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We consider spin-orbit coupling effects in Na4Ir3O8, a material in which Ir4+ spins form an hyper-kagome
lattice, a three-dimensional network of corner-sharing triangles. We argue that both low-temperature thermo-
dynamic measurements and the impurity susceptibility induced by dilute substitution of Ti for Ir are suggestive
of significant spin-orbit effects. Because of uncertainties in the crystal-field parameters, we consider two limits
in which the spin-orbit coupling is either weak or strong compared to the noncubic atomic splittings. A
semi-microscopic calculation of the exchange Hamiltonian confirms that indeed large antisymmetric
Dzyaloshinskii-Moriya �DM� and/or symmetric exchange anisotropy may be present. In the strong spin-orbit
limit, the Ir-O-Ir superexchange contribution consists of unfrustrated strong symmetric exchange anisotropy,
and we suggest that spin-liquid behavior is unlikely. In the weak spin-orbit limit, and for strong spin-orbit and
direct Ir-Ir exchange, the Hamiltonian consists of Heisenberg and DM interactions. The DM coupling is
parametrized by a three-component DM vector �which must be determined empirically�. For a range of
orientation of this vector, frustration is relieved and an ordered state occurs. For other orientations, even the
classical ground states are very complex. We perform spin-wave and exact diagonalization calculations, which
suggest the persistence of a quantum spin liquid in the latter regime. Applications to Na4Ir3O8 and broader
implications are discussed.
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I. INTRODUCTION

Geometrically frustrated antiferromagnetism is a rich sub-
ject enjoying considerable theoretical and experimental at-
tention over several decades of research.1,2 Such systems are
realized by materials containing magnetic ions in which the
strongest antiferromagnetic exchanges occur on a network of
bonds containing many triangular units. The most celebrated
examples are the two-dimensional kagome �corner-sharing
triangles� lattice and three-dimensional pyrochlore �corner-
sharing tetrahedron� lattice. In ideal classical models, these
lattices support highly degenerate ground states, which pre-
vent order down to very low temperature. Instead, the spins
continue to fluctuate strongly despite significant correlations
induced by the frustrated interactions. Systems in this regime
are dubbed �classical� spin liquids or cooperative paramag-
nets. A major goal in the field is to ascertain whether such
spin liquids might also occur even in the zero-temperature
limit, in which both quantum effects and many nonideal fea-
tures of the materials must be taken into account. The answer
to this question is quite subtle due to many competing effects
that can come into play. Quantum and thermal fluctuations
may break the ground-state degeneracy and actually induce
magnetic order, an effect known as order by disorder.3–6 This
effect, however, is understood theoretically only in the large
spin �S�1� limit, in which spins behave semiclassically.
Nevertheless, some models even with the smallest possible
spins, S=1 /2, seem at least qualitatively to follow the order-
by-disorder scenario. Conversely, in other models with small
spin, quantum spin liquids have been shown to occur. No
general theory to predict which of these two tendencies oc-
curs exists at present.

Despite this lack of theoretical discrimination, experimen-
talists have forged onward in recent years, uncovering a

number of promising candidate quantum spin liquid materi-
als with small spin S=1 /2 on geometrically frustrated lat-
tices. These include an organic magnet, �-�ET�2Cu2�CN�3,
containing spin-1/2 moments on a slightly spatially aniso-
tropic triangular lattice ZnCu3�OH�6Cl2, an inorganic realiza-
tion of a spatially isotropic spin-1/2 kagome antiferromagnet,
and very recently the cubic material Na4Ir3O8, which realizes
an hyper-kagome antiferromagnet, in which spin-1/2 mo-
ments reside on a three-dimensional network of corner-
sharing triangles7—see Fig. 1. None of these compounds ex-
hibit indications of magnetic ordering. The interpretation of
the first two materials, however, is complicated by the ap-
pearance of inhomogeneous magnetic moments at low tem-
perature in �-�ET�2Cu2�CN�3,8 and by fairly high levels of
substitutional disorder �Zn for Cu� in ZnCu3�OH�6Cl2. By
contrast, the Ir4+ moments are expected to be well ordered in
Na4Ir3O8 due to the much larger ionic radius of Ir compared
to Na and O.

Two recent works9,10 assumed a nearest-neighbor antifer-
romagnetic Heisenberg model for Na4Ir3O8. In Ref. 9, the
authors treated the spins as classical O�N� vectors. In Ref.
10, the authors employed a large-N Sp�N� method. We will
discuss the results of these papers in relation to our own in
Sec. VII.

The principal objective of this paper is to take a step back
and reconsider the appropriate model for Na4Ir3O8. Due to
the large atomic number �Z=77� of Ir, however, we must
carefully treat spin-orbit coupling, whose leading effect in
localized S=1 /2 electron systems is the Dzyaloshinskii-
Moriya �DM� interaction in the weak spin-orbit coupling
limit. In fact, DM interactions have been argued to play an
important role even in ZnCu3�OH�6Cl2, with much less rela-
tivistic Cu �Z=29� moments.11 The DM interaction reduces
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the full SU�2� spin-rotational invariance of the Heisenberg
Hamiltonian to the Z2 discrete time-reversal symmetry �in
addition to coupling spin transformations to the discrete
point-group operations of the lattice�. On general grounds,
this is expected to lower the degeneracy of the classical
ground-state manifold. However, depending upon the de-
tailed form of the DM coupling, varying degrees of degen-
eracy remain, indicative of different amounts of frustration.
The tendency of the system to retain the order of the classical
ground state is certainly also variable, and warrants investi-
gation. This is one of the motivations of the present study.

Another motivation comes directly from the experiments
in Ref. 7, several aspects of which are suggestive of the
presence of spin-orbit coupling. First, the “Wilson ratio” R
=T� /cv is observed to grow with cooling at low temperature,
following a power law R�1 /T�−1, with 2���3. Here �
�const is the magnetic susceptibility and cv�T� is the spe-
cific heat. As will be discussed in Sec. II, such a low-
temperature behavior is incompatible with any spin-
rotationally invariant phase of matter supporting well-
defined quasiparticle excitations. To our knowledge, it is at
odds with all known theoretical models of quantum spin liq-
uids, and seems highly unlikely on general grounds. Taking
into account the observed field independence �up to 12 T� of
the specific heat cv brings the behavior even further into
disagreement with spin-rotationally invariant theories. Sec-
ond, samples in which a fraction x of Ir atoms are substituted
by Ti �which are in a no-magnetic Ti4+ state� display a Curie
component in the susceptibility linearly proportional to x
with a strongly suppressed amplitude, of approximately 1/3
of a spin-1/2 moment per Ti. As we also show in Sec. II B,
such behavior is also at odds with any simple spin-
rotationally invariant low-temperature phase �assuming no
clustering of the Ti atoms�, though some more exotic. All
these observations, however, are readily reconciled by as-
suming the presence of spin-rotational symmetry breaking.
Given the lack of any observed magnetic ordering, explicit

and substantial spin-orbit interactions would appear to be a
likely candidate.

In Sec. III, we consider an explicit semi-microscopic cal-
culation of the exchange Hamiltonian in the presence of
spin-orbit coupling. We consider both superexchange
through the intermediate O atoms, and direct exchange be-
tween closest pairs of Ir spins. The results depend crucially
upon the relative magnitude of the spin-orbit coupling con-
stant � and the noncubic splittings of the t2g multiplet. This is
quantified by two dimensionless ratios of � to the two energy
splittings �2−�1 and �3−�1 of the orbital levels in the ab-
sence of spin orbit. When � is the largest energy scale—the
“strong spin-orbit limit”—the “spin” has a substantial orbital
angular momentum component, while in the opposite “weak
spin-orbit limit,” it is predominantly microscopic spin angu-
lar momentum. Indeed, the g factor has opposite sign in the
two limits. Which if either limit applies is the most funda-
mental physical question to be understood concerning the
nature of magnetism in Na4Ir3O8. We are not aware of any
calculations or direct experimental measurements that indi-
cate whether Na4Ir3O8 is in the weak or strong spin-orbit
limits, or intermediate between these situations. Instead we
will address this question by comparing the expected phe-
nomenology for the two cases to experimental observations.

In the strong spin-orbit limit, when the dominant mecha-
nism is Ir-O-Ir superexchange, we find a highly anisotropic
effective spin Hamiltonian, in which two spin components
on each bond interact antiferromagnetically while the third
interacts ferromagnetically. Specifically,

H = �
�ij�

J�ij
	Si
	Sj
	, �1�

where ��ij
x ,�ij

y ,�ij
z � is a permutation of �+1, +1,−1� chosen

appropriately for each bond �see Sec. III F� to specify the
two antiferromagnetic and one ferromagnetic direction. We
call Eq. �1� the “strong anisotropy” Hamiltonian.

Somewhat surprisingly, the remaining three cases—strong
spin orbit and direct exchange, weak spin-orbit and superex-
change, or direct exchange—all lead to approximately iso-
tropic Heisenberg interactions. For the weak spin-orbit limit,
this is guaranteed, but it is certainly not in the strong spin-
orbit case. The dominant spin-rotational symmetry-breaking
effect, which is perturbative in all three regimes, is the DM
interaction. The effective Hamiltonian has the form

H = �
�ij�

�JSi · S j + Dij · �Si
 S j�� . �2�

Here J is the same for all bonds, and estimated as J
	400 K from the measured Curie-Weiss temperature �CW
	−650 K. Symmetry strongly restricts the structure of this
effective magnetic Hamiltonian for hyper-kagome. The full
set of DM vectors Dij may be fixed by just three parameters.
That is, Dij on any one bond is arbitrary �by symmetry�, but
that choice determines all remaining Dij in the system. It
is convenient to choose the local coordinate system
�D1 ,D2 ,D3�, where D1 is the component aligned with the
bond, D2 is normal to the triangle plane in hyper-kagome
lattice, and D3 lies in the triangle plane but perpendicular to
the bond �see Fig. 3�. The semi-microscopic calculations in
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FIG. 1. �Color online� The hyper-kagome lattice of Ir4+ spins,
with one classical ground state of the strong anisotropy Hamiltonian
shown. Although this particular ground state is collinear, other
ground states are not.
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Sec. III G confirm that all three components are nonvanish-
ing, and give a quantitative understanding of them. Due to
the large � and considerable uncertainties in estimating the
noncubic energy splittings, it is difficult to estimate the over-
all magnitude of the DM terms, but there is no reason they
need be particularly small, though the perturbative estimates
are presumably valid only for 
Di
�J�0.1 or so. A naive
estimation is obtained by noting that in this limit the ratios of
DM to exchange are expected to be of the same order as the
shift of the g factor, i.e., 
Di
 /J�
1− 
g
 /2
. From the mea-
sured moment 	eff	1.9	B= 
g
	B, assuming we are in this
limit would give 
Di
 /J�0.05 or so.

In Sec. IV, we considered the strong anisotropy Hamil-
tonian, Eq. �1� in the classical approximation. Remarkably,
unlike the Heisenberg model, which is macroscopically de-
generate �i.e., its ground states are specified by a number of
continuous parameters proportional to the number of spins�,
the system in this limit has an almost unique ground state.
We find a continuous two parameter manifold of ground
states, in which any one spin can be specified arbitrarily,
after which all others are determined. This is still a small
accidental degeneracy, since the system has itself only dis-
crete �space-group and time-reversal� symmetries which do
not protect any continuous degeneracies. Nevertheless, this
degeneracy is presumably insufficient to prevent ordering in
a classical system. The behavior in the physical S=1 /2 quan-
tum problem is not known, but one would expect that an
ordered phase of the same symmetry as the classical one is
rather likely, and there is little reason to suppose a significant
suppression of the ordering temperature relative to the Curie-
Weiss scale. The disagreement of these expectations with the
experimental observations suggests that it is the weakly an-
isotropic DM Hamiltonian rather than this one which is most
appropriate. We however return to this question in more de-
tail in Sec. VII.

In Sec. V, we turn to the weak anisotropy limit, and first
explore the classical phase diagram of Eq. �2�. In general,
even this optimization problem is highly nontrivial, given the
large unit cell of the hyper-kagome lattice, and the possibility
that the magnetic unit cell of the ground states may be yet
larger. In the special case D1=D3=0 and D2�0, however, it
is possible to solve this problem exactly. The degeneracy is
broken completely to a single Kramer’s pair of coplanar
ground states, for which the magnetic unit cell is equal to the
crystallographic one. These may in this sense be considered
k= �0,0 ,0� states. One is drawn in Fig. 2. We call this the
“windmill” state. By several approximate methods, we estab-
lish the form of the phase diagram in the general D1-D2-D3
parameter space. Generically the windmill state distorts to a
“canted windmill” state �still with k= �0,0 ,0��, occupying a
finite region of the phase diagram. In addition, one finds a
wide range of incommensurate phase, in which the ordering
wave vector k is nonzero and generically irrational in recip-
rocal lattice coordinates. Owing to the breaking of space-
group symmetries, the incommensurate phase retains more
of the frustration-induced degeneracy.

A key question is whether the DM interactions, expected
on physical grounds and invoked phenomenologically to ex-
plain the experimental properties discussed above, are con-
sistent with the observed spin liquid behavior of Na4Ir3O8,

i.e., the lack of any ordering down to the very low tempera-
tures of T	1.8 K=�CW /360. The breaking of degeneracy
by DM might be expected to reduce quantum fluctuations
and thereby lead to ordering, in conflict with experiment. To
study this possibility, we carried out spin-wave calculations
of the excitation gap and the quantum correction to the clas-
sical ordered moment. Indeed, we find that deep inside the
k= �0,0 ,0� phases, the quantum correction is not too large,
which leads us to expect that the spin-1/2 system exhibits the
classical order. However, we find very large quantum correc-
tions elsewhere in the phase diagram, even for fairly substan-
tial 
Di
. In our results, a small excitation gap will lead to a
large quantum correction to classical ordered moment. De-
creasing the excitation gap by changing the DM vector will
eventually destroy the classical ordered moment completely.
In this regime, the large quantum effects invalidate the spin-
wave treatment and indeed leave open the possibility of a
quantum spin liquid, consistent with experiment. To further
confirm the results and treatment of spin-wave theory, we
implemented exact diagonalization on a small cluster �six
triangles with 13 spins�. The excitation gap obtained from
numerical data of specific heat qualitatively agrees with the
prediction of spin-wave theory.

The remainder of this paper is organized as follows. In
Sec. III we discuss the symmetry allowed DM vector com-
ponents and calculate the exchange spin Hamiltonian with a
microscopic theory for both strong and weak spin-orbit cou-
pling. In Sec. IV we discuss the classical ground states of the
strong anisotropic exchange Hamiltonian obtained from Ir-
O-Ir superexchange in the strong spin-orbit coupling limit. In
Sec. V we will turn to look at the weak anisotropy Hamil-
tonian, namely, the nearest-neighbor Heisenberg model with
small DM interactions. We first present the magnetic ordered
state when D2�0 then discuss the more general case when
nonvanishing D1 and D3 components are present in the sys-
tem. In Sec. VI, we present a linear spin-wave theory to find
the zero temperature quantum correction to the magnetically
ordered phase and compare with exact diagonalization. Fi-
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FIG. 2. �Color online� The “windmill” state, which is the clas-
sical ground state in the weak anisotropy limit when D2�0. It is
also the basis vector 
2 �Table V� of one-dimensional representa-
tion �2

�1� �see Eq. �62��. In the generic system with nonzero D1, D3

the spins are slightly canted out of the plane of each triangle.
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nally, a discussion of our main results and their relevance to
Na4Ir3O8 is given in Sec. VII.

II. THERMODYNAMICS OF SPIN-ROTATIONALLY
INVARIANT MAGNETIC PHASES

In this section, we discuss some apparent constraints on
the low-temperature susceptibility and specific heat in spin-
rotationally invariant phases of matter. As described in the
introduction, these constraints appear to be violated in
Na4Ir3O8, which we take as an indication of the presence of
substantial spin-orbit interactions.

A. Clean system

We take spin-rotational invariance to mean the existence
of global SU�2� spin symmetry. According to standard quan-
tum mechanics, this implies that all states may be chosen as

eigenstates of STOT
2 and STOT

z , where S�TOT is the operator for
total spin. The choice of z axis being arbitrary, we take it
along the axis of any applied field. The effect of the field on
the system is then entirely described by the term

HH = − H�
i

Si
z = − HSTOT

z , �3�

where we have absorbed the �presumed known� g factor,
Bohr magneton, etc. into the definition of H. One observes
from Eq. �3� that HH is diagonal in the STOT

z basis, and thus
the Hamiltonian eigenstates themselves are independent of
field, and only the eigenvalues change. Focusing on the states
rather than their energies, we may say that the only effect of
the field upon the system in equilibrium is to modify the
occupation probabilities of states. In this sense, the magnetic
field is a thermodynamic perturbation, and the susceptibility
is a thermodynamic quantity, determined only by the density
of states. The specific heat is of course also such a thermo-
dynamic quantity, determined from the same density of
states. Thus they are connected.

Specifically, the specific heat is a measure of the full den-
sity of states for all excitations above the ground state, irre-
spective of their spin quantum numbers. The susceptibility,
however, only counts those excitations which carry nonzero
spin Sz along the field. The possibility of spinless excitations
allows some independence of the two: by introducing more
Sz=0 states, one can increase cv arbitrarily while leaving �
unchanged. However, the converse is not true. It would seem
difficult to increase � without also contributing to cv. The
only way in which this can be done is to introduce states
with very large Sz �which then contribute a large amount to
�� but very low energy �and hence do not contribute much to
cv�. This case corresponds to a system on the verge of a
ferromagnetic instability.

Without fine tuning to such a point, we are led to expect
that, in the presence of SU�2� symmetry, the Wilson ratio,

R =
T�

cv
, �4�

should have an upper bound, corresponding to all excitations
contributing both to � and cv. This can indeed be shown

provided we assume the system can be described by a non-
magnetic ground state and noninteracting quasiparticles char-
acterized by a spin Sz quantum number. We define the den-
sity of state gm

b ��� and gm
f ��� for boson or fermion excitations

carrying spin Sz=m, respectively. The specific heat is

cv = �T�
m
�

0

�

d���gm
b ���nb��� + gm

f ���nf���� , �5�

where

nb/f��� =
1

e�� � 1
. �6�

One obtains

cv =
kB

2T

4 �
m
�

0

�

dxx2� gm
b �kBTx�

sinh2�x/2�
+

gm
f �kBTx�

cosh2�x/2�
 . �7�

Now consider the susceptibility

� = �H�
m
�

0

�

d�m�gm
b ���nb�� − Hm� + gm

f ���nf�� − Hm��
H=0.

�8�

One finds

� =
1

4�
m

m2�
0

�

dx� gm
b �kBTx�

sinh2�x/2�
+

gm
f �kBTx�

cosh2�x/2�
 . �9�

In the low-temperature limit, we may approximate gm
f/b�kBTx�

by its small argument behavior, which is usually a power-law
form:

gm
b/f��� � Am

b/f��m
b/f

. �10�

One needs obviously �m
f/b�−1 for the density of states to be

integrable �and hence the cumulative distribution well de-
fined�. We will encounter problems with Eq. �9� if �m

b �1 for
any m�0. This could be fixed by the inclusion of a chemical
potential, whose temperature dependence we have ignored,
and as usual is necessary to avoid Bose condensation of free
bosons at low T when their energy is close to zero. This
effect, however, does not change any of the results, so we
have excluded it for simplicity here.

Given Eq. �10�, the specific heat will be controlled at low
T by the minimum exponent over all �m

b/f:

�0 = min��m
b/f� . �11�

One has

cv � A0kB
2+�0T1+�0, �12�

with some constant A0. The susceptibility is controlled by the
minimum exponent for m�0:

�1 = min��m
b/f ; m � 0� . �13�

Note that by definition, �0��1. Then

�� A1T�1. �14�

Then the Wilson ratio becomes
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R � R0T�, �15�

where R0=
A1

A0kB
2+�0

and

� = �1 − �0� 0. �16�

Because ��0, the Wilson ratio cannot diverge on lower-
ing T, and unless �=0, actually vanishes as T→0. In defin-
ing the Wilson ratio, we have considered only the zero-field
specific heat. In a field, contributions from all excitations
with m�0 will be field dependent. So unless the m=0 mode
is dominant in cv, the specific heat should be expected to be
field dependent. Conversely, field independence of the spe-
cific heat requires that the m=0 excitations dominate cv. In
this case, we have ��0, and the equality is not satisfied.
Thus a field-independent low-temperature specific heat
would be expected to correspond to a vanishing Wilson ratio
as T→0. This makes the observed divergence of R on low-
ering T in Na4Ir3O8 even more at odds with the theoretical
expectation for an SU�2� invariant system.

A few comments are in order. First, while we have as-
sumed power-law forms for the low-energy density of states,
this is not essential. We believe the lack of low-temperature
divergence in R�T� is very robust within the quasiparticle
picture. Beyond the quasiparticle approximation, the situa-
tion is less clear, and we do not have a definitive proof of this
behavior of R�T�. However, we do not know of any theoret-
ical counter-examples in the literature for SU�2� invariant
low-temperature phases.

If SU�2� symmetry �or more specifically, invariance under
spin rotations about the measurement axis� is broken, how-
ever, one readily and indeed almost generically observes this
behavior. This is quite familiar from the case of ordered an-
tiferromagnets in two or three dimensions. These are well
known to display a nonvanishing constant zero-temperature
uniform susceptibility �0 and a power-law specific heat cv
�ATd due to spin-wave excitations, hence a Wilson ratio
obeying Eq. �15� with however �=1−d�0. This arises be-
cause the ground state itself is modified continuously by the
introduction of a magnetic field. Semiclassically, the mag-
netic field leads to a smooth canting of the antiferromagnetic
moments in the field direction, linearly proportional to the
applied field.

This phenomenon is, however, not limited to systems with
spontaneous symmetry breaking. It occurs whenever the ef-
fective Hamiltonian for the low-temperature phase does not
conserve the spin component along the magnetic field. As an
extreme example, one may consider the case of two spin-1/2
spins coupled together by antiferromagnetic exchange and
DM interaction:

H2 = JS1 · S2 − Dẑ · S1
 S2 − H�S1
x + S2

x� , �17�

where we have chosen the DM vector along the z axis, and
therefore oriented the field along x so that it couples to a
nonconserved magnetization. One can readily diagonalize
the Hamiltonian and find that in zero field it has a unique
ground state with a gap �=1 /2�J+�J2+D2�. Nevertheless,
the susceptibility is nonzero when D�0:

� = � �Si
x

�H
�

H=0
=

�J2 + D2 − J

J��J2 + D2 + J�
. �18�

Because of the gap, the specific heat of the dimer is activated
at low temperature, and hence the dimer’s Wilson ratio di-
verges exponentially at low temperature. In general, a non-
zero limit for the low-temperature susceptibility is always to
be expected once SU�2� symmetry-breaking perturbations
are taken into account. The specific heat, however, is insen-
sitive to symmetry, and remains a true probe of low-energy
modes.

B. Impurity susceptibility

In Na4Ir3O8, the introduction of nonmagnetic impurities
�substitution of Ti4+ for Ir4+� was observed to give rise to a
Curie component with a reduced effective moment of 	eff
	�2	B� /3 per Ti. We would like to argue that a spin liquid
state with such a large reduction from the moment of a free
spin, 2	B, is unlikely in the absence of spin-orbit interac-
tions, but quite likely when they are invoked.

Suppose the Hamiltonian has global SU�2� spin rotational
symmetry in the absence of an applied magnetic field. Then
a spin liquid ground state, which, by definition, does not
break SU�2� symmetry, must be a spin singlet, i.e., a state of
total spin S=0. Its excitations can therefore by characterized
by spin quantum numbers. Representations of SU�2� always
have integer or half-integer spin, and in particular for all
these the projection of the total spin along any field axis is a
multiple of 1/2.

Now consider a single impurity. It may be a strong per-
turbation locally, but does not perturb the Hamiltonian far
from itself. Again presuming spin orbit can be neglected, the
ground state of this system should be a spin eigenstate, al-
though not necessarily nonzero. Nevertheless, it can be clas-
sified by a total spin which is a multiple of half an integer. It
is natural to expect that the ground-state multiplet of a single
impurity controls the impurity susceptibility �but see below�.
Allowing now for an external field, this is simply described
as in the previous subsection by Eq. �3�. Since the low-
energy states are still good representations of SU�2�, and
only the total spin projection enters Eq. �3�, we will obtain an
effective moment which is at a minimum �if it is nonzero�
2	B per impurity.

The caveat in this argument is the possibility of a Kondo-
like effect. If the spin liquid state is gapless, then there is a
possibility for an impurity moment to be “screened” by the
bulk degrees of freedom. Still, the possibility of a fractional
impurity moment is delicate. Most Kondo effects either com-
pletely screen the moment �as in the single-channel case,
leading to 	eff=0� or to weaker temperature dependence of
the impurity susceptibility �e.g., �imp�
ln T
 in the two-
channel model, which has a nontrivial Kondo fixed point�.
Thus most types of Kondo effect do not allow for such be-
havior. Recently, it has been suggested that some spin liquids
might sustain a critical fixed line of Kondo fixed points, con-
nected to the free impurity fixed point. This situation can in
fact lead to a renormalized Curie constant.12 It would indeed
be appealing should such an exotic possibility be realized in
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Na4Ir3O8, but we should allow for simpler explanations.
As is well known, the effective moment of ions in solids

varies widely from the quantized values expected from
SU�2� symmetric considerations. This is of course due to
spin-orbit coupling. In general, with spin-orbit interactions
present, the ground state of an impurity can be expected to
be a Kramer’s singlet or a Kramer’s doublet. In the latter
case, it will behave energetically �i.e., in specific heat� as a
spin-1/2 spin, but will have in general a nontrivial g tensor
describing its coupling to a field. This reflects a change in the
effective moment. Thus there is no “quantization” of the ef-
fective moment once spin-orbit coupling is substantial. The
observed fractional effective moment in Na4Ir3O8 is perhaps
another indication in this direction.

III. SPIN-ORBIT COUPLING IN THE HYPER-KAGOME
LATTICE

In this section, we discuss the form of the spin-orbit
modifications to the isotropic Heisenberg Hamiltonian. This
is not directly calculable from semi-microscopic consider-
ations without some assumptions about the local energetics
due to crystal field splittings. Therefore we consider below a
number of cases.

A. Symmetry-allowed DM vector components

In several cases, we will find that the dominant effect of
spin-orbit coupling is to induce DM interactions between the
nearest-neighbor spins. Therefore before attempting any cal-
culations, it is instructive to first consider the symmetry con-
straints upon them. Generally, DM interactions are rather
highly constrained. For instance, they are absent if there is an
inversion center between the two spins in question �this is
not the case in Na4Ir3O8�. The compound Na4Ir3O8 has cubic
symmetry, described by the space group P4132, and conse-
quently has a number of point-group symmetries. For our
purposes, it is useful to consider an unconventional set of
generators of these symmetries. Specifically, the full point
group can be generated from the set of 180° rotations around
a local C2 axis at each site. Due to this symmetry, all the
hyper-kagome sites and bonds are equivalent. In Table V, we
list the directions of the C2 axes �
1� for every site in the unit
cell �see Fig. 3 for the labeling�. The C2 rotational symme-
tries relate the DM vectors of any two bonds. That is, given
the DM vector on any one hyper-kagome bond, all others are
determined. This one DM vector, however, is itself entirely
unconstrained by the P1432 symmetry.

Since any single bond of the hyper-kagome is uniquely
associated with one triangle, it is natural to adopt a local
coordinate system based on this triangle to describe the DM
vector’s components. We denote the component aligned with
the bond D1, the component normal to the triangle plane D2,
and the component normal to the bond but localized in the
triangle plane D3. Three components have been illustrated in
Fig. 3. If we select the direction of D1 component axis by
assigning a direction to one bond �arrows in Fig. 3�, the C2
rotation symmetry can generate the equivalent D1 axis for
other bonds �see Fig. 3�. In every triangle, there is a chirality

of the D1 axis of three edges, which can be considered as the
direction of D2 axis. The cross product of D1 and D2 direc-
tional vector generates the direction of D3 axis.

Such a parametrization may be applied not only for the
hyper-kagome lattice, but for any lattice consisting of corner-
sharing triangles, such as the slightly distorted kagome lat-
tice of Fe/Cr-jarosites.13–15 In that example, the D1 compo-
nent is forbidden by a mirror plane symmetry. In Na4Ir3O8,
there are as we said no constraints on the Di, and we might
naively expect all three components to be nonvanishing and
comparable. We will investigate this by microscopic calcula-
tions below.

B. Local electron energetics of Ir ion

Before moving to the microscopic theory of spin-orbit
interactions, we need to understand the electron energy lev-
els of the Ir4+ ions. With coordinates taken from Table I in
Ref. 7, two Ir4+ and their surrounding O2− are drawn in Fig.
4. For A ion, the C2 axis orients along 1

�2
�1,−1,0�. Under

1

2 3

4

5

6
7

8

9

10

11
12

x

y
z

D3

D2
D1

(b)

(a)

FIG. 3. �Color online� Left: One unit cell of the hyper-kagome
lattice. The pink balls are occupied by magnetic ions, which are
connected by dark black bonds. There are 12 sites in one primitive
unit cell. The arrow from site i to site j corresponds to Dij · �Si


S j� in the Hamiltonian. We will call these arrows DM interaction
path. Right: DM vector components illustrated on one triangle. D1

is the component which is aligned with the DM interaction path
�left�. D2 is the component normal to the triangle plane. The direc-
tion is decided by the chirality of bond direction. D3 is the compo-
nent perpendicular to the bond but in the triangle plane.
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this symmetry operation, x→−y, y→−x, and z→−z. Ac-
cordingly, we can group the 5d orbitals into even and odd
parity sectors, as shown in Table I.

A large cubic crystal field splits the eg and t2g states. The
surrounding O2− octahedron is slightly distorted to further
split all the three t2g states. Ultimately no degeneracy is pro-
tected because the C2 symmetry has only one-dimensional
irreducible representations. The energetic ordering of orbitals
shown in Fig. 5 was determined by looking at Coulomb in-
teraction from surrounding O2− and ignoring the spin-orbit
interaction.

C. Microscopic theory of exchange spin Hamiltonian

Although symmetry determines the allowed nonzero com-
ponents of the Dzyaloshinskii-Moriya �DM� interaction, it
does not give any guidance as to their relative and absolute
magnitudes.13,16,17 In this part, we will derive the exchange
spin Hamiltonian from a microscopic point of view and ob-
tain expressions from which crude estimates of the magni-
tude of various terms can be obtained.13,16,17 We consider
both the hopping between Ir and O orbitals, and direct hop-

ping between Ir orbitals. We also assume that the eg-t2g split-
ting is much greater than the splittings among the three t2g
states so that we can completely project out the two eg states.
The model is then of five electrons on the t2g orbitals of
every Ir4+. Following some notations in Ref. 17, we can
write the Hamiltonian of the Ir and O sublattice as

H = H0 + Ht + HLS, �19�

where,

H0 = �
jm�

�mdjm�
† djm� + �

kn�

�pn
pkn�

† pkn�

+
Ud

2 �
jmm����

djm�
† djm���

† djm���djm�

+
Up

2 �
knn����

pkn�
† pkn���

† pkn���pkn�, �20�

Ht = �
jm�

�
k�j�n

�tjm,kndjm�
† pkn� + H.c.�

+ �
�j j��

�
mm�

tjm,j�m�
d djm�

† dj�m��, �21�

HLS = ��
j

� j · s j . �22�

k�j� denotes the O2− of the neighboring Ir4+ site j, djm�
† is the

creation operator of an electron with spin � of the mth 5d
orbital of ith Ir ion, and �m is the energy of this orbital. m
will take 1, 2, and 3. pkn�

† is the creation operator of an
electron on the 2pn orbital with spin �. The energies are
measured from the lowest energy level of the Ir 5d orbitals,
and Ud and Up are the Coulomb interaction constants be-
tween holes on the Ir4+ site and O2− site, respectively. We
assume that Ud and Up are orbital independent and ignore
other “Kanamori parameters:”18 the interorbital exchange
coupling and the pair-hopping amplitude, which should be
small compared to Coulomb interaction. We also ignore the
Coulomb interaction between two electrons on different in-
termediate O2− ions. Here tjm,kn denotes the transfer of an
electron between the mth orbital of Ir4+ ion j and one of the
2pn orbitals of the neighboring O2− ions k. Similarly, tjm,j�m�

d

TABLE I. The parity sectors of 5d electron orbitals by C2

rotation.

State 5d orbitals at A 3d orbitals at B Parity


1� xy yz even


2� 1
�2

�xz−yz� 1
�2

�yx+zx� odd


3� 1
�2

�xz+yz� 1
�2

�yx−zx� even


4� x2−y2 y2−z2 odd


5� 3z2−r2 3x2−r2 even

A

1

3

2�3'�

4
5�6'�

6

4'

1'

2'

5'
B

C2

C2

x
y

z

x
y

z

FIG. 4. �Color online� Ir4+ and octahedron O2− environment
�thin black line�. Two neighboring Ir4+ are denoted by A and B �in
orange�. A /B’s six O2− are labeled as 1 /1�, 2 /2�, 3 /3�, 4 /4�, 5 /5�,
and 6 /6� �in pink�, in which, 2 and 3�, 5 and 6� label the same
points. The distances between Ir4+ and O2− order this way: 
A5

= 
A6
= 
B5�
= 
B6�
� 
A3
= 
A4
= 
B3�
= 
B4�
� 
A1
= 
A2
= 
B1�

= 
B2�
. The C2 axis �thick dash line� orients along 1

�2
�1,−1,0� at

Ir4+ A and 1
�2

�0,1 ,1� at Ir4+ B. Mapped to the ideal hyper-kagome
lattice, A and B correspond to point 4 and 8 in Fig. 3, respectively.

Ir ion

eg

t2g5d orbitals of

Crystal field
splitting

Lattice distortion
|1>

|2>

|3>

|4>

|5>

FIG. 5. The splitting and electron occupation of 5d orbitals of
Ir4+ ions in the absence of spin-orbit interaction. The states are
defined in Table I.
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is the matrix element for electron transfer between m and m�
orbitals on two nearest-neighbor �in the hyper-kagome sense�
Ir atoms. � j and s j denote the orbital and spin angular mo-
menta at the jth Ir4+ ion, respectively, and � is the spin-orbit
coupling constant of the Ir4+ ion.

In order to understand the electron occupation on each
site, we collect the quadratic terms for each site in Eq. �22�
and write down the onsite Hamiltonian as

H�i� = �
mm����

dim�
† Mm�,m���

�i� dim��� �23�

with

Mm�,m���
�i� = �m�����mm� + ��imm� · s���, �24�

where � is the Pauli matrix and Limm� is the matrix element
of Li between the mth and m�th orbital of the ith Ir4+ ion. It
is useful to note19 that the vector of three-dimensional matrix
orbital angular momentum operators projected into the t2g
manifold is actually proportional to the vector of orbital an-
gular momentum operators for the three ordinary �px , py , pz�
states, but with a proportionality constant of −1. That is,
suppressing the m ,m� indices,

�i = − Li, �25�

where L is a canonical angular momentum operator with
L2=���+1�=2. This effectively makes the spin-orbit cou-
pling term directly analogous to the familiar one from an
isolated atom with spherical symmetry in a p shell, but with
the sign of the spin-orbit coupling reversed.

D. Strong and weak spin-orbit limits

Obviously the nature of the “spin” itself �i.e., the Kram-
er’s doublet ground state of the single hole in this multiplet�
is crucially dependent upon the strength of the spin-orbit
interaction, relative to the noncubic splittings �3−�2, �3−�1.
This determines the nature of the wave functions of the
Kramer’s pair, for instance the degree to which the “spin”
carries true electron spin angular moment or instead orbital
angular momentum. This is more fundamental than the ex-
change interaction so we consider it first.

1. Strong spin orbit

In the strong spin-orbit limit, we can to a first approxima-
tion ignore the noncubic splittings, and we have simply

M�i� = ��i · si = − �Li · si. �26�

This is of course diagonalized by constructing eigenstates of
the “total angular momentum”

Ji = Li + si. �27�

Because of the minus sign in Eq. �26�, the highest energy
doublet is simply the j=1 /2 Kramer’s pair. This describes
the wave function of the half-filled orbital. It is natural to
define the effective spin operator in this case as

Si = Ji. �28�

Clearly it is a strong mix of orbital and spin components.
According to the Wigner-Eckart theorem, the matrix ele-

ments of si, Li, and Ji are all proportional. This enables one,
with a little Clebsch-Gordan algebra, to arrive at an expres-
sion for the magnetic moment operator �in the j=1 /2 mani-
fold�,

Mi = − 	B��i + 2si� = + 2	BSi, �29�

where 	B is the Bohr magneton. Interestingly, this is the
same magnitude but opposite sign as for a free electron. It
will of course suffer corrections perturbative in ��i−�3� /�, as
one moves away from the strong spin-orbit limit.

2. Weak spin orbit

Now consider the weak spin-orbit limit. In this case, for
�=0, the half-filled doublet is simply the m=3 orbital, with
two possible “true” spin orientations. Thus we approximately
have

Si 	 si + O��/��i − � j�� . �30�

Now there is essentially no orbital angular momentum com-
ponent to the spin ��i	0�, and one obtains

Mi = − 2	BSi�1 + O� �


�1,2 − �3
�
 . �31�

Note the important sign difference from Eq. �29�. This is the
most fundamental physical distinction between the weak and
strong spin-orbit limits. However, the magnitude of the pro-
portionality between the magnetization and spin—the g
factor—is the same in both cases. This means that the sim-
plest experimental measure, the Curie susceptibility, cannot
distinguish the two possibilities. We will consider both cases
below.

E. General exchange formulation

We now turn to the exchange calculations. Let us consider
the general case first. We must deal with M�i�, which is a
6
6 matrix. Diagonalize M�i� so that M�i�=T�i�†ET�i�. Here,
E is a site-independent eigenvalue matrix, and T�i� is a uni-
tary eigenvector matrix. M�i� has three different eigenvalues
E1, E2, and E3, each has a twofold degeneracy due to Kram-
ers’ degeneracy theorem. The effective spin operator Si will
be defined to act in this doublet. In the strong and weak
spin-orbit limits, we have explicitly Eq. �28� and Eq. �30�,
respectively. Furthermore, we define a new set of electron
creation and annihilation operators

aim� = Tm�,m���
�i� dim��� �32�

with aim� annihilates an electron on the Em state with spin �
at site i.

Without losing any generality, we assume that E3�E1,2,
then E1,2 states are fully occupied and E3 state is half occu-
pied, leading to a total spin-1

2 at every site. Accordingly, the
magnetic momentum operator �Mi=−	B��i+2si�� at each
site should be projected onto the Kramers’ doublet ground
states:
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Mi

	B
= − Pi �

mn��

dim�
† ��imn��� + �mn����din�Pi

= − G3�,3�
�i� ��� · Si, �33�

with � the vector of Pauli matrices. Also, Gl�,j�
�i� and the

effective spin operator Si are defined as

Gl�,j�
�i� = �

mn��

Tl�,m�
�i� ��imn��� + �mn����Tj�,n�

�i�� ,

Si = �
�,�

1

2
ai3�

† ���ai3�, �34�

and Pi is the ground-state projection operator

Pi = ai3↑
����
ai3↑
† + ai3↓
����
ai3↓

† . �35�

Here 
�� is the E1,2,3 fully occupied state. In the last step Eq.
�33�, ��ai3�

† ai3�=1 has been used.
Let’s go back to Eq. �22�, and express the microscopic

Hamiltonian in terms of ajm� and ajm�
† . Given the Hamil-

tonian in Eq. �19�, which includes the largest Coulomb en-
ergy U but neglects the smaller Hunds-rule exchange cou-
pling between electrons in different orbitals on the same
atom �and other similar interactions�, only hopping through
the half-filled orbital contributes to the superexchange inter-
action. This is in accord with the “Goodenough-Kanamori”
rules, which state that the exchange coupling contributed
from a half-occupied orbital and a fully occupied orbital is
much weaker than the one from two half-occupied orbitals.
Thus, we only need to focus on the hopping between the E3
orbitals as half-occupied orbital. The microscopic Hamil-
tonian is written as

H = �
kn�

�pn
pkn�

† pkn� +
Up

2 �
knn����

pkn�
† pkn���

† pkn���pkn�

+ �
jm�

Emajm�
† ajm� +

Ud

2 �
jmm����

ajm�
† ajm���

† ajm���ajm�

+ �
jk�j�n

�
��

��t̃ j3,kn��� + C j,kn · ����aj3�
† pkn� + H.c.�

+ �
�j j��

�
��

��t̃ j3,j�3
d ��� + C j j�

d · ����aj3�
† aj�3� + H.c.� ,

�36�

with

t̃ j3,kn = �
m�

1

2
tjm,knT3�,m�

�j� ,

C j,kn = �
m,��

1

2
tjm,knT3�,m�

�j� ���, �37�

and

t̃ j3,j�3
d = �

mm�,��

1

2
tjm,j�m�
d T3�,m�

�j� Tm��,3�
�j��†

,

C j j�
d = �

mm�,�,��

1

2
tjm,j�m�
d T3�,m�

�j� Tm��,3�
�j��†

���, �38�

where � is vector of the three Pauli matrices. Now we may
follow the standard perturbative treatment of superexchange.
We consider separately the superexchange through the inter-
mediate O2− ions, and the direct exchange contributions.

1. Superexchange through oxygen ions

In this case the leading contribution is fourth order in
hopping, i.e., a result of fourth-order degenerate perturbation
theory. We must include four “hops” between Ir4+ and O2−

ions, which consist of “hops” described by spin-isotropic t̃
matrix elements, and “hops” given by anisotropic C matrix
elements. One thereby obtains the exchange Hamiltonian as

Hex = �
�ij�

�JSi · S j + Dij · �Si
 S j� + Si · �Jij · S j� , �39�

with the first two terms the Heisenberg and DM interactions
precisely as in Eq. �2�, and the third term the anisotropic
exchange. The explicit formulas for the coupling constants
are

J = 4 �
kn,k�n�

sij,kngkn,k�n�sji,k�n�, �40�

Dij = − 4i �
kn,k�n�

�vij,kngkn,k�n�sji,k�n� − sij,kngkn,k�n�v ji,k�n�� ,

�41�

�Jij = 4 �
kn,k�n�

��v� ij,kngkn,k�n�v� ji,k�n� + v� ji,kngkn,k�n�v� ij,k�n��

− 1J�vij,kn · gkn,k�n�v ji,k�n��� . �42�

The vector with arrow ← or → indicates that inner product
is taken with the spin operator put in the direction of the

arrow. 1J is a 3
3 unit matrix. sij,kn, vij,kn, and gkn,k�n� are
given by

sij,kn = t̃i3,knt̃kn,j3 + Ci,kn · Ckn,j , �43�

vij,kn = Ci,knt̃kn,j3 + t̃i3,knCkn,j + i�Ci,kn
 Ckn,j� , �44�

gkn,k�n� =
�1 − 1

2�kk��nn����̃pkn

−1 + �̃pk�n�

−1 �2

�̃pkn
+ �̃pk�n�

+ Up�kk�
+ ��̃pkn

�̃pk�n�
Ud�−1,

�45�

with �̃pkn
=E3−�pkn

+5�Ud−Up�. In the following subsections,
we will try to estimate these exchange couplings in both the
strong and weak spin-orbit interaction cases.

2. Direct exchange

Here we require only second-order perturbation theory in
the direct matrix elements. One obtains the results:16
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J =
2
t̃i j

d 
2

Ud
, �46�

Dij = −
4i

Ud
�Cij

d t̃ ji
d − t̃i j

d C ji
d � , �47�

�Jij =
4

Ud
�C� ij

d C� ji
d + C� ji

d C� ij
d − 1�Cij

d · C ji
d �� . �48�

F. Strong spin-orbit interaction

As discussed in Sec. I, in the strong spin-orbit limit, �
� 
�1,2−�3
, one can obtain effective total angular momentum
eigenstates with j=1 /2. Choosing Eq. �28�, and rewriting the
corresponding eigenstates in the canonical t2g basis, Eq. �32�
becomes

ai3↑ =
1
�3

��− i�di,xz↓ + di,yz↓ + di,xy↑� , �49�

ai3↓ =
1
�3

��i�di,xz↑ + di,yz↑ − di,xy↓� , �50�

in which we have expressed ai3↑ /ai3↓ in terms of the t2g
annihilation operator to avoid the position dependence of the
coefficients.

1. Superexchange through oxygen ions

The complicated expression of Eq. �42� requires simplifi-
cation if we want to have a quantitative understanding of the
exchange coupling. However, some information can be im-
mediately obtained from Eq. �50�, in particular that all t̃i3,kn

=0, which makes J, Dij, and �Jij only the remaining terms
with Ci,kn. To simplify further, we need some explicit form
for the transfer integrals tjm,kn. Hence, we will make further
approximation that the surrounding octahedra of Ir4+ are per-
fect so that we can apply the cubic symmetry to find out the
nonvanishing transfer integrals and also the relation between

them, which is listed in Table II for Ir4+ A and B in Fig. 4.
Deviations from these forms should presumably be small
since the noncubic distortion is.

Based on the transfer integrals listed in Table II, we evalu-

ate the exchange coupling constant J and �JAB. For bond AB,
collecting nonzero coupling constants �actually J=0, DAB
=0�, we obtain

HAB = − JSA
x SB

x + JSA
y SB

y + JSA
z SB

z , �51�

with

J =
4

9

t
4�2g2px,5px

− g2px,2px
− g5px,5px

� . �52�

Since from Eq. �45� g2px,5px
�g2px,2px

,g5px,5px
, then J�0.

Thus we find ferromagnetic interaction between the x com-
ponents and antiferromagnetic interactions between the y and
z components along this link. This corresponds to the form in
Eq. �1� of Sec. I, with �ij

y =�ij
z =−�ij

x =1 for this link.
Because all links are equivalent by point-group opera-

tions, we can deduce the exchange interactions of all other
bonds by symmetry. The sites A and B correspond to point 4
and 8 in our notation in Fig. 3. The result is that the ex-
change interactions on each bond are ferromagnetic between
one component, and antiferromagnetic between the other
two. These principal components are always along x, y, or z.
We will call a bond in which the x component is ferromag-
netic a “type-x bond,” and similarly for y and z. The type of
each bond is listed in Table III. This Hamiltonian breaks spin
rotational symmetry strongly. A simple rule can be used to
characterize the Hamiltonian of a given bond: if bond �ij� is
located in y-z plane, then the bond is type-x bond and has
type-x exchange Hamiltonian; if it is located in x-z plane,
then the bond is type-y bond and has type-y exchange Hamil-
tonian; if it is located in x-y plane, the bond is type-z bond
and has type-z exchange Hamiltonian. As a result, the three
bonds in every triangle �see Fig. 3� have different exchange
Hamiltonian. The ground states of this Hamiltonian will be
studied in Sec. IV.

TABLE II. The transfer integrals between the t2g orbitals on A
and B Ir4+ and the px,y,z orbitals on the intermediate O2− ions. “2px”
represents the px orbital on the second O2− ion in Fig. 4, “A, xz”
represents the xz orbital on the A ion, and the entry t on the row of
“A, xz” and the column of “2px” denotes the hopping amplitude
�transfer integral� from xz orbital at A ion to px orbital on second
O2− ion. Other notation can be understood likewise.

2px 2py 2pz 5px 5py 5pz

A, xz t 0 0 0 0 0

A, yz 0 t 0 0 0 −t

A, xy 0 0 0 −t 0 0

B, xz 0 0 0 −t 0 0

B, yz 0 0 t 0 −t 0

B, xy t 0 0 0 0 0

TABLE III. The bond types of 24 bonds in one unit cell. Points

and bonds are based on the notation in Fig. 3. “ī” is used for the
points which are simply a translation by a basis vector from point
“i.”

Type x Type y Type z

�1,2� �1,3� �2,3�
�3,5� �3,4� �4,5�

�5̄ ,7� �5̄ ,6� �6,7�

�4,8� �8,9� �4,9�
�8,11� �7,11� �7,8�

�1̄ , 6̄� �6̄ ,12� �1̄ ,12�
�9,10� �2̄ ,9� �2̄ ,10�
�10,12� �10,11� �11,12�
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2. Direct exchange

We consider two Ir atoms A and B, connected by a line
along the �0,1 ,−1� direction. There are two principle over-
laps. The largest, whose magnitude we denote as t1

d, is be-
tween the yz orbitals at each atom—this is a � bond. A
secondary overlap, of magnitude t2

d, occurs between orbitals
of the form xy-xz at each site, which corresponds to � bond-
ing. All other overlaps are expected to be negligible or zero.
This leads remarkably to

t̃ j3,j�3
d = �t1

d + t2
d�/3, C j j� = 0. �53�

The result appears isotropic despite the strong spin-orbit in-
teractions. As a consequence, one obtains only Heisenberg

exchange and Dij =�J=0. It is remarkable that one finds ap-
parent isotropy even though the spin itself contains a sub-
stantial orbital component. As seen from the superexchange
calculation above, this is by no means guaranteed.

The first corrections to the strong spin-orbit limit are lin-
ear in the noncubic splittings, and produce corrections to the
Heisenberg model. This occurs by a contribution to C j j� of
O�
�3−�1,2
 /��. The leading spin-orbit corrections to the ex-
change Hamiltonian are then of the DM form, and con-
strained by symmetry according to considerations of Sec.
III A.

G. Weak spin-orbit interaction

In this part, we are going to look at the weak spin-orbit
interaction limit, �� 
�1−�2
, 
�2−�3
. This is the regime
which was often studied in literature.13,16,17 Standard pertur-
bation treatment can be applied, which yields

ajm� = djm� +
�

2 �
m���

�imm� · ����

�m − �m�
djm��� �54�

with �imm� introduced previously in Eq. �24�. Using this in
Eq. �33� reproduces Eq. �31�.

Keeping the exchange coupling constant to the linear or-

der of �


�1,2−�3
 , we can ignore �Jij, as it is of O�� �


�1,2−�3
 �
2�

compared to J, thus we only need to evaluate J and Dij.

1. Superexchange through oxygen ions

Since all the bonds and sites are equivalent, we can take ij
as bond BA in Fig. 4. We denote the unit directional vectors
for D1, D2, and D3 as e1, e2, and e3. Ignoring the small effect
of lattice distortion on these vectors and taking the corre-
sponding values for an ideal hyper-kagome lattice, we will
get e1= 1

�2
�0,−1,1�, e2= 1

�3
�−1,1 ,1�, and e3=− 1

�6
�2,1 ,1�.

Making the same approximation as in previous section, we
can evaluate the exchange coupling constants:

J = 
t
4g2px,2px
,

D1 = DBA · e1 =
�

�2

t
4�g2px,2px

�2 − �3
−

g5px,2px

�1 − �3
� ,

D2 = DBA · e2 =
2�
�3


t
4
g5px,2px

�1 − �3
,

D3 = DBA · e3 = −
�

�6

t
4�3g2px,2px

�2 − �3
−

g5px,2px

�1 − �3
� . �55�

The three DM components we obtained in Eq. �55� are not
independent from each other. That’s because we render some
symmetry to the system by the transfer integrals. Hence, we
will still consider all three components to be independent. As
discussed in Sec. III B, �3��2��1. Additionally, we have
gkn,k�n��0 then we can confer from Eq. �55� that J�0, D2
�0. D3 is probably positive due to a factor of 3 in front of
g2px,2px

and the smaller denominator of the positive term than
the negative term, and 
D1
 is probably small compared to

D2
 due to the cancellation of positive and negative terms.

Using Eq. �55� and ignoring its specific expression, we
may estimate the strength of DM interactions crudely. Then,
we estimate crudely


Di
/J 	 �/
�1,2 − �3
 �56�

since we assume �� 
�1,2−�3
; otherwise the perturbative
treatment does not hold. We estimate the spin-orbit coupling
�	0.4 eV, taken from Refs. 20 and 21 �although the refer-
ence is not directly relevant to Na4Ir3O8, we can use their
spin-orbit coupling as an approximation�. The splitting of the
t2g states due to the noncubic environment, which determines
�1,2−�3, is difficult to estimate. As mentioned in Ref. 22, the
eg− t2g splitting for �Ir�NH3�6�3+ is about 5 eV. However, if
we seek a lower bound on 
Di
 we can make do with what is
probably an overestimate of this splitting. Taking 
�1,2−�3

�5–10 eV is surely in that category, and we therefore find

Di
 /J�0.04–0.1.

2. Direct exchange

One can similarly evaluate the induced DM terms at first
order in the spin-orbit coupling in the case of direct ex-
change. One again obtains a D vector consistent with the
symmetry considerations in Sec. III A.

IV. CLASSICAL GROUND STATES OF THE STRONG
EXCHANGE ANISOTROPY HAMILTONIAN

In this section, we will consider the ground states of the
strongly anisotropic Hamiltonian, Eq. �1�, obtained in the
strong spin-orbit limit from the Ir-O-Ir superexchange
mechanism.

Take the triangle �123 in Fig. 3 for example. Bond �1,2�
is of bond type x; bond �1,3� is of bond type y; bond �2,3� is
of bond type z. Then for bond �2,3�, the Hamiltonian is

H�2,3� = J�S2
xS3

x + S2
yS3

y − S2
zS3

z� . �57�

Clearly H2,3 is minimized if

S2
z = S3

z , �58�

S2
x,y = − S3

x,y . �59�

In general, for each bond, the energy is minimized if the
ferromagnetically interacting components of the two spins
involved are parallel, and the antiferromagnetically interact-
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ing components are antiparallel. We can search for unfrus-
trated ground states by demanding this on every bond. Fix-
ing one spin, its neighbors are therefore determined, and
from them further neighbors, etc. It is straightforward to
verify that in this procedure no contradictions are encoun-
tered despite the presence of loops on the lattice. In this way
all classical ground states are determined from the choice of
a single initial spin. Thus the Hamiltonian is unfrustrated,
and we have found its full set of classical ground states.
Mathematically, we can write the full spin configuration as

Si = sxV1,i + syV2,i + szV3,i, �60�

where s= �sx ,sy ,sz� is a unit vector, and Va,i is the vector Va
corresponding to the ith spin in Table IV. We see that the
ground states are parametrized by two continuous
parameters—the angles specifying the orientation of the ini-
tial spin, or that of s. This is actually an accidental degen-
eracy since the system has only discrete space-group sym-
metries, but it is very small. Still, it should be reduced to a
discrete degeneracy by perturbations such as quantum or
thermal fluctuations, or additional interactions, which will
select a subset of these states.

V. CLASSICAL GROUND STATES INDUCED BY
DZYALOSHINSKII-MORIYA INTERACTIONS

A. Order due to second component only

In Sec. III, we found that the direction of the DM vector
for a single bond is arbitrary, i.e., not determined from sym-
metry considerations, and not calculable from microscopic
theory without a more detailed understanding of matrix ele-
ments than we have at present. A general solution for the
ground state with such an arbitrary DM vector is quite diffi-
cult because different triangles in the hyper-kagome lattice
are located in different planes. In this subsection, we will
consider the special case in which the DM vector is normal
to the triangular plane, i.e., D1=D3=0 �see Fig. 3�. This is a

helpful starting point for the more general case which we
will address thereafter.

As in the case of the nearest-neighbor kagome antiferro-
magnet, a nonvanishing D2 �here, by D2 we mean the com-
ponent of DM vector which is normal to the kagome plane�
selects coplanar ground states with 120° spin orientations on
each triangle.13–15 These are the only configurations in which
the Heisenberg interactions on a triangle are minimized �i.e.,
the total sum of spins on a triangle is zero� and the DM
interaction is minimized at the same time. In the kagome
lattice, however, the coplanar ground-state manifold is highly
degenerate, since rotating the spins in a single hexagon about
the normal axis of the kagome plane by arbitrary angle gen-
erates a new ground state from any other one. In contrast, for
the hyper-kagome lattice, the noncoplanar nature of different
triangles reduces the degeneracy to just a pair of Kramer’s
degenerate �reversed� states. One of them is drawn in Fig. 2;
the other one is generated by reversing all the spin directions.
The chirality of the hyper-kagome lattice makes this state a
ground state only for D2�0. With the other sign of D2, the
DM and Heisenberg interactions cannot be simultaneously
satisfied. We will call these states uncanted “windmill”
states—see Fig. 2.

To see that the uncanted windmill states are the only clas-
sical ground states, see Fig. 6. Starting from triangle
ABC—denoted �ABC—a nonvanishing D2 component pre-
fers a coplanar spin configuration, which requires that spin A,
B, and C should lie in the �ABC plane and at 120 angles as
dictated by the Heisenberg interaction. The same applies to
�CDE. However, �ABC and �CDE are not in the same
plane, which confines the spin orientation of site C to be
aligned with the intersection line of �ABC and �CDE. We
apply this result to all spins, and the Heisenberg interaction
will select two states, which simultaneously minimize the
Dzyaloshinskii-Moriya �DM� interaction with D2�0. The
magnetic unit cell of the windmill state is the same as the
chemical cell.

The result that D2�0 completely removes the massive
but accidental ground-state degeneracy of the hyper-kagome

TABLE IV. The basis vectors for the ground-state spin configurations of the strong spin-orbit
Hamiltonian.

V1 V2 V3

Ir4+ Sx Sy Sz Sx Sy Sz Sx Sy Sz

1 −1 0 0 0 −1 0 0 0 1

2 −1 0 0 0 1 0 0 0 −1

3 1 0 0 0 −1 0 0 0 −1

4 −1 0 0 0 −1 0 0 0 1

5 1 0 0 0 1 0 0 0 1

6 −1 0 0 0 1 0 0 0 −1

7 1 0 0 0 −1 0 0 0 −1

8 −1 0 0 0 1 0 0 0 −1

9 1 0 0 0 1 0 0 0 1

10 1 0 0 0 −1 0 0 0 −1

11 −1 0 0 0 −1 0 0 0 1

12 1 0 0 0 1 0 0 0 1
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is quite dramatic. A classical antiferromagnet with this inter-
action will clearly order at low temperature, and the drastic
reduction in degeneracy suggests that even for a quantum
system, the suppression of quantum fluctuations by D2 may
be large. Before turning to this, we continue with the analysis
of classical ordering in the remainder of this section.

B. Magnetic representational analysis of space group

Representational analysis of the magnetic space group has
proven to be a useful tool to extract information about low-
temperature ordered phases using lattice symmetry.23–26 The
idea is to consider those types of magnetic order which can
be reached by a continuous transition from the paramagnetic
state, which has the full space-group symmetry. Although
there is no a priori reason why the ground-state configura-
tion need be of this type, this is a convenient way to generate
candidate magnetically ordered states. In principle, one may
iterate this procedure to generate lower temperature ordered
states, generating all possible ordered phases.

The operators of the space group act on both the position
of the magnetic ion and on the components of the spin vec-
tors. The combination of these two results are described by
the magnetic representation �. The magnetic representation
for a particular site can be decomposed into contributions
from the irreducible representations of the little group

� = �
	

n	�	. �61�

For Na4Ir3O8, the space group is P4132 �although it can
also be P4332, the results should be equivalent�,7 and the Ir4+

ions sit on the 12d. Here, we only focus the simplest case
when the propagation vector k� = �0,0 ,0�. A program called
“SARAH”24 is used to do the decomposition of magnetic rep-
resentation

� = 1�1
�1� + 2�2

�1� + 3�3
�2� + 3�4

�3� + 3�5
�3�, �62�

in which the superindex represents the dimension of the ir-
reducible representations, and the subindex counts the irre-
ducible representation.

Landau theory requires that only one representation can
be involved in a critical transition, and so with this constraint
there are only five possible magnetic structure for k�
= �0,0 ,0�. Even within this decomposition and Landau
theory constraints, for certain representations ��3 ,�4 ,�5�,
there still remain a lot of degrees of freedom because of the
multiple basis elements in these three-dimensional represen-
tations. For simplicity, we only discuss one-dimensional rep-
resentations �1 and �2. The basis vectors for these two rep-
resentations calculated are given in Table V.

The physical interpretation of these representations is as
follows. The basis vector 
1 is nothing but the C2 rotation
axis at every magnetic ion. The basis vector 
2 gives the spin
directions of classical uncanted windmill state discussed
above �see Fig. 2�. The third basis vector 
3 �see Fig. 7� may
be obtained as the axis which is normal to both C2 axis and

� �
� �

� �
� � � �

� �

� �
� �

� �
� �

A

B
C

D

E

FIG. 6. �Color online� Illustration of spin direction at shared
corner of two neighboring triangles. Black arrows indicate the DM
interaction path. B, C, and E are in the same line.

TABLE V. The basis vectors of one-dimensional irreducible group representations of the space group
P4132 appearing in the magnetic representation with k� = �0,0 ,0�.

�1
�1� �2

�1�

Basis vector 
1 
2 
3

Ir4+ Sx Sy Sz Sx Sy Sz Sx Sy Sz

1 0 1
�2

1
�2

0 1
�2

− 1
�2

−1 0 0

2 1
�2

1
�2

0 1
�2

− 1
�2

0 0 0 −1

3 1
�2

0 1
�2

− 1
�2

0 1
�2

0 −1 0

4 − 1
�2

1
�2

0 1
�2

1
�2

0 0 0 1

5 0 1
�2

− 1
�2

0 − 1
�2

− 1
�2

1 0 0

6 − 1
�2

0 1
�2

1
�2

0 1
�2

0 1 0

7 1
�2

1
�2

0 − 1
�2

1
�2

0 0 0 −1

8 0 1
�2

1
�2

0 − 1
�2

1
�2

−1 0 0

9 1
�2

0 − 1
�2

− 1
�2

0 − 1
�2

0 1 0

10 0 − 1
�2

1
�2

0 1
�2

1
�2

1 0 0

11 1
�2

0 1
�2

1
�2

0 − 1
�2

0 −1 0

12 1
�2

− 1
�2

0 − 1
�2

− 1
�2

0 0 0 1
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the spin direction in 
2 �see Fig. 2�. Note that these three
basis vectors at each site form an orthonormal basis for the
spin coordinates.

Evidently �2 is related to the DM interaction, at least to
the D2 component. But what about D1 and D3? Let us con-
sider the following situation. Starting from an ordered
ground state with D2�0, we turn on an infinitesimal D1 or
D3 component. The spin at site i can be written as

Si = �1 − �ai
1�2 − �ai

3�2êi
2 + ai

1êi
1 + ai

3êi
3, �63�

where ê1, ê2, and ê3 are simply the three orthogonal unit
vectors given by basis 
1, 
2, and 
3, and ai

1 and ai
3 are small

corrections to the ordered ground state due to the introduc-
tion of an infinitesimal D1 �or D3� component. We plug Eq.
�63� into the Hamiltonian, and expand to the second order in
ai

1, ai
3, and D1 �or D3�. To linear order ai

3 vanishes. Thus the
ground-state spin configuration with negative D2 and an in-
finitesimal D1 or D3 component is related to 
2 and 
3. The
irreducible representation �2

�1� is relevant to the magnetic
structure when the DM interaction is present.

Now, we proceed by assuming that the ground-state con-
figuration 
 of the more general case, when D1, D2, and D3
are all present in the system, is a linear superposition of basis
vectors 
2 and 
3:

Si = cos x�2,i + sin x�3,i, �64�

where �a,i is the vector 
a corresponding to the ith spin in
Table V. Evaluating Eq. �2� for spin configurations of this
form gives

H/N = 2�− 3�2D1 + 5�3D2 − �6D3 − 3J� + 2�3���6D1 + D2

+ �2D3 − �3J�cos�2x� − ��3D1 − 3D3�sin�2x�� , �65�

where N is the number of unit cells in the lattice, not the
number of spins �which is equal to 12N�. Minimizing the
Hamiltonian with respect to x, we can find the canting angle
x is given by

cos�2x� = −
− �3J + �6D1 + D2 + �2D3

W
, �66�

sin�2x� =
�3D1 − 3D3

W
, �67�

where we have defined

W = ���6D1 + D2 + �2D3 − �3J�2 + 3�D1 − �3D3�2

�68�

for convenience.
Figure 8 is an example of this canted state when D1

=0.1J, D2=−0.04J, and D3=0. We only plotted the spin con-
figuration of �123 and �345 in Fig. 3. Because these states
are obtained by smoothly introducing a 
3 component into
the uncanted windmill states found in Sec. V, we will call
this state a canted windmill state. The canted moment disap-
pears not only when D1=D3=0, but also for D1=�3D3, at
which point it degenerates into the uncanted windmill state.
Regardless, it is also interesting to note that because D1,
D3�J, from Eq. �67� the canted moment is much smaller
than the coplanar component, which indicates the dominance
of the coplanar spin configurations. Similar features have
been found in other studies.

In the above treatment, we have assumed the ansatz in Eq.
�64�, which is not guaranteed to find the global minimum
energy state, and gives no guidance as to where this form of
the ground state breaks down. In next section, we will con-
sider this question from a different point of view.

C. Mean-field spherical model

In this subsection we approach the general problem of
finding classical ground states of the Hamiltonian from a
different point of view, which allows us to determine ap-
proximately when the k= �0,0 ,0� states of the previous sub-
section are �classical� ground states, and what the nature of
the ground states otherwise are. The problem is difficult be-
cause in addition to minimizing H, which is quadratic in
spins, we must also satisfy constraints that each spin have
fixed magnitude 
Si
=1. The large number �equal to the num-
ber of spins� of these constraints makes what otherwise
would be a simple quadratic minimization problem difficult.
Here we replace these many constraints by a single one,

1

2 3

4
5

6
7

8

9

10

11
12

FIG. 7. �Color online� The basis vector 
3 in Table V.

1

23

4

5

FIG. 8. �Color online� The spin configuration of site 1, 2, 3, 4,
and 5. The dashed blue lines are the canting axis of corresponding
spin.
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�
i


Si
2 = 12N , �69�

where as elsewhere in the text, we define N as the number of
unit cells for convenience. This is the “spherical model,” and
is exactly soluble at both zero and nonzero temperature. At
zero temperature, the spherical approximation must give a
lower bound to the true ground-state energy since minimiza-
tion is conducted with less constraints than in the physical
spin model. Because of this observation, this approach can
indeed often be used to construct physical ground states. This
“Luttinger-Tisza” method27–29 consists of finding a subset of
ground states of the spherical model which respects the spin
normalization constraints of the physical problem. Any such
states must be ground states of the full Hamiltonian. More-
over, when such states exist, they exhaust the full set of
physical ground states. However, it is not always possible to
find any ground states of the spherical model which satisfy
the normalization constraint. If not, it simply means that
ground-state energy of the physical problem is strictly larger
than that of the spherical model, and the Luttinger-Tisza
method fails. Generally, the Luttinger-Tisza construction is
less effective on lattices with a large number of sites in their
basis. For the hyper-kagome lattice with a 12 site basis, our
expectations should not be too high. Nevertheless, in some
range of phase space, we will indeed find physical ground
states from this approach. More generally, at nonzero tem-
perature, the spherical model may be a useful approximation
even when it fails to produce exact ground states at zero
temperature.

Minimizing the quadratic Hamilton in Eq. �2� with the
single global constraint in Eq. �69� is a standard problem,
which is solved by finding the eigenvectors of the Hamil-
tonian matrix �coefficients of the quadratic form of spin com-
ponents� with minimum eigenvalues. By translational invari-
ance, the eigenfunctions have the Bloch form, i.e., are
quasimomentum eigenstates. Hence it is useful to Fourier
transform Eq. �2�:

H = N�
k

�
i,j

�
�,	

L�	
ij �k�Qi

�†�k�Qj
	�k� . �70�

Here

Si
��Rn� = �

k

Qi
��k�exp�ik · Rn� , �71�

with �, 	 as indices of spin vector components, Rn is the
position of unit cell, i and j are the sublattice index, and L�	

ij

is the Fourier transformed Hamiltonian matrix in the Bloch
representation �which is 12
3=36 dimensional because of
the multiple basis sites and spin components�. We need to
minimize Eq. �70� subject to the soft constraint Eq. �72�,
which can be expressed as

�
i=1

12

�
k

Qi
†�k� · Qi�k� = 12. �72�

Minimization is equivalent to find the minimum eigenval-
ues �and corresponding eigenvectors� of L�	

ij �k�. We did this
numerically for every k, and found the global minimum for

every �D1 ,D2�, �D2 ,D3�, and �D1 ,D3� pairs. With this ap-
proach, phase diagrams in D1-D2, D2-D3, and D1-D3 param-
eter spaces have been plotted in Fig. 9. In a wide region of
the phase diagrams, the minimum eigenvalue is realized for
k= �0,0 ,0�. In this case, the corresponding eigenfunction
can be chosen to satisfy the normalization constraint on ev-
ery site, and so an exact ground state is found. This ordered
state is in fact precisely the canted/uncanted windmill states
we proposed in previous section. Thus in the regions for
which k= �0,0 ,0� is indicated in the figures, this analysis
proves that these windmill states are the exact global ground
states. In a considerable large region of the parameter spaces,
we get canted/uncanted “windmill” states.

In other broad regions of the phase diagram, the spherical
model predicts ordered states with incommensurate wave
vectors, i.e., in which k has irrational projection onto recip-
rocal lattice vectors. This is indicated simply as “incommen-
surate phase” in the figures. In most cases we have studied,
the incommensurate wave vectors are located around
0.85�� ,� ,�� and its eight equivalent momenta
0.85��� ,�� ,���. However, in this region of the phase
diagram, we are unable to construct a linear combination of
eigenfunctions which satisfies the local constraint on the spin

k� �0,0,0� ordered phase

Incommensurate phase

�0.5 0.0 0.5 1.0

�0.4

�0.3

�0.2

�0.1

0.0
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D
2
�J

k� �0,0,0�
ordered phase

Incommensurate phase
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FIG. 9. �Color online� Phase diagram in D1-D2, D2-D3, and
D1-D3 parameter spaces. The uninvolved DM vector component in
each figure is set to be 0. The red reference lines �axes� are not
phase boundary.
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magnitudes. Thus the incommensurate ground state of the
spherical model does not immediately imply a corresponding
ground state of the physical model. It is possible that the
region of phase space occupied by the windmill states is
actually expanded beyond what is shown here by this effect.
Most likely, ground states with large unit cells or incommen-
surate order do exist in the physical model, but are more
complex than those of the spherical approximation, and with
somewhat higher energy. Even in the spherical model, we
see that in the incommensurate region, while the DM inter-
action removes much of the frustration-induced degeneracy,
the enlargement of the unit cell implies a larger residual
ground-state degeneracy, and hence less effective removal of
frustration than in the k= �0,0 ,0� regions.

VI. QUANTUM EFFECTS

A. Numerically constructed Bogoliubov transformation

In previous sections, the spins were treated classically and
classical ground states were obtained. In this section, we dis-
cuss the quantum effect in the formalism of linear spin-wave
theory. In certain regions of D1-D2, D2-D3 and D1-D3 param-
eter space, we have an ordered ground state. We will use the
Holstein-Primakoff Boson approach to explore the quantum
effects.30 Now we express the spin operator as follows:

Si�Rn� · Ŝi
ord � S − ai

†�Rn�ai�Rn� , �73�

Si�Rn� · ei
1 �

�2S

2I
�ai�Rn� − ai

†�Rn�� , �74�

Si�Rn� · �Ŝi
ord
 ei

1� �
�2S

2
�ai�Rn� + ai

†�Rn�� , �75�

where Ŝi
ord is the unit vector along the spin order, ei

1 is the C2
rotational axis at site i introduced in Sec. V B, ai

† and ai are
the creation and annihilation operators of Holstein-Primakoff
bosons at ith sublattice of unit cell at position Rn, and we
only keep the lowest order of ai

† and ai. Under this transfor-
mation, the Hamiltonian can be written as

H = −
S

2 �
i,j,k

Aij�k�ai
†�k�aj�k� + Bij�k�ai

†�k�aj
†�− k� + H.c.,

�76�

where we have dropped the constant term and high-order
terms. Here, Aij�k� and Bij�k� are the coefficient matrix we
end up with after doing Fourier’s transform on the creation
and annihilation operators. The Fourier transformations we
used are

ai
†�Rn� =

1
�N

�
k

ai
† exp�ik · Rn� , �77�

ai�Rn� =
1

�N
�
k

ai exp�− ik · Rn� . �78�

Since there are 12 sublattices, using the analytical Bogo-
liubov transformation is hopeless to diagonalize the Hamil-

tonian. Here, we will use a numerically constructed Bogoliu-
bov transformation �NCBT� introduced and discussed in
detail by Refs. 31 and 32 to diagonalize Eq. �76�, find the
spin-wave energy gap and calculate the quantum corrections
to the classical order. We write Eq. �76� as

H = �
k

X†�k�H�k�X�k� , �79�

where

X�k� = �a1�k� . . . a12�k�,a1
†�− k� . . . a12

† �− k��T, �80�

H�k� = −
S

2
� A�k�B�k�

B��− k�A��− k�
� , �81�

and the hermiticity of H requires that

Aij�k� = Aij
� �k� , �82�

Bij�k� = Bji�k� . �83�

We now introduce the canonical transformation

X�k� = Q�k�Y�k� , �84�

where, Y�k� is given by

Y�k� = �b1�k� . . . b12�k�,b1
†�− k� . . . b12

† �− k��T, �85�

and satisfies

�bi�k�,bj
†�k��� = �ij�k,k�. �86�

The transformation Q is required to diagonalize the Hamil-
tonian as

Q†�k�H�k�Q�k� =  �k� , �87�

where  �k� is the diagonal eigenvalue matrix whose diago-
nal matrix elements are given by ��1�k� , ¯ ,�12�k� ,
�1�−k� , ¯ ,�12�−k��. Using this transformation, the quantum
correction to the classical spin polarization can be written as

dS =
1

12N
�
n,i

�ai
†�Rn�ai�Rn��

=
1

12N
�
k,i

�ai
†�k�ai�k��

=
1

24N
�
k

�X†X� −
1

2
. �88�

At zero temperature, further making use of Eq. �84�, Eq. �88�
can be expressed as

dS =
1

2� 1

12N
�
k

�
i=1

12

�Q†Q�ii − 1� . �89�

If we find the canonical transformation Q�k�, the energy
spectrum can also be obtained. With the energy spectrum, we
can find the spin-wave energy gap, �. Some care must be
taken as the numerical construction of the Bogoliubov trans-
formation is effective only when there is an energy gap.
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B. Quantum corrections and spin-wave gaps

By the method described in last section, we carried out
the numerical procedure described in Refs. 31 and 32. Taking
spin S= 1

2 , we numerically construct the Bogoliubov transfor-
mation for every k, and find its contribution to zero-
temperature quantum correction, dS, and energy levels at ev-
ery k to extract the spin-wave gaps. The numerical results
are plotted in Figs. 10–12 13. Corrections dS larger than 1/2
have been truncated to 1/2. In these figures, two components
of the DM vector are kept constant while the third is varied.
The ordered regions �the third varying DM vector compo-
nent� of these figures can be found in Fig. 9.

In these figures, spin-wave gap is nonvanishing so our
calculation is valid. It is easy to find the quantum behavior
also resembles the classical one: the different DM vector
components have different effects in quantum corrections,
which is similar to the effect of DM vector components in
favoring canted “windmill” state in Sec. V B. In the DM
magnitude studied in these figures, the quantum corrections
are pretty large. Even in the case when D2=−0.09J and D1
=D3=0, the quantum correction is about 50%.

As a general rule, one observes that the quantum correc-
tions decrease steadily as one goes deeper into the k=0 clas-
sically ordered region. If we crudely suppose that dS�1 /2 is
indicative of the destruction of order by quantum fluctua-
tions, we may expect broad regions of quantum spin liquid
states occurring in and near the incommensurate regions of
the classical phase diagram. This range of DM vectors then
may be possible candidates for application to Na4Ir3O8.

C. Comparison with exact diagonalization

In order to partially confirm our results in last section, we
performed numerical exact diagonalization for S=1 /2

spins.33,34 We took six triangles with thirteen sites and used a
Heisenberg model plus DM interaction with only D2�0. We
plot the resulting specific heat in Fig. 14. The gap in each
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FIG. 10. �Color online� The dependence of quantum corrections
and spin-wave gaps on the DM vector components. In the two
figures, we set D1=D3=0 and vary D2. 60
60
60 momentum
points have been used to generate the data. No change has been
found in quantum corrections and gaps within computer resolution
compared to 50
50
50 momentum points.
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FIG. 11. �Color online� The dependence of quantum corrections
and spin-wave gaps on the DM vector components. In the two
figures, we set D3=0 and vary D1 with two fixed D2 values �D2=
−0.08J �in blue� and D2=−0.05J �in red��. 16
16
16 momentum
points have been used to generate the data. No change has been
found in quantum corrections and gaps within 1% compared to
10
10
10 momentum points �same for Figs. 12 and 13�.
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FIG. 12. �Color online� The dependence of quantum corrections
and spin-wave gaps on the DM vector components. In the two
figures, we set D2=0,D3=−0.1 and vary D1. We also did the same
thing with D2=0,D3=0.1, and varying D1, and the quantum correc-
tions always break the classical order completely.
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case can be inferred from the plot by the temperature below
which the specific heat becomes negligible. As we found in
previous section, the more negative D2 is, the greater the gap
will be. At low temperatures in Fig. 14, the sequence of the
curves agrees with what they should behave according to
spin-wave gaps in Fig. 10.

Similarly, we also look at the case when only D3 compo-
nent is present by taking D3=�0.10J, �0.25J. According to
Fig. 13, the spin-wave gaps of D3=�0.10J are close to each
other, and the spin-wave gaps of D3=�0.25J are also close
to each other, but much larger than the previous cases. In Fig.
15, we see that both curves of D3=�0.10J and D3
=�0.25J nearly overlap at low temperatures, and their se-
quence agrees with the magnitudes of the spin-wave gaps.

VII. DISCUSSION

In this paper we have studied the effect of spin-orbit in-
teractions in the hyper-kagome lattice of Na4Ir3O8. A crucial
physical parameter is the strength of atomic spin-orbit cou-
pling relative to noncubic crystal field splittings. In the
strong spin-orbit limit, Ir-O-Ir superexchange produces
highly anisotropic effective spin interactions, with 2/3 anti-
ferromagnetic and 1/3 ferromagnetic couplings between spin
components. This Hamiltonian turns out to be unfrustrated,
and has a small set of classical ground states. We speculated
that even the S=1 /2 quantum model is likely ordered with a
substantial critical temperature, inconsistent with experi-
ments on Na4Ir3O8.

By contrast, strong spin-orbit interactions and direct Ir-Ir
exchange, or weak spin-orbit interactions all induce a
Heisenberg-like Hamiltonian with a small correction of the
form of a DM term. The orientation of the DM vector, which
is not determined by symmetry or our microscopic consider-
ations, determines the extent to which the frustration of the
Heisenberg model is relieved. In one region of phase space,
frustration is fully relieved, and the DM interaction stabilizes
a magnetically ordered “windmill” state, with nearly but ge-
nerically not quite coplanar moments. Quantum fluctuations,
which we assessed by spin-wave theory, are sufficiently sup-
pressed that we may expect this order to persist even for
spin-1/2 spins �as in Na4Ir3O8� in part of this region. In the
remainder of phase space, the frustration is not fully re-
moved, and the classical ground states break the lattice peri-
odicity and may be incommensurate. We argued that in this
regime, the classical ordering is fragile and may be destroyed
by quantum fluctuations for S=1 /2 spins.

A. Relation to previous work

Two theoretical papers9,10 have discussed Na4Ir3O8 prior
to our own, as mentioned in Sec. I. Both start with the as-
sumption of a simple nearest-neighbor Heisenberg model de-
scription. As we have repeatedly emphasized, the even ap-
proximate validity of a Heisenberg description is far from
obvious due to strong spin-orbit coupling in Ir. One outcome
of the present study is a mechanism by which an approxi-
mate Heisenberg form is obtained, from direct Ir-Ir ex-
change, despite strong spin-orbit interactions. This may be
viewed as a partial a postiori justification for the starting
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FIG. 13. �Color online� The dependence of quantum corrections
and spin-wave gaps on the DM vector components. In the two
figures, we set D1=0 and vary D3 with two D2 values �D2=0 �in
blue� and D2=−0.04J �in red��. We also did the same thing with
D2=0, D3=0.1, and varying D1, and the quantum corrections al-
ways break the classical order completely.

0.02 0.04 0.06 0.08
0

0.02

0.04

0.06

0.08

T�J

C
v

pe
r

sp
in
�a

rb
itr

ar
y

un
its
�

FIG. 14. �Color online� The specific heat of six triangles with
negative D2 component DM interaction. Along the thin vertical line,
from top to bottom D2 value of each curve increases from −0.09J to
−0.01J with a step 0.01J.
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FIG. 15. �Color online� The specific heat of six triangles with D3

component DM interaction. Along the thin vertical line, the upper
curves have 
D3
=0.25J, the down curves have 
D3
=0.10J.
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point of Refs. 9 and 10. Furthermore, the inclusion of non-
negligible spin-orbit interactions is crucial to resolving the
problem of the large experimental Wilson ratio, which we
argued cannot be understood within any theory starting from
a pure Heisenberg model.

Let us now comment upon the conclusions of these two
works. In Ref. 9, the authors treated the spin as a classical
O�N� spin. By a large-N mean-field theory and classical
Monte Carlo simulation, they found that the classical ground
states are highly degenerate and a nematic order emerges at
very low temperatures in the Heisenberg model �N=3�. Be-
cause of the classical approximation, it is difficult to gauge
the applicability of these results to the S=1 /2 Heisenberg
model, and the very-low-temperature results are probably ir-
relevant to the latter case. We view this paper as a point in
favor of the notion that by itself the pure Heisenberg model
has no strong tendency to favor any obvious ordered state. In
the present article, since we have argued for the importance
of modifications to the Heisenberg model, we have had to
reconsider the ordering tendencies. Fortunately, there is a
regime of DM interactions which do not appear to strongly
remove the frustration.

In Ref. 10, the authors presented a large-N Sp�N� method
and studied both the semiclassical spin and quantum spin
regimes. In the semiclassical limit, they predicted that an
unusual k� = �0,0 ,0� coplanar magnetically ordered ground
state is stabilized with no local “weather vane” modes. While
in the quantum limit, a gapped topological Z2 spin liquid
emerges. Clearly, the semiclassical result is at odds with ex-
periment, which is probably not surprising for S=1 /2. Un-
fortunately, the Z2 spin liquid also seems unsatisfactory in
several respects. It is a fully gapped state, and so is incon-
sistent with the power-law specific heat seen in experiment.
Moreover, any Z2 spin liquid state in three dimensions is
known to be separated by a nonzero-temperature phase tran-
sition from the paramagnetic high-temperature phase. This
transition is expected to be of �inverted� Ising type, and as
such have very clear signatures in thermodynamics, such as a
diverging specific heat. No such �extremely exotic� transition
is observed in experiments. Our own paper does not directly
address the quantum ground state of Na4Ir3O8. Rather, we
have shown that strong quantum fluctuations are probably
important even with substantial DM interactions �by showing
that the spin-wave theory yields large corrections in the pre-
sumed physically relevant regime�. The role of DM interac-
tions in a fully quantum theory for Na4Ir3O8 is an important
and difficult problem for the future. As a first step, in the
next subsection, we discuss a scaling theory of the suscepti-
bility in this context.

B. Zero-temperature susceptibility in quantum spin liquids

Part of the motivation of the present study was the obser-
vation in Na4Ir3O8 that the susceptibility � tends to a con-
stant at low temperature, despite the approximately quadratic
decrease of specific heat. We argued that this combination,
which implies a diverging Wilson ratio as T→0, is likely an
indication of spin-orbit interactions. Indeed, on general
grounds, a constant zero-temperature susceptibility is ex-

pected when SU�2� spin-rotation symmetry is broken. The
situation of weak DM interaction is quite common in frus-
trated magnets, and may allow this behavior quite broadly.
Therefore it is interesting to consider more generally how
this occurs in the presence of weak DM coupling. We have
not so far addressed the magnitude of this zero-temperature
susceptibility.

Presuming the DM interaction to be relatively weak, the
magnitude of � should be understood in terms of the corre-
lations the spins would have in the underlying system with-
out DM. Various SU�2� invariant phases lead to rather differ-
ent behaviors. Generally speaking, one expects the most
suppressed � for systems with the least low-energy spin fluc-
tuations in the absence of DM. Probably the most extreme
example is a valence bond solid �VBS� or dimer state, in
which the eigenstates can be approximated by those of a
single partition of the sites into pairs of spins which are
coupled to each other only within the pairs. Such a VBS
phase has a gap of order J to all excitations, including the
elementary triplets. A simple calculation by second-order
perturbation theory of the susceptibility shows that it is in-
deed nonzero, and of order

�VBS�T = 0� �
D2

J3 . �90�

One may also estimate the magnitude of � for various phe-
nomenological gapless spin liquid ground states perturbed by
Dzyaloshinskii-Moriya �DM�. The general arguments follow
scaling theory. We presume the gapless spin liquid is a criti-
cal phase in the renormalization group sense, described by a
scale invariant field theory. Introduction of DM interactions
breaks SU�2� symmetry, and allows operators O� breaking
SU�2� to be added to the effective action/Hamiltonian. Ge-
nerically, these appear with coefficients proportional to D. In
the simplest situation, there is a single such operator O� with
the smallest scaling dimension �. In most cases of interest,
we expect ��d+z, where d is the spatial dimension and z is
the dynamical critical exponent �z=1 is common�. In this
case, the presence of this operator in the Hamiltonian consti-
tutes a relevant perturbation. Then, if the susceptibility at
D=0 behaves as ��T�, we expect

�	��D,T� � T�f	��D/T
d+z−�

z � , �91�

where 	 ,� are spin components x ,y ,z. The operator O� is
expected to break SU�2� down to some subgroup. This may
contain either one or zero residual U�1� spin-rotation axes.
The susceptibility normal to this axis, if it exists, is expected
to be constant at low temperature. If no such axis exists, then
the susceptibility will be constant in all directions. In either
case, we must have

f	��X� � A	�X
�z

d+z−� , for 
X
� 1. �92�

Here A	� is a symmetric tensor with either two or three non-
zero eigenvalues, in the cases with one or zero residual U�1�
symmetries, respectively. One thereby obtains
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�	��T = 0� � 
D

�z

d+z−�A	�. �93�

As an example, consider the 2d “Dirac” spin liquid with
point nodes on the kagome lattice studied by Hermele et al.35

There, the dominant operator indeed preserves a single re-
sidual U�1� symmetry. Its scaling dimension is estimated as
�	2−32 / �8�2�	1.6 �based on a calculation for a general-
ized model with large number, Nf, of flavors of fermions,
evaluated for the physical case Nf =4�. Taking d=2, z=1, �
=1 as appropriate for this case, we find, restoring units

���T = 0� �
	B

2

J
�D

J
�0.7

. �94�

Here �� is the susceptibility in the x-y plane perpendicular
to the conserved U�1� spin axis. We see that the dependence
on D is sublinear, making for a very large susceptibility even
for rather small D /J.

It is noteworthy that the scaling prediction above should
occur regardless of the other properties of the system in the
presence of DM interaction. The relevance of O� at the spin
liquid fixed point indeed implies that it drives the system into
a different phase, which may not be a spin liquid at all. This
is believed to be the case for the above Dirac spin liquid, for
which the resulting state is expected to be magnetically
ordered.35

C. Other possibilities

One may wonder whether the weak and strong spin-orbit
limits are the only possibilities for Na4Ir3O8, and whether
they might be distinguished more directly. Probably the prin-
cipal difference in the two cases is the sign of the g factor. In
the weak spin-orbit limit, one has approximately M	
−2	BS, while in the strong case, we find M	 +2	BS. While
these lead to identical Curie laws, they are physically distinct
�note that one cannot reverse the sign of S and maintain its
canonical commutation relations�. It should be measurable in
other experiments such as nuclear magnetic resonance. Mi-

croscopic reasoning gives no reason why the Ir4+ spins might
not be in an intermediate situation between the two extreme
limits. However, in this case one would expect a g factor in
between these two values, i.e., with substantially reduced
magnitude. A large deviation would seem to be inconsistent
with the measured spin susceptibility.

This tends to support the notion that Na4Ir3O8 is either in
the strong or weak spin-orbit limit, and not in between.
Given the incompatibility of the strongly anisotropic Ir-O-Ir
superexchange Hamiltonian in the strong spin-orbit case with
experiment, we are led to believe the weakly anisotropic
Hamiltonian with DM interactions is most appropriate �we
note that “weak anisotropy” still allows for 
D
 /J�0.1,
which would have strong effects on the low-energy physics�.
This, however, still leaves open the issue of weak versus
strong spin-orbit interactions. Though susceptibility experi-
ments do not distinguish the two cases, they are physically
distinct, and could be discriminated by magnetic resonance
methods, for instance. So far as we are aware, all prior mea-
surements of Ir4+ ions capable of this distinction have been
interpreted in terms of the strong spin-orbit scenario �see for
example, Ref. 36�. This fundamental physical question in
Na4Ir3O8 warrants further investigation.

Could there be another scenario? We cannot rule out the
possibility that other interactions might play a role. Perhaps
further neighbor exchange or spin-lattice coupling might be
significant. These are important subjects for future theoreti-
cal studies.
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