systems.
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