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Classical Heisenberg antiferromagnets on two-dimensional kagome and three-dimensional hyperkagome
lattices are investigated by Monte Carlo simulations. For both models the symmetry-breaking states at low
temperatures are described by nonzero octupole moments or third-rank spin tensor order parameters. In the
case of the two-dimensional kagome antiferromagnet, a sharp crossover into a coplanar state takes place at
Tk�0.004J, which we attribute to proliferation of fractional vortices. The three-dimensional model exhibits a
first-order transition at Tc�0.002J into a phase with critical spin correlations, which possesses a long-range
order of octupole moments.
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I. INTRODUCTION

A two-dimensional �2D� network of corner-sharing tri-
angles known as the kagome lattice �Fig. 1� is a prototype of
geometrical frustration. The nearest-neighbor Heisenberg an-
tiferromagnet on such a lattice has an infinite number of spin
configurations minimizing the exchange energy. Both
quantum1 and classical2–8 spin models on the kagome lattice
have attracted significant theoretical interest in the past. Re-
alizations of the kagome lattice topology among magnetic
solids were initially rather scarce, with the prime example
being SrCr8−xGa4+xO19.

9,10 In the last few years a significant
number of new magnetic compounds that are believed to be
related to the kagome lattice antiferromagnet have been syn-
thesized and studied.11–21 Often these materials suffer from
substitutional disorder, are affected by small structural devia-
tions from the ideal kagome network, or have extra interac-
tions, which lift the magnetic degeneracy. Nevertheless, re-
cent neutron-scattering experiments on powder samples of
large-S kagome materials, Y0.5Ca0.5BaCo4O7 �Ref. 19� �S
=3 /2� and deuteronium jarosite21 �S=5 /2�, have demon-
strated remarkable similarity between the measured diffuse
intensities and the Monte Carlo results for the classical
model.7 Motivated by these two seemingly good realizations
of the classical kagome antiferromagnet, we reinvestigate in
the present work the finite-temperature properties of this
model. In particular, we consider the angular dependence of
magnetic correlations, which can be measured in neutron-
diffraction experiments on single crystals.

A second source of motivation is provided by the recent
discovery of a three-dimensional �3D� array of corner-
sharing triangles in a spin-1/2 Mott insulator Na4Ir3O8.22

Due to similarity with its 2D counterpart, this lattice struc-
ture has been coined a hyperkagome lattice. A network of
triangles with similar topology is also known to exist in ga-
dolinium gallium garnet, Gd3Ga5O12 �Refs. 23–25� �S
=7 /2�, whose enigmatic behavior attracted a lot of theoreti-
cal efforts.26–28 Though the magnetic properties of both sys-
tems may be quite distant from those of the nearest-neighbor
classical model, in the former case due to quantum effects
and in the latter material due to strong dipolar interactions, it
is still important to understand the properties of the classical
antiferromagnet as a starting reference point. Furthermore,

recent Monte Carlo simulations29 have found evidence for an
interesting low-temperature phase transition for the hyper-
kagome antiferromagnet.

The classical ground states of the Heisenberg kagome lat-
tice antiferromagnet are derived from the block representa-
tion of the spin Hamiltonian

Ĥ = J�
�ij�

Si · S j =
J

2�
�

�S1 + S2 + S3��
2 + const. �1�

The energy is minimized by any spin configuration, which
has S�=0 for every triangular plaquette. This classical con-
straint is satisfied for infinitely many configurations includ-
ing planar and nonplanar states. Chalker et al.2 argued that
coplanar spin states are selected by thermal fluctuations via
the order by disorder effect. They also related an asymptotic
selection of the spin plane with development of the nematic
order30,31 in spin chiralities defined as

� =
2

3�3
�S1 � S2 + S2 � S3 + S3 � S1� �2�

for each triangular plaquette. The published Monte Carlo
data seem to confirm this prediction2,7 and the corresponding
point of view prevails now in the literature on frustrated
magnets.

Below we present arguments that such a description is
incomplete and the low-temperature state of the classical

FIG. 1. �Color online� Section of the kagome lattice with spins
in the fully ordered �3��3 structure.
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kagome antiferromagnet should be described by a third-rank
tensor or octupolar order parameter. Such a proposal was
first put forward a long time ago,5,6,8 though no numerical
results were presented to substantiate this idea. The differ-
ence between the broken symmetries for the two types of
order parameters is important for topological classification of
point defects in the kagome antiferromagnet. Topologically
stable defects or vortices play a significant role in low-
temperature transformations of 2D geometrically frustrated
magnets and may lead to topological phase transitions32

and/or to an unconventional spin-glass behavior.5,6 The ana-
lytic consideration is supported in the following by extensive
Monte Carlo simulations.

The paper is organized as follows: In Sec. II the possible
tensor order parameters are considered for magnetically dis-
ordered spin systems and the presence of fractional vortices
is emphasized in the case of the classical kagome antiferro-
magnet. Section III is devoted to Monte Carlo results for the
2D kagome antiferromagnet. In particular, the specific heat
exhibits a sharp kink, which signifies formation of the copla-
nar spin state. In Sec. IV we investigate the behavior of the
3D kagome antiferromagnet and find that it shows a
fluctuation-driven first-order transition. The low-temperature
phase possesses no long-range antiferromagnetic correlations
and is described instead by an octupolar order parameter.

II. SPIN TENSOR ORDER PARAMETERS

A. Symmetry analysis

Let us first recall the arguments for the order by disorder
effect in the kagome antiferromagnet.2,4,5 Similar discussion
for the hyperkagome antiferromagnet is postponed until Sec.
IV. The classical constraint S�=0 for one triangular
plaquette is satisfied by a 120° spin structure. Once the ori-
entation of the three sublattices is chosen for the first
plaquette, all lowest-energy coplanar configurations can be
identified with the ground states of the three-state Potts an-
tiferromagnet or, equivalently, with coloring all sites of the
kagome lattice into three colors, such that no two neighbor-
ing sites have the same color. There are 1.134 71N such states
with N as the number of lattice sites.33 The manifold of co-
planar states contains two simple periodic structures: the q
=0 state, in which all triangles pointing up ��� or down ���
are in the same state, and the �3��3 structure, which is
shown in Fig. 1 and is described by the wave vector Q
= �4� /3a ,0�, a being the lattice constant. The q=0 state has
the same chiralities for up and down triangles, while in the
�3��3 structure chiralities alternate between � and �
plaquettes.

Nonplanar states are constructed from planar configura-
tions by identifying various closed or open two-color lines.
In the �3��3 state, these are represented by hexagonal
loops; see Fig. 1. Nearest neighbors off such a line are nec-
essarily spins of the third color. Spins on the line can be
continuously rotated about the direction determined by the
third sublattice. The obtained spin fold �also called weather-
vane mode� retains the 120° spin orientation and costs, there-
fore, no energy. Rotation by � returns spins back into a
single plane, creating a new coplanar state.

The harmonic analysis2,5 indicates that coplanar states are
selected at low temperatures because they have the largest
number of soft excitations. The harmonic excitation spectra
are identical for all coplanar configurations. Hence, selection
of a specific translational pattern, if any, occurs due to
weaker nonlinear effects. Therefore, there should be a range
of temperatures where selection of the spin plane is not ac-
companied by a wave-vector selection. The heat capacity in
this regime is equal to C=11 /12 per spin.2 The spin plane is
specified by its normal �Eq. �2�	, which for a general
chirality-disordered coplanar state selects a line without di-
rection. The corresponding order parameter is a second-rank
traceless tensor:30,31

Q�
�� =

1

N�
�

p

�p

��p
� −

1

3
�p

2���� , �3�

where the summation extends over all triangular plaquettes.
A simpler form of the nematic order parameter can be con-
structed as a sum of on-site quadrupole moments:

Q�� =
1

N
�

i

Si

�Si
� −

1

3
���� . �4�

The two order parameters �Eqs. �3� and �4�	 describe the
same type of broken symmetry and it is only a matter of
convenience to choose one of them.

This is not, however, the end of the story. The coplanar
states break, in addition, the spin-rotational symmetry inside
the plane: At large distances spins do not follow any specific
translational pattern but still are chosen from the initial sub-
lattice triad. The ground states of the XY kagome antiferro-
magnet with planar spins S j = �cos � j , sin � j� have a long-
range order in wj =exp�3i� j�.4 Generalization to Heisenberg
spins is given by an on-site octupole moment expressed as a
symmetric third-rank tensor,

Ti
��� = Si

�Si
�Si

� −
1

5
Si

���� −
1

5
Si

���� −
1

5
Si

����, �5�

with vanishing trace over any pair of indexes. The uniform
long-range order of such octupoles is described by nonzero
values of

T��� =
1

N
�

i

�Ti
���� , �6�

where �¯� denotes thermodynamic averaging. The tensor
T��� has in total seven independent components, as follows
from its symmetry and tracelessness. Note that a similar du-
ality in the choice between the two tensor order parameters
exists for liquid crystals consisting of bent-core
molecules.34,35 A complete characterization of the orienta-
tional order in such systems requires definition of a third-
rank tensor order parameter in addition to the more familiar
nematic tensor. Different forms of third-rank spin tensors
have been discussed in the literature.5,8,36,37 For classical
spins all of them are equivalent to Eq. �5�, the latter form
being more convenient for numerical simulations.

The order parameters T��� and Q�� transform according
to different irreducible representations of the rotation group
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SO�3� corresponding to the angular momenta l=3 and l=2,
respectively. This does not mean, however, that octupole and
quadrupole moments cannot coexist below the critical point.
The two order parameters are coupled by a rotationally in-
variant term in the free-energy functional

	FQT � Q��T�
�T�
�. �7�

Due to time-reversal symmetry, the octupole moment has
zero average value in the nematic phase. In contrast, an in-
stability driven by T��� also induces a nonvanishing quadru-
polar tensor unless �T�
�T�
��=���. Since the ensemble of
coplanar state is described by nonzero values of both tensors,
the primary order parameter for the kagome antiferromagnet
is the octupole moment �Eq. �6�	. The quadrupole moment in
this case is only a secondary order parameter. In the nomen-
clature of phase transition theory, the low-T state of the
kagome antiferromagnet can be called “improper spin nem-
atic.” Numerical data in support of the above conclusion are
presented in Sec. III B.

Possible symmetries of a uniform octupolar state are de-
duced by minimizing the Landau free-energy functional:

FT = rT���T��� + u�T���T����2 + vT���T��
T���T�
�.

�8�

For v�0, the stable phase has D3 symmetry, whereas for v
0, it is invariant under tetrahedral point group.34,35 The
low-temperature state of the kagome antiferromagnet is,
naturally, identified with the D3-symmetric “triatic” state: D3
spin rotations permute three spin sublattices and transform
one translationally disordered coplanar state into another one
from the same ensemble. The spin tensor for the triatic state
can be parametrized as

T��� � �l�l�l� − l�m�m� − m�l�m� − m�m�l�� �9�

with two orthogonal unit vectors l and m lying in the spin
plane. The “tetrahedratic” phase �v0� is not realized in the
present spin model. Note that interaction term �7� vanishes in
the tetrahedratic state. Hence stabilization of the triatic phase
can be ascribed to a strong coupling between the octupolar
and the nematic order parameters in the kagome antiferro-
magnet.

For 2D Heisenberg antiferromagnets the true long-range
order is impossible at any finite temperature. The above dis-
cussion applies in this situation to a symmetry of spin corre-
lations at short distances. For distances larger than the cor-
relation length, r��, order parameters �3�–�6� vanish and
one has to consider instead the generalized susceptibilities
�V=N�V2� /T, with V=Q�� and T���. The lattice-averaged
squares of the two spin tensors, which are directly measured
in Monte Carlo simulations, are

�Q���2 =
1

N2�
i,j
��Si · S j�2� −

1

3
� �10�

and

�T����2 =
1

N2�
i,j
��Si · S j�3� −

3

5
�Si · S j�� . �11�

At zero temperature, in the fully ordered triatic phase �the
ground state of the three-state Potts model�, the above ex-
pressions yield the following limiting values: ��Q���2�=1 /6
and ��T����2�=1 /4.

B. Topological analysis

A state with ordered octupole moments also exhibits non-
trivial topological properties.38 The order-parameter space of
the kagome antiferromagnet is obtained as a coset space R
=SO�3� /D3. It has the non-Abelian homotopy group �1�R�
=D6. The symmetry of the octupolar phase allows, therefore,
the presence of stable topological defects. It is instructive to
compare the topological properties of the kagome antiferro-
magnet with those of its weakly frustrated counterpart, the
triangular lattice antiferromagnet. The latter spin system is
conventionally ordered into the 120° spin state, which breaks
completely the rotational symmetry. The long-range transla-
tional order leaves no discrete symmetries of the spin struc-
ture. As a result, the degeneracy space of the order parameter
is R=SO�3� and point defects are Z2 vortices: �1�SO�3�	
=Z2.32 A possible realization of Z2 vortex is shown in Fig.
2�a� and corresponds to a pattern with all spins lying on a
common plane and performing a 2� rotation around the vor-
tex center. Equivalently, it can be represented as rotation of
equilateral triangles with distinguishable vertices.

For a coplanar state of the kagome antiferromagnet, spin
folds permute three spin sublattices and the slow spatial
variations of the magnetic order parameter are represented by
a texture of equilateral triangles with equivalent vertices. An
elementary point defect is, consequently, a fractional vortex
with �2� /3 rotation around the vortex core; see Fig. 2�b�.
These 1/3 vortices are known to reduce substantially the
Kosterlitz-Thouless transition temperature in the XY kagome
antiferromagnet.39,40

In Heisenberg magnets topological defects may have a
more complicated nonplanar structure. Simple hydrodynamic
arguments suggest that the nonplanar Z2 vortex in the trian-
gular antiferromagnet has a lower energy compared to the
planar vortex in Fig. 2�a�.32 The same line of arguments ap-

(a) (b)

FIG. 2. �Color online� Stable topological defects in noncollinear
Heisenberg antiferromagnets. The three-sublattice 120° spin struc-
ture is locally represented by orientations of equilateral triangles.
Two examples of the spin texture correspond to �a� Z2 vortex in the
triangular lattice antiferromagnet with the winding number n= +1
and �b� fractional vortex in the kagome antiferromagnet with n=
+1 /3.
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plies also to defects in the kagome antiferromagnet. In addi-
tion, the hydrodynamic energy of 1/3 vortices is further re-
duced by a factor of 1/9 due to the smaller phase winding. As
a result, entropic generation of fractional vortices in the
kagome antiferromagnet starts at significantly lower tem-
peratures than a similar effect for Z2 vortices in the triangular
antiferromagnet. A possible role of the non-Abelian topologi-
cal defects in the kagome antiferromagnet was brought to
attention in Ref. 5 and will be further discussed in Sec. III B.

III. KAGOME ANTIFERROMAGNET

A. Monte Carlo algorithm

The published Monte Carlo data for the nearest-neighbor
Heisenberg antiferromagnet on the kagome lattice were per-
formed on relatively small clusters of N=3L2 spins with L
�24 �N�1728�.2,4,7 Numerical results in the present work
have been obtained for a substantially wider range of lattices
with L=12–72. The standard Metropolis algorithm has been
adopted. A site on a periodic cluster is randomly picked up
and a new orientation of spin is chosen. The new direction is
accepted according to the Metropolis rejection scheme. To
increase acceptance rate a maximum variation 	Sz=T on a z
component of spin in the local coordinate frame is imposed
at low temperatures. In this way the acceptance rate stays
close to 50% in the whole temperature range. A sweep over
the lattice in which on average every spin is attempted to
move corresponds to one Monte Carlo �MC� step.

For the Heisenberg kagome antiferromagnet the slowing
down develops into a serious problem at low temperatures
T /J0.01. The autocorrelation time can be further reduced
by using the microcanonical over-relaxation algorithm.41

Generally, for Heisenberg models the over-relaxation move
consists in successive rotations of spins around their respec-
tive local field by an arbitrary angle such that the total energy
remains unchanged. The simplest and most efficient realiza-
tion corresponds to a � rotation, i.e., flipping a spin to the
most distant direction from the initial one.42 Implementation
of such a spin move requires neither generation of random
numbers nor calculation of trigonometric functions, which
saves significant operation time. Lattice scans can be per-
formed with random or sequential selection of spins. We find
that collective motion of spins is generated more efficiently
in the latter procedure, yielding faster decorrelation. Finally,
one hybrid MC step consists of one canonical MC step fol-
lowed by a few microcanonical nonrandom updates. Such
deterministic reshuffling of spins is essential for reducing
autocorrelation times at low temperatures. Typically we use
between three and ten over-relaxation updates per one MC
step depending on cluster size.

Each finite cluster was initiated with a random spin con-
figuration and gradually cooled to the lowest temperature
T /J=10−4. At every temperature 5�104 hybrid MC steps
were allowed for equilibration, which were followed by mea-
surements ��5�105� performed in intervals of five hybrid
MC steps. In addition, all measured quantities have been
averaged over 20–50 cooling runs, starting from different
random configurations. This further helps to overcome a
freezing problem and also provides an unbiased estimate of

the statistical errors. Unless otherwise specified, the error
bars do not exceed the symbol sizes. Special checks have
been performed to verify that the hybrid MC algorithm
works efficiently in the relevant temperature range when in-
stead of gradual cooling we start from either a random spin
configuration or the ordered �3��3 structure. Full thermal
equilibration of the q=0 ground state was achieved only for
T /J�0.002, which is still significantly better than in the pre-
vious studies.2,7

B. Macroscopic properties

Let us begin with the heat capacity, which has been com-
puted from fluctuations of the internal energy, C= ��E2�
− �E�2� /T2. The temperature dependence of C�T� on a linear-
logarithmic scale is shown in Fig. 3 for a cluster with L
=36. One can clearly distinguish three different regimes for
the specific heat with the two crossover points indicated by
vertical arrows. The high-temperature regime T /J�0.1 cor-
responds to a paramagnetic phase with only weak correla-
tions between neighboring spins. In the intermediate regime
0.005�T /J�0.1, the internal energy reaches its classical
minimum value E /N=−J up to a small contribution from
thermal fluctuations. Spins on triangular plaquettes become
strongly correlated and satisfy approximately the constraint
condition S�=0. This regime is commonly known as a clas-
sical spin liquid or a cooperative paramagnet.43 The specific
heat in the cooperative paramagnetic state remains close to
C /N=1, which reflects the absence of soft modes in the ex-
citation spectrum.

Selection of smooth, locally coplanar spin configurations
takes place at T /J�0.005 as indicated by a reduced specific
heat. The probability distribution peaks in the vicinity of
coplanar ground states, which have one zero �anharmonic�
mode for every hexagon. The limiting value C /N �T→0 coin-
cides quite accurately with 11 /12=0.916. . . predicted by the
mode counting analysis.2
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FIG. 3. �Color online� Temperature dependence of the specific
heat for a kagome lattice cluster with L=36. The horizontal arrow
denotes the value C /N= 11

12. The two vertical arrows indicate bound-
aries between three different regimes.
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The enlarged low-temperature part of C�T� is shown in
Fig. 4 for several cluster sizes. Two features are noteworthy.
First, the crossover between a planar spin state and a coop-
erative paramagnet corresponds to a rather sharp kink in
C�T� at around Tk /J=0.004�0.0005. At TTk the specific
heat grows linearly with temperature, which can be ac-
counted for by interaction between the spin waves. Second,
the specific heat exhibits a peculiar finite-size behavior in the
vicinity of the kink point, showing a rounded peak on small
clusters, which disappears for L�30 with no significant
finite-size corrections afterward.

The temperature dependence of the mean square of the
octupole moment is shown in Fig. 5�a�. Large clusters ex-
hibit a clear enhancement of the order parameter below
Tk /J�0.004, which coincides with a kink position in the
specific heat. At low temperatures, ��T����2� approaches 1/4,
which is the limiting value for the fully ordered coplanar
phase. The octupolar susceptibility

�T =
1

TN
�
i,j

�Ti
���Tj

���� �12�

is presented in Fig. 5�b�. For each cluster there is an inflec-
tion point TL

� below which the correlation length �T becomes
on the order of the linear lattice size, �T�L, and the suscep-
tibility begins to exhibit finite-size effects. The lattice-
independent part of �T diverges as T→0, signaling a long-
range-ordered state at T=0. The fast increase in �T�T� at low
temperatures is consistent with a typical divergence �T�T�
�ATn exp�B /T� found from the nonlinear sigma model
mapping,44 though no specific predictions for A, B, and n
exists for the kagome antiferromagnet. Note that a rapid
crossover in the behavior of �T�T� takes place in the vicinity
of T /J�0.005.

The behaviors of the two order parameters T��� and Q��

are compared in Fig. 6. The octupole moment shows a faster
growth with decreasing temperature, which would corre-
spond to a larger exponent if a second-order transition is
assigned to Tk. Figure 6 illustrates our previous conclusion
that the octupolar order parameter drives the low-
temperature transformation in the kagome antiferromagnet.

Finally, we investigate the elastic properties of the
kagome antiferromagnet by computing the temperature de-
pendence of the spin stiffness. The spin stiffness �s is defined
as the second derivative of the free energy with respect to
weak nonuniform twist of spins performed about a certain
direction � in spin space:

	F =
1

2
� d2r�s�����r�	2. �13�

Substituting �i
�=���ê ·ri� for the twist angle and taking the

limit ��→0, we obtain the following expression after proper
symmetrization and normalization per unit area:

�s = −
�3

2N�1

3
�E� +

J2

T ���ij� �Si � S j���ê · �ij��2�� ,

�14�

where �E� is the internal energy and ê is an arbitrary unit
vector on the lattice plane.

Numerical results for �s�T� are presented in Fig. 7 for
three system sizes. The spin stiffness vanishes at tempera-
tures above T /J�0.005. This further supports identification
of the intermediate phase at 0.005�T /J�0.1 with the coop-
erative paramagnet, which has well developed local spin cor-
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FIG. 4. �Color online� Finite-size behavior of the specific heat in
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��
��

�
�����

��
��
���

���
���

�
��
����

����
����
����
����

����
����
����

����
��
��
����
����
��
��
����
��
��
����
��
��
������
��

��
����
��
��
��
��
����
��
��
��
�
�
��
����
��
��
��
��
��
��
������
��

0 0.002 0.004 0.006 0.008

T/J

0

0.05

0.1

0.15

0.2

0.25

(T
αβ

γ )2

L = 12
L = 18
L = 24��

��
�
�

L = 36
L = 48

��
����

��
��
������

����
��

��
����

����
����

��
��
����

��
��
����

����
����
����

���
�

��
���
�

��
��
��
����

��
��
��
��
��
��
��
��
������
��
��
��
��
��
��
��
�
�

��
��
��
��
��
��
��
������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�����

�����
������

����
����

����
��
��

��
����

��
��

��

��

��
��

�
�

��
���
���

�����
�

��
����
��
��
��

0 0.005 0.01 0.015 0.02
T/J

10

100

1000

T
χ T

L = 12
L = 18
L = 24�

�
�
�

L = 36
L = 48
L = 72�

�
�
�

(b)

(a)
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tupolar order parameter and �b� the corresponding susceptibility for
different cluster sizes.
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relations but exhibits zero response to long-wavelength per-
turbations. The spin rigidity starts to increase at T /J
�0.004 simultaneously with the development of short-range
octupolar correlations. Finite-size scaling in the low-
temperature regime still yields �s=0 as it should be for a 2D
Heisenberg spin system.

The origin of the sharp crossover in various properties of
the kagome antiferromagnet at T�Tk�0.004J deserves spe-
cial attention. The possible phase transition in 2D continuous
non-Abelian models driven by nontrivial topological defects
has been discussed in the context of two different physical
applications. The first group of works motivated by investi-
gation of liquid crystals has studied the RP2 model in two
dimensions, which in the spin language corresponds to a
model of three-component spins on a square lattice coupled
with ferrobiquadratic exchange.45–48 The order-parameter
space is the projective sphere RP2=S2 /Z2 with the first ho-
motopy group �1�RP2�=Z2. The topological defects in this
context are called disclinations. Independently, the role of
topological defects was emphasized for 2D noncollinear
Heisenberg antiferromagnets.32,49–53 The order-parameter
space is SO�3�=S3 /Z2 in this case and the fundamental
group is the same, �1�SO�3�	=Z2. For both types of models
a straightforward generalization of the Kosterlitz-Thouless
scenario suggests that topologically stable Z2 vortices are
bound in pairs for TTv and become free in the high-
temperature phase.32,45

Kawamura and Miyashita32 investigated numerically the
Heisenberg antiferromagnet on a triangular lattice and found
evidence for the vortex unbinding transition at Tv�0.3J. The
heat capacity exhibits a weak maximum in the vicinity of Tv.
The main difference with the standard Kosterlitz-Thouless
transition in planar spin systems is that the correlation length
remains finite both above and below Tv. This leads to a small
finite density of free defects in the low-temperature phase.
The low- and the high-temperature phases are still distin-
guished by an asymptotic behavior of the vorticity on a large
closed contour: The vorticity function changes from the pe-
rimeter law at TTv to the area law at T�Tv.32,50,52 The

renormalization-group analysis becomes, however, notori-
ously difficult since in this case it must include simulta-
neously spin waves and Z2 vortices. The precise form of a
singularity in the thermodynamic potential at such a topo-
logical transition remains unknown up to now.51

The topological properties of the kagome antiferromagnet
suggest a natural interpretation of the observed crossover in
terms of unbinding of fractional vortices. It may also provide
another example of topological transition in 2D Heisenberg
antiferromagnets. The kink anomaly in C�T� is consistent
with a cusp-type singularity in the specific heat found at the
topological transition for the RP2 model47 and for the trian-
gular antiferromagnet.32 The behavior of the spin stiffness
also agrees with the defect unbinding scenario. Similar to the
Kosterlitz-Thouless transition, free topological defects are
responsible for vanishing �s=0 above the crossover point,
whereas a much slower decrease in �s with the system size at
low temperatures is determined by spin-wave excitations.
Further numerical studies, which directly measure the den-
sity of fractional vortices and the corresponding vorticity
function, are necessary to clarify the above conjecture of
topological transition in the kagome antiferromagnet.

C. Spin correlations

The high-temperature series expansion for the kagome
antiferromagnet3 finds that the maximum in the momentum-
dependent susceptibility corresponds to the �3��3 spin
structure. A similar conclusion has been made by Huse and
Rutenberg4 from a different perspective: Spin correlations of
the three-state Potts model are dominated by the staggered
component at the wave vector of the �3��3 structure with a
power-law decay �r−4/3 at long distances. Such a purely
entropic effect derived from the mapping to the two-
component height model is related to the fact that the “flat”
�3��3 structure maximizes the number of flippable loops.
An enhancement of the antiferromagnetic correlations at low
temperatures was also seen in the Monte Carlo simulations
of the Heisenberg model.4,7

We have investigated spin correlations in the kagome an-
tiferromagnet by using the following form of the staggered
magnetization:
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FIG. 6. �Color online� Temperature dependence of the three or-
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ordered state. Numerical data are for a cluster with L=36.
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mAF
2 =

6

N2�
l,i,j

�Sli · Slj�eiQ�Ri−Rj�, �15�

where the index l numbers spins in the unit cell; i, j, and Ri,j
denote the positions of the unit cell on the triangular Bravais
lattice; and Q= �4� /3,0� is the wave vector of the �3��3
structure. The lattice constant, which is twice the intersite
spacing, is chosen as the length unit. The normalization fac-
tor gives mAF

2 =1 in the fully ordered structure. The tempera-
ture dependence of the antiferromagnetic order parameter for
several lattice sizes is presented in Fig. 8. Using the loop-flip
algorithm,4 we have also measured the antiferromagnetic or-
der parameter for the three-state Potts antiferromagnet at T
=0. The corresponding values are shown in Fig. 8 by the
horizontal arrows.

Spin correlations may also yield sharp signatures in the
static magnetic structure factor S�q�:

S�q� =
1

N
�
i,j

�Si · S j�eiq�ri−rj�, �16�

where ri is a spin position on the 2D plane. The energy
integrated neutron-scattering cross section is proportional to
the instantaneous spin correlator �Eq. �16�	 and provides an
experimental tool for its measurement. Previous numerical
works on the kagome antiferromagnet have considered only
the powder-averaged structure factor.7,21

In the whole range of temperatures the antiferromagnetic
order parameter has much smaller values than the octupole
or quadrupole moments; see also Fig. 6. The enhancement of
mAF

2 observed at T /J�0.01 on small systems4,7 is signifi-
cantly suppressed for larger clusters. For every lattice size L
there is a characteristic temperature below which the ampli-
tude of the �3��3 correlations becomes larger than the cor-
responding correlations in the ground state of the three-state
Potts antiferromagnet. This happens because the �-folds
dressed with short-wavelength fluctuations acquire a finite
linear tension, whereas loops of all lengths are flipped with
equal probability in the three-state Potts model. Still, the

enhancement relative to the three-state Potts model is pro-
gressively shifted to lower temperatures with increasing clus-
ter size and in the end might be a finite-size effect.

Explicit comparison of spin correlations in the Heisenberg
antiferromagnet and the three-state Potts model is presented
in Fig. 9 for a lattice with L=48. A similar plot is given in
Fig. 5 of Ref. 4. Once the difference in the length scales is
taken into account, the previously studied cluster corre-
sponds to L=12 in our notations. At T /J=0.005, the spin
correlations on the L=12 lattice approach or even exceed the
amplitudes of the Potts model,4 which is consistent with the
enhancement of the staggered magnetization shown in Fig. 8.
On the other hand, the correlations for the L=48 cluster at
the same T fall consistently below the Potts model ampli-
tudes; see Fig. 9. There is, therefore, a fundamental differ-
ence between the low-temperature behaviors of the spin ten-
sor order parameters and mAF. While the octupole
susceptibility exhibits an exponential growth as T→0, which
signifies a finite value of the order parameter at T=0, the
staggered susceptibility �AF has a much weaker increase,
which for available system sizes does not exceed the corre-
sponding values of the three-state Potts antiferromagnet.

Over the last several years it has been established that
certain 2D and 3D classical spin models governed by local
constraints exhibit critical behavior with power-law decay of
spin correlations at long distances.4,54–59 A widely discussed
consequence in application to the pyrochlore antiferromagnet
is a “bowtie” shape of the magnetic structure factor with
pinch points in certain high-symmetry directions.58–60 Ex-
pansion around the large-N limit for a O�N�-symmetric spin
model on the kagome lattice also yields a 1 /r2 decay law for
spin correlations with similar bowtie features in S�q�.55 It is,
therefore, interesting to compare magnetic intensities in the
three different temperature regimes of the Heisenberg
kagome antiferromagnet �Fig. 3� with the above predictions.
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FIG. 8. �Color online� Temperature dependence of the antiferro-
magnetic order parameter for different cluster sizes. Horizontal ar-
rows indicate corresponding values in the ground state of the three-
state Potts model.
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The magnetic structure factor has been calculated for the
kagome lattice cluster with L=24 at four different tempera-
tures. The obtained results are shown in Fig. 10 as intensity
plots on a square slice in the reciprocal space with the ex-
tension from 0 to 8� in both directions. The highest tempera-
ture T /J=0.5 corresponds to the paramagnetic state, where
thermal fluctuations are strong and the magnetic intensity has
only a broad structure in the momentum space. In the coop-
erative paramagnetic state at T /J=0.1, the pinch points de-
velop between triangular shaped regions of strong intensity.
In the vicinity of the pinch point S�q� has a nonanalytic form
due to long-distance spin-spin correlations with dipolarlike
angular anisotropy.55,58,59 Upon cooling to a lower tempera-
ture T /J=0.02, the intensity is redistributed in favor of cen-
ters of the triangular regions, which correspond to Q�=2Q
= �8� /3,0� and equivalent wave vectors. These are not true
Bragg peaks: As the spin correlations fall off as r−2 in this
regime,55 the peak intensity grows logarithmically with the
system size. Note that peaks at the antiferromagnetic wave
vector Q and equivalent positions are absent.

Finally, when the coplanar correlations start to develop at
T /J=0.005, the narrow necks loose significantly in intensity,

while new satellite peaks at q=Q becomes noticeable. The
intensity maps for T /J=0.1 and 0.02 most closely resemble
the analytic result for S�q� from the large-N expansion.55

However, the magnetic intensity exhibits more structure once
the order by disorder effect selects coplanar states. The de-
velopment of extra diffuse peaks in the low-temperature re-
gime is also observed in the powder-averaged structure
factor.7,19,21 Note that the algebraic decay of spin correlations
discussed above occurs at distances smaller than the correla-
tion length. The inverse correlation length provides a natural
width for all the nonanalytic features in the magnetic struc-
ture factor S�q�.

IV. HYPERKAGOME ANTIFERROMAGNET

The best known example of 3D geometrically frustrated
lattice is a network of corner-sharing tetrahedra of the pyro-
chlore lattice; see, e.g., Ref. 61. The experimental realiza-
tions include numerous magnetic pyrochlore and spinel com-
pounds. The only example of a 3D lattice of corner-sharing
triangles was so far provided by gadolinium gallium garnet,
Gd3Ga5O12.

23,24 The recent experiment has found another in-

FIG. 10. �Color online� Magnetic structure factor of the kagome antiferromagnet in different temperature regimes. Region in the
momentum space corresponds to 0�qx,y �8�. Note, different intensity scales for high and low temperatures.
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teresting example of a 3D triangular network of magnetic
ions in Na4Ir3O8.22 The corresponding lattice structure can be
obtained by 1/4 depletion of the pyrochlore lattice such that
only three out of the four vertices of each tetrahedron are
occupied by magnetic ions; see Fig. 11. By analogy with the
kagome lattice, this structure is called the hyperkagome lat-
tice. It contains 12 spins in the standard cubic unit cell. The
garnet lattice has, in contrast, 24 spins in its cubic unit cell
and consists of two interpenetrating hyperkagome sublat-
tices. The positions of the atoms in each garnet sublattice are
different from the 1/4-depleted pyrochlore structure but the
topology of the two networks remains the same. The local
symmetry on magnetic sites is somewhat higher in the garnet
structure containing a twofold rotational axis joining centers
of adjacent triangles.

In this section we consider a classical Heisenberg antifer-
romagnet on the hyperkagome lattice. The limited applica-
bility of such a model to the above two magnetic materials
has been mentioned before. Still this model is quite interest-
ing on its own, in particular, in contrast with the more famil-
iar 2D system. The arguments given before for the infinite
degeneracy of the classical ground states of the kagome an-
tiferromagnet �Secs. I and II� are fully applicable to the 3D
model and will not be repeated here. The coplanar configu-
rations play again an important role at low temperatures. The
harmonic analysis finds N /3 zero-energy modes for the hy-
perkagome antiferromagnet out from the total 2N modes for
N classical spins.27,29 This yields the same limiting value for
the specific heat C /N �T→0=11 /12 as for the 2D model. Soft
modes reside on closed loops, which pass through at least ten
triangles.27,62

A submanifold of coplanar configurations is again
mapped to the ground states of the three-state Potts antifer-
romagnet on the hyperkagome lattice. The precise number of
such states or, equivalently, the ways of coloring sites with
three colors is not known for the 3D lattice. A local gauge
representation of the classical constraint with the
Maxwellian-type action predicts the dipolar form of the spin-
spin correlation function.29,57 Performing loop-algorithm
simulations in the ground-state ensemble of the Potts antifer-
romagnet, we indeed found a very fast decay of spin corre-
lations consistent with an r−3 dependence.

The general mode counting arguments suggest the pres-
ence of the order by disorder effect for three-component
spins on a lattice of corner-sharing triangles.61 Though the
early numerical work found no evidence of such an effect,26

the recent Monte Carlo study detected a first-order transition
at T /J�0.004.29 The authors argued in favor of a nematic
state below the transition. As we have shown in Sec. II the
full symmetry-breaking pattern in the submanifold of the co-
planar states is described by the octupolar order parameter.
The first-order nature of the transition is not surprising in this
respect as the renormalization-group analysis of Landau free-
energy functional �8� finds no stable fixed-point solution be-
low four dimensions.34

To verify the formation of the octupolar ordering in the
hyperkagome antiferromagnet, we have performed the clas-
sical Monte Carlo simulations on periodic clusters with N
=12L3 spins and L=3–6. The equilibration problem at low
temperatures in three dimensions becomes much more severe
compared to the 2D model. The published data29 show, for
example, a strong hysteresis for L�4, which clearly indi-
cates that large clusters fall out of equilibrium. We resort,
therefore, to the exchange Monte Carlo algorithm63 in con-
junction with the hybrid updates described before. We use
between 30 and 50 replicas depending on cluster size distrib-
uted in the temperature interval 0.001T /J0.02. All rep-
licas are initiated with random spin configurations, which are
equilibrated for 106 exchange MC steps. These are followed
by measurements for 5�105 MC steps. Finally, the results
have been averaged over 20 independent runs to determine
statistical errors.

The numerical data for the specific heat obtained on two
smallest clusters are presented in Fig. 12. At temperatures
below the anomaly, the specific heat approaches the value
C /N=11 /12 predicted for the coplanar state by the mode
counting analysis. The fast growth of the peak height is con-
sistent with C /N�L3 scaling expected for the first-order
transition.64

The temperature dependence of the mean square of the
octupolar order parameter is shown in Fig. 13. The transition
temperature for each cluster can be estimated at the mid-
height of the jump. The order parameter exhibits extremely
weak finite-size dependence at low temperatures, which sig-
nifies development of the true long-range octupolar ordering
in this 3D spin model. Still, a certain amount of disorder in
the low-temperature phase is evidenced by deviations of

FIG. 11. �Color online� The hyperkagome lattice as a 1/4-
depleted pyrochlore structure.
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FIG. 12. �Color online� Low-temperature specific heat of the
classical hyperkagome antiferromagnet.
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��T����2� from the limiting value of 1/4 for the fully ordered
octupolar structure. A simple scaling of the transition tem-
perature with the cluster size yields Tc /J=0.002�0.0003 for
the transition temperature. In order to locate more accurately
the point of first-order transition, one needs to simulate big-
ger lattices, which appears to be a difficult task even for the
exchange Monte Carlo algorithm.

In order to check a tendency to a long-range magnetic
ordering below Tc at a priori unknown wave vector, we have
calculated the angular-averaged structure factor:

S�q� =
1

N
�

j

�Si · S j�
sin�q�rij��

q�rij�
. �17�

The neutron-diffraction experiments on polycrystalline
samples allow one to directly measure S�q�. The results for
the L=5 cluster are presented in Fig. 14. The static structure
factor S�q� below Tc exhibits broad diffuse peaks with no
sharp features, which could point at a long-range order. We
have found only a tiny change in S�q� across the first-order
transition. Variation of temperature by 2 orders of magnitude

from T /J=0.2 to 0.002 leads only to a small increase of
�15% in the main peak intensity. A similar form of the
diffuse structure factor at high temperatures was previously
obtained in the numerical work on gadolinium gallium
garnet.25 The nearest-neighbor classical Heisenberg antifer-
romagnet on the hyperkagome lattice provides a unique ex-
ample of the long-range-ordered state of magnetic octupoles
with algebraically decaying spin-spin correlations.

Returning back to Na4Ir3O8, the recent experiment22 has
demonstrated the absence of magnetic ordering down to 2 K,
which is significantly smaller than the scale of antiferromag-
netic interactions deduced from the Curie-Weiss constant
�CW�650 K. Such a behavior is consistent with strong geo-
metrical frustration found for the nearest-neighbor hyper-
kagome antiferromagnet.26,29,62 It would be interesting to
compare the neutron-diffraction data in the spin-liquid state
of Na4Ir3O8 with the above results for S�q�. This should al-
low one, in particular, to verify the relevance of the nearest-
neighbor Heisenberg model to the real material.

V. CONCLUSIONS

We have clarified in the present work that selection of the
coplanar states in the kagome antiferromagnet is properly
described by the development of the octupolar �third-rank
spin tensor� order parameter. Our Monte Carlo simulations
yield Tk�0.004J for the onset of coplanar ordering, which is
lower than the previous estimates.2,7 Furthermore, we sug-
gest that Tk may correspond to a topological transition,
which consists in unbinding of fractional vortices. Presence
of these topologically stable point defects follows from the
nontrivial degeneracy space of the octupolar order parameter.
The antiferromagnetic �3��3 correlations are also en-
hanced at low temperatures, though the corresponding corre-
lation length remains significantly shorter than the character-
istic length scale for octupolar correlations. Our MC data for
big lattices with L�36 do not confirm the previously made
suggestion4 that the asymptotic �3��3 ordering develops in
the limit T→0. Precise numerical study of the lowest tem-
perature region T /J�10−3 definitely requires simulations on
clusters with L�72, which is impossible without new Monte
Carlo algorithms �but see also the last paragraph�.

The classical hyperkagome antiferromagnet provides a
unique example of the spin model with the long-range octu-
polar ordering. In the broken-symmetry state below a
fluctuation-induced first-order transition, spin correlations re-
main critical with a power-law decay r−3 at long
distances.29,57 It is interesting to study the phase diagram in
magnetic field for this model, in particular, in relation to the
experimental diagram of Gd3Ga5O12, which exhibits a field-
induced ordered phase.23–25

Let us finish with a few comments on the possible relation
of the topological transition to the spin-glass-like behavior
observed in some jarosites.12,13 Similar to the previous nu-
merical studies we find a very strong tendency to spin freez-
ing once the coplanar configurations are stabilized at TTv.
It is the hybrid Monte Carlo algorithm adopted in the present
work, which allows one to equilibrate large spin systems at
low temperatures. The spin reshuffling dynamics of the mi-
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FIG. 13. �Color online� Mean square of the octupolar order pa-
rameter versus temperature for the hyperkagome antiferromagnet.
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FIG. 14. �Color online� Powder-averaged magnetic structure
factor for the hyperkagome antiferromagnet. Wave vectors are
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crocanonical sweeps has no simple analog in real magnetic
materials. The kagome antiferromagnet will be, therefore,
stuck in one of the many degenerate coplanar states with
frozen structure of chirally ordered domains. Rotation of
spins along spin folds is suppressed due to development of
free-energy barriers of the entropic origin.2,5,6 Above the to-
pological transition, when thermally excited vortices destroy
the common plane and remove the entropic barriers, the
single spin-flip dynamics becomes effective again. The
above ideas for the unconventional spin-glass transition were
pioneered by Ritchey and co-workers.5,6 The results of our
work put emphasis on a hidden topological transition behind

a spin-glass freezing in geometrically frustrated magnets.
Though the corresponding temperature scale comprises only
a small fraction of �CW for the Heisenberg antiferromagnet,
intrinsic XY anisotropies in real materials can significantly
enhance Tv by transforming it to the Kosterlitz-Thouless
transition for 1/3 vortices.
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