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Recent fabrication of atomic precision nanodevices for spintronics greatly boosted their performance and
also revealed interesting features as oscillating magnetoresistance with a number of atomic layers in a multi-
layered structure. This motivates the need to go beyond the usual theoretical approach of semiclassical con-
tinuous layers. Here the simple tight-binding dynamics is used to describe quantum conduction in a multicom-
ponent system with spin-polarized electrodes separated by an ultrathin and atomically coherent nonmagnetic
spacer �either metallic or insulating�. A possibility is indicated for obtaining a huge resonant enhancement of
magnetoresistance in such device by a special choice of gate voltage on the spacer element.
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I. INTRODUCTION

In our information-based society, the development of
ultrahigh-density storage technology is a demanding priority.
In this context, the necessity in ultrahigh sensitivity read-
head devices is a great challenge from both theoretical and
experimental points of view. Presently the most promising
candidates for this purpose are the magnetic tunnel junctions
�MTJs� made by two magnetic electrodes and separated by
an ultrathin nonmagnetic spacer and their study becomes one
of the central topics in the fast developing field of spintron-
ics. Since the early studies by Tedrow and Meservey1 on
spin-polarized tunnel conduction, an impressive progress
was achieved either in experiment2–4 or in theory5–7 for the
spintronic applications of this mechanism. The most impor-
tant recent advances are related to nanofabrication of multi-
layered systems on atomic precision level,8,9 which raises the
MTJ performance up to 400% of magnetoresistance and en-
ables a breakthrough to their fundamental quantum proper-
ties. It should be noted that the overall number of electronic
degrees of freedom in a device such as MTJ is macroscopi-
cally big, which generally suggests a quasiclassical behavior
controlled by the spin-dependent relaxation times or by the
spin-dependent tunneling amplitudes. However, the essential
quantum behavior turns out to be possible at the effective
separation of a small number �few units� of electronic de-
grees of freedom among the macroscopically big total num-
ber, e.g., the hoppings between the planes in the spacer
among all possible hoppings in a junction, forming a partial
quantization of energy spectrum and drastically enhancing
the sensitivity of tunnel �or ballistic� transport to external
factors.10 Another natural quantization effect is the oscilla-
tory behavior of conductance as a function either of the
spacer thickness �or, more exactly, the number of atomic
planes� or of electric field on the junction,11 which may also
allow an interesting possibility for specific magnetoconduc-
tance oscillations. All these need that the mode mixing due to
the interface roughness and intraspacer defects be below the
characteristic energy quantization scale and practically re-
quires that the spacer consist of few atomic planes, coherent
enough.

Consequently, the theoretical analysis of such systems re-
quires a fully quantum-mechanical description rather than

more traditional semiclassical approaches.12,13 Up to the mo-
ment, there already exists a rather well-elaborated theoretical
base for this description using the Green’s function formal-
ism and rigorous ab initio band calculations14–16 as inputs to
the general Kubo’s formula. However, in many practical
cases the direct use of the corresponding algorithms leads to
heavy enough numerical work, specific for each particular
configuration and not very well suited for qualitative predic-
tions and optimization of device performance.

In this paper instead, the simple tight-binding dynamics in
single-band approximation is developed using the straight-
forward equations of motion for on-site quantum-mechanical
amplitudes to get a handy description of quantum magne-
totransport in the ballistic regime �absence of either thermal
or impurity scattering� for a trilayer system of spin-polarized
electrodes with an ultrathin and atomically coherent nonmag-
netic spacer. The motivation for our approach is an easy
generalization to more promising device geometries �double
barriers or double junctions, etc.� and conduction regimes
�including finite electric-field effect� which will be presented
in a forthcoming work. This presentation is mainly limited to
the basics of the method and to its most characteristic results.
Thus in Sec. II the explicit quantum wave functions are ob-
tained for the one-dimensional �1D� isolated atomic chain. In
Sec. III the finite 1D chain is inserted between two 1D semi-
infinite leads and the transmission and reflection coefficients
for a collective electronic state are analytically calculated.
Further, in Sec. VI this result is generalized to the three-
dimensional �3D� case and the Landauer conductance
formula17 is used in the 3D version to yield a clear picture of
basic quantum effects evolved in this coherent system. In
Sec. V, the important effects of electronic correlation are
included into consideration using the approximation of phe-
nomenological interface potentials, which foresees a more
consistent treatment in the spirit of density-functional theory
�DFT�. At last, in Sec. IV work summary and principal re-
sults are presented and commented.

II. BASIC CHAIN MODEL

The simplest model for transport over exact electronic
states considers a linear chain of n identical atoms with
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single available electronic state �l� on each lth atomic site
and describes the single-electron dynamics in the simplest
tight-binding approximation with �real� hopping amplitude t
�Fig. 1� between nearest-neighbor sites �taking the distance
between them as unit length�. In this coupled chain, any
collective electronic state can be expressed as �c�=�l=1

n cl�l�
with complex amplitudes cl and atomic states �l�= ĉl

†�0�, gen-
erated by the second quantization operators acting on the
vacuum state �0�. Choosing the on-site atomic energy as a
reference ��c=0�, we write the Hamiltonian operator as

Ĥ�n� = t�
l=1

n−1

�ĉl
†ĉl+1 + ĉl+1

† ĉl� �1�

and obtain the electronic spectrum �m �m=1, . . . ,n� as the

roots of the secular equation Dn���=det��− Ĥ�n��=0 with the

corresponding Hamiltonian matrix Hl,l�
�n� = �l�Ĥ�n��l��

= t��l,l+1�l−1+�l,l−1�n−l� �where �l,l� is the Kronecker delta
and �l=1 if l�0, otherwise zero�. These determinants satisfy
the recurrent relation,

Dn��� = �Dn−1��� − t2Dn−2���, n � 2, �2�

with the initial conditions D0���=1, D1���=� that define
them exactly through the second kind Chebyshev polynomi-
als: Dn���= tnun�� /2t�.18 Then it is convenient to pass to
these dimensionless polynomials un�x� as functions of the
dimensionless variable x=� /2t by rewriting Eq. �2� as

2xun�x� = un+1�x� + un−1�x� , �3�

with u0�x�=1, u1�x�=2x. A useful trigonometric parametri-
zation ul�cos ��=sin��l+1��� /sin � permits us to present the
general solution of Eq. �3� as

ul�x� =
sin��l + 1�qx�

sin qx
, �4�

where qx=arccos x. Then the discrete energy spectrum re-
sulting from zeros of un�x� is explicitly given by

�m = 2t cos
�m

n + 1
, m = 1, . . . ,n . �5�

Now let c�x�= �c1�x� , . . . ,cn�x�� be the eigenvector of the
Hamiltonian matrix �Eq. �2�� related to the eigenenergy �
=2tx �in what follows we mostly drop the explicit energy
arguments of amplitudes like cl�. Its components satisfy the
tight-binding equations of motion,

2xcl = cl+1 + cl−1 for 2 � l � n − 1, �6�

completed by 2xc1=c2 and 2xcn=cn−1. Since Eq. �6� for cl /c1
is just equivalent to Eq. �3� for ul−1, the eigenvector compo-
nents can be written as

cl =
sin�lqx�
sin qx

c1. �7�

We notice that this solution also satisfies the above-
mentioned equations of motion for c1 and cn and provides the
“closed” boundary conditions,

c0 = cn+1 = 0. �8�

As usual, the value of c1 is fixed by the normalization con-
dition, �l�cl�x��2=1, giving finally the lth component of the
eigenvector �related to the eigenenergy �m=2txm� as

cl�xm� =	 2

n + 1
sin

�ml

n + 1
.

Our next purpose is to consider this finite chain inserted into
the “circuit” between two semi-infinite chain leads.

III. TRANSMISSION THROUGH DISCRETE
CHAIN STRUCTURE

For a composite system of finite n chain �in what follows
called the gate, G� between two semi-infinite chain leads, S
�source� and D �drain� �Fig. 2�, the tight-binding Hamil-

tonian �Eq. �1�� is extended to Ĥ= ĥs+ ĥd+ ĥg+ ĥsg+ ĥgd,
where

ĥs = �
l=1

	

��sŝl
†ŝl + ts�ŝl

†ŝl+1 + H.c.�� ,

ĥg = �
l=1

n

��gĝl
†ĝl + tg�ĝl

†ĝl+1 + H.c.�� ,

ĥsg = tsg�ŝ1
†ĝ1 + H.c.� , �9�

including the respective on-site energies �i �i=s ,d ,g� and
hopping parameters ti �i=s ,sg ,g ,gd ,d�, while the operators

FIG. 1. Finite atomic chain with tight-binding amplitude t.

FIG. 2. Composite system of finite n chain �gate element, G�
inserted between two semi-infinite chain leads �source, S, and drain,
D�. The energy diagram shows the on-site energy levels �dashed
line� for ith element �i=s ,g ,d� and the Fermi level �dot-dashed
line� whose crossings with the continuous S- and D-dispersion
curves define the wave numbers for incoming �qs�, reflected �−qs�,
and transmitted �qd� parts of the Fermi state. Notice that the Fermi
level generally does not match any of the discrete levels �solid� in
the central �G� element.
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ĥd and ĥgd are analogous to ĥs and ĥsg with the formal change
in indices s→d. For this macroscopic system, the energy
spectrum includes continuous S and D bands �i,q=�i
+2ti cos q , i=s ,d and possibly discrete G levels outside
these bands. The collective eigenstate for a given energy �
can be found from the equations of motion that generalize
Eq. �6�. We denote sl, gl, or dl the respective local amplitudes
of the wave function and define the dimensionless dynamical
variables xi= ��−�i� /2ti �i=s ,g ,d�. Let the S amplitude be a
sum of an incident wave of intensity 1 with the wave number
qs=arccos xs and a reflected wave with certain amplitude R
and the wave number −qs,

sl = e−iqsl + Reiqsl �10�

�for regressive order of sites l in S�, and the D amplitude
presents a transmitted wave with certain amplitude T and the
wave number qd=arccos xd,

dl = Teiqdl. �11�

Equations �10� and �11� refer to one of fundamental solutions
for given � �besides that where the incident and reflected
waves belong to D and the transmitted one does to S�. These
forms automatically satisfy the equations of motion within S
and D,

2xssl = sl−1 + sl+1, 2xddl = dl−1 + dl+1 �12�

�for l�2�, while the pairs of equations on the S /G and G /D
interfaces,

2s1 cos qs = s2 +
tsg

ts
g1,

u1g1 = g2 +
tsg

tg
s1, �13�

and

2d1 cos qd = d2 +
tgd

td
gn,

u1gn = gn−1 +
tgd

tg
d1, �14�

are the discrete analogs of the usual boundary conditions for
continuous-wave function and its derivative.19 They permit
us to express the terminal pairs of G amplitudes through the
asymptotic parameters R, T, qs, and qd,

g1 =
ts

tsg
�1 + R�, g2 =

ts

tsg
�u1 − 
s

� + �u1 − 
s�R� ,

gn =
td

tgd
T, gn−1 =

td

tgd
�u1 − 
d�T , �15�

with the interface parameters 
s=eiqstsg
2 / tgts and 
d

=eiqdtgd
2 / tgtd. The polynomials ul
ul�xg� are formally the

same as given by Eq. �4� with the energy argument xg= ��
−�g� /2tg. However, the energies � of our main interest for
the transport processes are those close to the Fermi energy �F

which is generally not an eigenvalue �Eq. �5�� for the isolated
G element. Therefore the transient “momentum” qg
=arccos xg �not necessarily real� breaks down the closed
boundary conditions �Eq. �8�� for G and thus enables conti-
nuity of quantum states along the composite system. Next,
using Eq. �6� for this element in the form

u1gl = gl+1 + gl−1, �16�

it is possible to inter-relate the terminal G amplitudes,

gn−1 = un−2g1 −
tsg

tg
un−3s1,

gn = un−1g1 −
tsg

tg
un−2s1. �17�

Then, Eqs. �15� and �17� yield two independent relations
between the coefficients R and T. Those are readily solved to
give

R�xs,xg,xd� = −
D̄n

Dn
,

T�xs,xg,xd� = − 2i
tsg tgd

tg td

sin qs

Dn
, �18�

where the resonance properties result from the denominator,

Dn�xs,xg,xd� = un − �
s + 
g�un−1 + 
s
dun−2, �19�

with the relevant variables xi= ��−�i� /2ti as arguments of
complex factors 
i and real polynomials ul, and

D̄n�xs ,xg ,xd�
Dn�xs+� ,xg ,xd�. Since, in the considered 1D
case, all xi���= ��−�i� /2ti are defined by the single energy
variable �, the coefficients R and T can be also defined as
functions of energy: R���
R�xs��� ,xg��� ,xd���� and T���

T�xs��� ,xg��� ,xd����. It is important to notice that the re-
sult of Eqs. �18� and �19� is just analogous to that obtained
with the Green’s function techniques,7 the factors 
s and 
d
playing the role of interface Green’s functions of Ref. 7. A
typical behavior of the transmission coefficient �T����2 is pre-
sented in Fig. 3. It shows n transmission resonances gener-
ated by n discrete energy levels of the G element �by n atoms
in the chain� as they are passing over the Fermi level within
the mutually displaced energy bands. The displacement can
be due, for instance, to the Stoner splitting between majority
and minority subbands of oppositely polarized S and D ele-
ments �see also Sec. VI�. Notice that the resonances become
sharper as the levels approach the band edges, and the maxi-
mum transmission in the asymmetric S-D band configuration
is not limited to unity �the flux conservation does not mean
the density conservation if the in- and out-velocities are not
equal�. This coefficient enters the Landauer formula17 for the
ballistic conductance through the 1D composite system �in
zero-temperature limit�,

G =
e2

h
�T��F��2, �20�

with the Fermi energy �F. Now, allowing the S and D chains
to support spin-polarized subbands �i,q,�=�i,�+2ti cos q
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�where �i,�=�i−��i, �= are the majority and minority-
spin indices and �i are the Stoner splitting parameters for i
=s ,d�, we can introduce the energy and spin-dependent vari-
ables xi,����= ��−�i,�� / �2ti�, i=s ,d, for in- and out-channels
and obtain from Eq. �20� the spin-dependent conductance
values G�,��= �e2 /h��T�xs,���F� ,xd,����F� ,xg��F���2. Finally,
the �maximum� magnetoresistance �MR� is defined as usu-
ally through the difference between the conductance values
GP=G+,++G−,− for parallel and GAP=G+,−+G+,− for antipar-
allel S /D polarizations,

MR =
GP

GAP
− 1. �21�

Although the state-of-the-art technology already permits de-
velopment of such genuinely 1D devices20 and the resonance
behavior like that in Fig. 3 �different from the known quan-
tized conductance steps versus voltage bias� can be directly
sought in them, it is of major practical importance to gener-
alize the above treatment for a more realistic multilayered
structure and this will be done in Sec. IV.

IV. THREE-DIMENSIONAL MULTILAYERED STRUCTURE

Passing from 1D composite chain to multilayered �and
spin-polarized� 3D lattice structure as shown in Fig. 4, we

extend the indexing of site operators from ŝl , d̂l and ĝl to

ŝl,m,� , d̂l,m,� and ĝl,m,�, where m runs over N sites in the lth
plane and � is . Our strategy in this case relies on the
conservation of the transversal quasimomentum k= �kx ,ky� in
the transitions between the planes.15,21 From the experimen-
tal point of view, this requires perfect interfaces that are only
reachable with advanced molecular-beam epitaxy
techniques.22 To describe the situation where k is a good
quantum number for independent 1D-like longitudinal trans-
port channels, we pass from the site operators to the “planar

wave” operators. Thus, for the lth plane in the S element, the
latter operators are defined as

ŝl,k,� =
1

	N
�
m

eik·mŝl,m,�, �22�

and, similarly, the planar wave operators d̂l,k,� and ĝl,k,� for
D and G elements are written. The related extension of the

Hamiltonian is Ĥ=�k,��ĥk,�
s + ĥk,�

d + ĥk,�
g + ĥk,�

sg + ĥk,�
gd �, where

the particular terms are analogous to those in Eq. �9� with the
change in all the site operators by the planar wave ones and
all the on-site energies �i by the transversal momentum sub-
bands �i,k,�=�i,�+2ti�cos kx+cos ky�, i=s ,d, and �g,k,�=�g
+2tg�cos kx+cos ky�. The equations of longitudinal motion in
terms of the planar wave amplitudes sl,k,�, dl,k,�, and gl,k,�
�for given energy � of the collective state� are obtained in
analogy with the 1D case. Thus, in the leads S and D �be-
yond the interfaces, at l�1�, they are analogs to Eq. �12�,

2xs,k,�sl,k,� = sl−1,k,� + sl+1,k,�,

2xd,kdl,k,� = dl−1,k,� + dl+1,k,�, �23�

with xi,k,�= ��−�i,k,�� / �2ti�, i=s ,d, while in the spacer G �at
1� l�n�, we have in analogy with Eqs. �7� and �15�,

2xg,kgl,k,� = gl−1,k,� + gl+1,k,�, �24�

with xg,k= ��−�g,k� / �2tg�. Also the equations for interface
amplitudes,

2xs,k,�sk,1,� = sk,2,� +
tsg

ts
gk,1,�,

2xg,k,�gk,1,� = gk,2,� +
tsg

tg
sk,1,�,

FIG. 3. Transmission coefficient �T�2 as a function of the on-site
energy �g in the gate element of the composite chain system for the
choice of its parameters �s=−0.4 eV, �d=−0.8 eV �relative to the
Fermi energy�, ts= td=0.5 eV, tg= tsg= tgd=0.25 eV, and n=5. The
shadowed areas indicate the �Stoner shifted� continuous bands, S
�light gray� and D �dark gray�.

FIG. 4. Real multilayered structure where the current I flows
through two ferromagnetic electrodes, S and D, separated by a non-
magnetic spacer G and its model by the composite 3D system
where a finite n-plane spacer is inserted between two semi-infinite
leads.
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2xg,k,�gk,n,� = gk,n−1,� +
tgd

tg
dk,1,�,

2xd,k,�dk,1,� = dk,2,� +
tgd

td
gk,1,�, �25�

are analogous to Eqs. �13�–�15�. The next derivation, in full
similarity with the 1D case, leads to the full dispersion laws
in the leads �i,k,q,�=�i,k,�+2ti cos q �for i=s ,d� and to the
final conductance formula for particular in-out spin channels,

G��� =
e2

h
�

k�K

�T�����F,k��2. �26�

Here the transmission coefficient depends on the relevant
variables �, ��, �, and k according to T����� ,k�

T�qs,k,� ,qg,k ,qd,k,��� with qi,k,�=arccos xi,k,� for i=s ,d and
qg,k=arccos xg,k, and the sum in k is restricted to the “per-
mitted” range K, such that simultaneous equalities �s,k,qs
=�d,k,qd

=�F result in certain real in- and out-momenta qs and
qd. In more detail, the latter condition is expressed as

max�− 2,max�xs,���F�,xd,����F�� − 1�

� cos kx + cos ky

� min�2,min�xs,���F�,xd,����F�� + 1� , �27�

fully defining the integration procedure �in the limit of con-
tinuous k�. It should be noted that the internal momentum qg
can be either real or imaginary in this course, depending on
specific k in K. Therefore the attribution of purely “tunnel-
ing” or purely “metallic” conduction regime is here conven-
tional to a certain extent, for instance, a predominant tunnel-
like conductance can yield to metalliclike one with growing
ng. Then, seeking for optimum performance of the model
MR device from Eq. �21�, it is of interest to evaluate it as a
function of the system parameters, mainly the number of
atomic layers in the gate n and the on-site energy level of the
gate �g �which can be possibly controlled through the gate
bias�. Also, variation of the latter parameter from positive to
negative values permits to model in a unified way the pas-
sage from the tunnel magnetoresistance �TMR� to giant mag-
netoresistance �GMR� regime �in the above indicated sense�.

The following numerical work can be oriented accord-
ingly to some evident qualitative arguments. The variation of
the integrand in Eq. �26� is mainly controlled by that of the
polynomials ul�xg,k� in the denominator of Eq. �19�. As seen
from the explicit equation �4�, they are oscillating if �xg,k�
�1 �that is, the sampling point �g,k in the G spectrum close
enough to the Fermi energy �F� and exponentially growing if
�xg��1 �remote enough �g,k from �F�. Therefore, the conduc-
tance is generally expected to oscillate �either in �g or in n�
as far as the level �g is close enough to �F �which can be
compared to the GMR regime� and to exponentially decay at
�g far enough from �F �a generalized TMR regime�. The
latter decay should asymptotically tend to MR�n��exp�
−nxmin� with xmin=mink�K�xg,k� at n�1.

In the latter case, the direct calculation by Eq. �21� may
result in GP and GAP both exponentially small but the latter
yet much smaller and thus in �arbitrarily� huge MR values.

However, they should not be physically attainable, taking
into account that the real multiband electronic structure of
transition metals always includes some additional conduction
channels, for instance, due to the s bands, whose tunnel con-
tribution slower decays than that of the d bands and is almost
spin independent. Therefore it should dominate the transport
in the indicated regime and make the real MR exponentially
small. A simple phenomenological account of this mecha-
nism in the considered single-band model can be done by
introducing a certain spin-independent term G0 into either GP
or GAP values,

GP = G++ + G−− + G0, GAP = G+− + G−+ + G0, �28�

to present the MR formula �Eq. �21�, as

MR =
G++ + G−− − G+− − G−+

G+− + G−+ + G0
. �29�

It is just this formula that is used below for all practical MR
calculations. Thus, using the band-structure parameters �s,+
=�d,+=1.32 eV, �s,−=�d,−=3.36 eV, ts= td= tg=−0.6 eV,
and 
s,d=0.5 �a reasonable single-band fit for the real Fe
band structure, see Refs. 23–25� and choosing for simplicity
the constant value G0=0.1e2 /h, we find that the MR behav-
ior vs n indeed changes qualitatively at different choices of
�g �Fig. 5�. The TMR-like behavior with fast exponential
decay appears either at high enough gate level, �g�6tg
�which can be compared to a “positive” barrier in the con-
tinuum approximation�, or at low enough gate level, �g�
−2tg �a “negative” or “hole” barrier�, but it develops GMR-
like oscillations with greatly enhanced average MR ampli-
tude at the intermediate �g values �which can be called the
“shallow-band” regime�. The oscillating behavior reveals
similar types of periods that predicted in the Green’s function
treatment in Ref. 15, and it is in a qualitative agreement with
that experimentally observed for MgO moderate tunnel bar-

FIG. 5. �Color online� Magnetoresistance of a FM/NM/FM
junction with the model parameters: �s,+=�d,+=1.32 eV, �s,−

=�d,−=3.36 eV, ts= td= tg=−0.6 eV �like those from Ref. 25�, and

s,d=0.5 as a function of the number n of spacer layers at fixed
values of �g. Notice the exponential decay in the TMR-like regime
either at the highest �g=4 eV or at the lowest �g=−1 eV and a
strong enhancement with emergence of oscillatory behavior at in-
termediate �g �shallow-band regime�.
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riers between Fe electrodes8 except for stronger first oscilla-
tions. However, it will be shown below that these strong
oscillations are effectively moderated when the specific in-
terface effects between metal and insulator layers are taken
into account. The most notable feature of the calculated MR
is its amazingly high maximum value, of the order of
3000%, indicating a huge potentiality of the quantum coher-
ent conduction regime.

For the same choice of parameters, the calculated depen-
dencies of MR vs �g �at fixed values of n=2,4 ,5� are shown
in Fig. 6. In concordance with the above considered MR�n�
behavior, they practically vanish beyond the range of inter-
mediate �g and display a finite number of resonance peaks
within this range �reminiscent of n 1D resonances in Fig. 3�,
reaching the same highest order of magnitude in the shallow-
band regime. These very high values in the present tight-
binding approach contrast with the known result for the
model of almost free electrons through the continuous rect-
angular barrier,19 where MR reaches zero minimum at low
barrier height. As yet, the MR��g� dependence was only
studied experimentally for Al-O spacers,26 possessing most
probably polycrystalline or amorphous structure and high
enough �g, so it could be of interest to try it also with epi-
taxial MgO spacers and possibly with those spacer materials
that can realize the shallow-band condition.

V. INTERFACIAL EFFECTS

In this section, we will discuss the interfacial effects
present at the metal/insulator or metal/nonmagnetic-spacer
interfaces. This is motivated by the analogy with the well-
known case of Schottky barrier at metal/semiconductor inter-
faces, leading to such interesting physical effects as band
bending.27 It is known from x-ray and ultraviolet photoemis-
sion spectroscopies that some charge-transfer effects also ap-
pear at the metal-insulator interface, leading to the formation
of an interfacial charge-dipole whose magnitude is defined
by the localized states at interfaces.28 Since this dipole di-

rectly affects the efficiency of tunneling, it is also important
to evaluate its effect in the magnetoresistance.

The best treatment of this problem is to introduce self-
consistently a charging energy ��, commonly called the
built-up voltage� due to a charge accumulation in the frame-
work of the DFT. This is going to be done in the future work,
but at the moment we will develop simple analytic formulas
to take into account these interfacial effects qualitatively. De-
spite its simplicity, the model can exemplify in which way
the formation of charge dipoles29,30 affects the magnetoresis-
tance ratio.

We go on using the same model of Sec. VI but consider-
ing extra charge energies � on the sites pertaining to the
two atomic planes on both sides of each interface �see Fig. 7�
as an approximation for more realistic charge and potential
distributions around interfaces, obtained by numerical DFT
calculations.14 The � perturbation results in new boundary
conditions and, as a consequence, in a new transmission co-
efficient. In this approximation, there is no changes in equa-
tions of motion within the particular elements �S, D, and G�,
but new pairs of equations appear at the S /G and G /D in-
terfaces, involving the charge energy �,

�2 cos qs + �/ts�s1 = s2 + �tsg/ts�g1,

�xg − �/tg�g1 = g2 + �tsg/tg�s1,

�2 cos qb + �/td�d1 = d2 + �tgd/td�gn,

�xg − �/tg�gn = gn−1 + �tgd/tg�d1. �30�

These boundary conditions allow us to recalculate two-
terminal G amplitudes as a function of the parameters
R ,T ,qs ,qd. Interconnecting these terminal amplitudes leads
to the transmission formula �Eq. �18�� but with the modified
denominator Dn,�=An−Bn+Cn, where

An = 1 +
�

td
eiqd�1 +

�

ts
eiqs��un − 2

�

tg
un−1 +  �

tg
�2

un−2� ,

Bn = �
s1 +
�

td
eiqd� + 
d1 +

�

ts
eiqs��un−1 −

�

tg
un−2� ,

Cn = 
s
dun−2. �31�

It is easy to see that Dn,�→Dn in the limit of �→0.
The MR defined from Eqs. �29� and �31� as a function of

the number n of gate atomic planes and of the gate voltage �g
for the three values of the interface potential � is presented in
Figs. 8 and 9. The obtained softening of first oscillations

FIG. 6. �Color online� MR vs the on-site energy �g of the gate
element for a junction with the same parameters as in Fig. 5 and
various numbers of atomic planes in the gate element: n=2, n=4
and n=5. Compare the resonance peaks in the shallow-band regime
with those in the 1D case of Fig. 3.

FIG. 7. Schematic representation of the interface charge energy,
�, created by a charge accumulation in the S /G and G /D interfaces,
as a simplified description of the true self-consistent behavior.
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makes these curves more similar to the experimental
observations.8 An unexpected result is that the effect of an
extra barrier due to the charge energy can yet reinforce the
calculated MR peak in the shallow-band regime, though re-
ducing the values in the TMR regime at higher barrier
height. Obviously, the charge energy barrier reduces the con-
ductance �either in P or in AP configurations�, but the MR
enhancement is mainly due to a much stronger reduction in
the AP conductance. Apparently it results from the wave-
function localization caused by coherent resonances in the
interfacial potential wells. This idea of charge energy in-
duced resonances is corroborated by the calculated sharpen-
ing of peaks just in the AP conductance. Amazingly high
peak MR values, reaching �3000% for a reasonable choice
of ��0.4 eV �similar to the numerical estimate for Fe-MgO
interfaces,14�, should motivate the fabrication of new devices
with the choice of such spacer materials as semiconducting
�Ge, Si� or semimetalic �Sb, As�. Though the peak value may
be obviously decreased under the effects of electron-electron,
electron-phonon, and electron-magnon interactions, finite
temperature, and disorder, it expresses one of the principal
results of this work, demonstrating that the highest possible
MR value should be reached in the shallow-band regime for
nonmagnetic spacer by adjusting to the strongest resonance
condition, once electronic coherence is assured.

VI. CONCLUSIONS

In this work a theoretical approach was developed to fully
coherent spin-dependent quantum transport in nanolayered
magnetic junctions using single-band tight-binding model
with explicit equations of motion for wave-function ampli-
tudes. The analytic solutions for the transmission and reflec-
tion coefficients were generalized for a three-dimensional
magnetic junction structure. The simple zero-temperature
calculations have revealed the most pronounced enhance-
ment of the magnetoresistance in the shallow-band regime,

defined by low gate voltages �Fig. 6�. Another important fea-
ture for this gate voltage regime is the calculated oscillatory
behavior of MR with the number of atomic planes in the
spacer. In support of these theoretical predictions, the calcu-
lations also reveal that the oscillatory regime starts already at
moderate gate voltages, �g�2 eV. This agrees rather well
with the experimental observation by Yuasa et al.8 of clear
MR oscillations at low enough gate voltage barrier �g
�0.4 eV in a Co/MgO/Co structure. So it is concluded that
the best MR values for a quantum magnetic junction could
be reached using shallow-band materials for spacer layers,
the possible candidates sought between transition metals �Cr
�Ref. 31� in junctions of the type Fe/Cr/Fe or Zn in junctions
of the type Co/Zn/Co�, semiconductors �Ge, Si�, or semimet-
als �Sb, As�. Probably, the highest experimental value of
TMR, �500%,32 is due to going closer to this regime. Fi-
nally, the important effect of charge buildup �Sec. V� on the
junction interface was also considered and, though in a
simple phenomenological approach, a possibility is shown
for even stronger enhancement of the magnetoresistance in
the presence of the extra charge energy for the same shallow-
band regime, emphasizing again the promise of using the
low �g materials. To verify these model predictions, the fu-
ture work must include various realistic effects, such as those
of finite temperature and self-consistent DFT, to adopt also
the multiband electronic structure, spin-transfer processes,
and nonlinear conduction regimes.
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FIG. 9. �Color online� Effect of the interface charge energy on
the MR��g� dependence. The system corresponds to the parameters
as in Figs. 5 and 6 with n=5 and � varying from 0 to 0.4 eV.

FIG. 8. �Color online� Effect of the interface charge energy on
the MR�n� dependence. The system corresponds to the parameters
as in Figs. 5 and 6 with �g=1 eV and � varying from 0 to 0.4 eV.

SIMPLE TIGHT-BINDING THEORY FOR… PHYSICAL REVIEW B 78, 094428 �2008�

094428-7



1 P. M. Tedrow and R. Meservey, Phys. Rev. Lett. 26, 192 �1971�.
2 Mary Beth Stearns, J. Magn. Magn. Mater. 5, 167 �1977�.
3 R. Meservey, J. Appl. Phys. 49, 1405 �1978�.
4 J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey,

Phys. Rev. Lett. 74, 3273 �1995�.
5 M. Büttiker, Phys. Rev. B 27, 6178 �1983�.
6 K. M. Schep, P. J. Kelly, and G. E. W. Bauer, Phys. Rev. Lett.

74, 586 �1995�.
7 J. Mathon, A. Umerski, and M. Villeret, Phys. Rev. B 55, 14378

�1997�.
8 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando,

Nat. Mater. 3, 868 �2004�.
9 S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes,

M. Samant, and S.-H. Yang, Nat. Mater. 3, 862 �2004�.
10 J. J. Sun, R. C. Sousa, T. T. P. Galvão, V. Soares, and P. P.

Freitas, J. Magn. Soc. Jpn. 23, 55 �1999�.
11 S. Yuasa, T. Nagahama, T. Kawakami, K. Ando, and Y. Suzuki,

J. Phys. D 35, 2427 �2002�.
12 J. G. Simmons, J. Appl. Phys. 34, 1793 �1963�.
13 M. Julliere, Phys. Lett. 54A, 225 �1975�.
14 W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. Ma-

cLaren, Phys. Rev. B 63, 054416 �2001�.
15 J. Mathon, M. Villeret, and H. Itoh, Phys. Rev. B 52, R6983

�1995�.
16 J. Mathon and A. Umerski, Phys. Rev. B 63, 220403�R� �2001�.
17 R. Landauer, IBM J. Res. Dev. 1, 223 �1957�.
18 Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables, 9th ed., edited by M. Abramowitz and

I. A. Stegun �Dover, New York, 1972�.
19 J. C. Slonczewski, Phys. Rev. B 39, 6995 �1989�.
20 N. Agraït, A. Levy Yeyati, and J. M. van Ruitenbeeck, Phys.

Rep. 377, 81 �2003�.
21 H. Itoh, J. Phys. D 40, 1228 �2007�.
22 S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando,

Appl. Phys. Lett. 89, 042505 �2006�.
23 J. Callaway and C. S. Wang, Phys. Rev. B 16, 2095 �1977�.
24 T. Nautiyal and S. Auluck, Phys. Rev. B 34, 2299 �1986�.
25 On-line database of electronic structures available at https://

caldb.nims.go.jp/
26 N. Tezuka and T. J. Miyazaki, J. Magn. Magn. Mater. 177-181,

1283 �1998�.
27 S. M. Sze, Physics of Semiconctor Device �Wiley, New York,

1981�.
28 M. Popinciuc, H. T. Jonkman, and B. J. van Wees, J. Appl. Phys.

101, 093701 �2007�.
29 J. S. Moodera, J. Nowak, L. R. Kinder, P. M. Tedrow, R. J. M.

van de Veerdonk, B. A. Smits, M. van Kampen, H. J. M.
Swagten, and W. J. M. de Jonge, Phys. Rev. Lett. 83, 3029
�1999�.

30 J. S. Moodera and J. Mathon, J. Magn. Magn. Mater. 200, 248
�1999�.

31 F. Greullet, C. Tiusan, F. Montaigne, M. Hehn, D. Halley, O.
Bengone, M. Bowen, and W. Weber, Phys. Rev. Lett. 99,
187202 �2007�.

32 S. Yuasa and D. D. Djayaprawira, J. Phys. D 40, R337 �2007�.

H. G. SILVA AND Y. G. POGORELOV PHYSICAL REVIEW B 78, 094428 �2008�

094428-8


