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Calculation of band structures for surface waves in two-dimensional phononic
crystals with a wavelet-based method
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A wavelet-based method is developed to calculate the band structures of surface modes in two-dimensional
phononic crystals including mixed fluid/solid systems and solid/solid systems with small or large acoustic
mismatch. The defect modes of the surface waves are also calculated by using the supercell technique. The
method is validated by recomputing the samples already studied in literatures. The results show some merits of
the present method. In addition, the present method is applied to some new samples to show more properties
of the surface modes. The influences of various factors, especially the acoustic mismatch, on the surface modes
are discussed in detail. The present method may serve as an alternative method for studying the surface waves

in general phononic lattices.
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I. INTRODUCTION

Recently, the propagation of elastic or acoustic waves in
the so-called phononic crystals,! which are made of two- or
three-dimensional (2D or 3D) periodic repetition of two dif-
ferent solid or fluid constituents, exhibiting large contrast
between their elastic constants and/or mass densities, has re-
ceived considerable attentions.? The existence of elastic band
gaps in such materials may lead to many potential applica-
tions such as sound shields, acoustic filters, transducers, re-
fractive devices, wave guides, etc. Of particular interest for
study of phononic crystals is achieving a complete frequency
gap for mixed longitudinal and transverse-wave modes. So
far, several methods have been developed to calculate the
band gaps of bulk acoustic waves (BAWSs) propagating in
various materials combinations with small or large acoustic
mismatch. Among all methods, three of them, i.e., the plane-
wave expansion (PWE),! multiple-scattering theory (MST),?
and finite difference time domain (FDTD) methods,* are
widely used.

When a surface is introduced to break the periodicity of
the system, a phenomenon of wave localization may appear,
that is, under certain conditions, localized acoustic modes
(usually termed surface acoustic waves or concisely SAWs)
can propagate along the surface with their energy concen-
trated near the surface and their amplitude decreasing expo-
nentially with depth. This topic is relevant to the design of
new SAW devices and thus has received considerable atten-
tion. Tanaka and Tamura>® performed detailed calculations
for SAWSs in a square lattice consisting of cubic materials
(AlAs/GaAs) and in a triangular lattice consisting of isotro-
pic materials (Al/polymer) using the PWE method. They also
discussed the existence and features of the so-called pseudo-
surface acoustic waves (PSAWs) that behave like SAWSs but
have a wave component slowly radiating their energy into
bulk of the phononic crystal. The PSAWs attenuate very
slowly with propagation distance because of weak coupling
to a bulk shear wave mode. Tartakovskaya’ estimated the
first full band gap of SAWs in the phononic crystals of Ni/Al
systems by employing a procedure similar to the so-called
empty lattice of solid-state physics based on the plane-wave
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expansion of the displacements. Wu et al.® presented detailed
computation for band structures of SAWs in phononic crys-
tals consisting of general anisotropic materials. Recently,
both Tanaka et al® and Sun and Wu'® used the FDTD
method to calculate the SAW modes in steel/epoxy phononic
crystals having large acoustic mismatch. The propagation of
SAWs through the straight and sharply bent waveguides was
also studied. Wu et al.'"!? fabricated a micromachined air or
vacuum/silicon and an air/quartz phononic crystal'3 and con-
ducted both theoretical and experimental researches. The
temperature effect was considered. In their calculation, the
PWE method was used by assuming an artificial transverse
velocity in the air. All the mentioned works considered the
case of the surface normal to the cylindrical scatterers.
Manzanares-Martinez and Ramos-Mendieta'* are the only
ones who studied the case of the surface parallel to the cyl-
inders. Some researchers aimed at studying the SAWs in
phononic structures experimentally.”>~!'° Among them, Torres
et al."> experimentally observed surface modes in a Hg/Al
composite sample; Every et al.'® and Vines et al.'”'® con-
ducted experimental studies on the Scholte-type SAWs gen-
erated by line-focus acoustic lens at the water-loaded surface
of a 1D or 2D phononic crystal; and Meseguer et al.'® re-
ported experiments on the absolute band gaps for the SAWs
in a marble quarry with drilled holes. Besides the above-
mentioned works, we also notice that there is an increasing
interest in SAWs in piezoelectric phononic crystals
recently.?0-23

We may notice that most theoretical computations for
SAWs were performed by using the PWE method. However,
as noted by Sun et al.® and Tanaka et al.,'’ the PWE method
is not applicable to a phononic lattice with large acoustic
mismatch and therefore other method, e.g., FDTD
method,”!® which cannot yield spectra directly, has to be
employed. Furthermore, when the PWE method is used for
an air/solid system, one has to assume an artificial transverse
velocity in the air.''"!3 In this regard, we argue that an im-
proved method should be developed for computing the band
structures of SAWSs in various phononic crystals including
the one with large acoustic mismatch and the mixed fluid/
solid system. Recently the present authors** have developed
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a different method based on wavelets, which was proved
successful in band-gap calculation of all kinds of 2D
phononic crystals for BAWs. Here in this paper, we will
extend the wavelet method®* to SAWs. The outline of the
paper is as follows: the wavelet algorithm is described in
Sec. II; the numerical results are presented in Sec. III and
then followed by a summary in Sec. IV.

II. WAVELET METHOD FOR SURFACE WAVES IN
A 2D PHONONIC CRYSTAL

We assume the system to be an elastic continuum com-
posed of a periodic array of cylinders of material A embed-
ded in a background material B. In the inhomogeneous linear
elastic anisotropic medium without body forces, the equation
governing the motion for harmonic plane waves can be writ-
ten as

- p(x)w’u(r) = V- [C(x):Vu(r)], (1)
where u(r) is the displacement vector; r=(x,z)=(x,y,z) is
the position vector; V=(3—i,fv,ﬁ—i) is a 3D nabla; “:” denotes

double dot product;  is the circular frequency; and p(x) and
C(x) are the position-dependent mass density and elastic
stiffness tensor, respectively, which describe the properties of
the materials. For isotropic materials, the components of
C(x) are Cjjy=N(x)5;;0+ pm(x)(63.9;+ 6;5;) where N(x) is
Lamé constant and wu(x) is shear modulus. Then the longitu-
dinal and transverse-wave speeds are given by ¢
=VJ(A+2u)/p and c,=u/ p. For fluid u=0 and no transverse
mode exists. We take the z axis parallel to the cylinders and
perpendicular to the free surface (x—y plane). The phononic
crystal occupies the halfspace of z>0. The system is as-
sumed to be periodic in the x—y plane. In utilizing the Bloch
theorem, the displacement vector u(r) may be written as

u(r) = e Muy(x), (2)

where uy(x) is two-dimensional and periodic and k
=(ky,ky,k,) is a 3D wave vector. Both u,(x) and k are de-
fined in the first Brillouin zone (BZ) of the lattice. Substitut-
ing Eq. (2) into Eq. (1), we obtain
(V+ik) - [C:(V +ik) ® u(x)] = - p(x)0’uy(x),  (3)
which can be rewritten in a variational form as
,(V+iK) - [C:(V +ik) @ u(x)])
=— X v, px)u(x)), Vv el Q), (4)

or equivalently in the integral form

f C:(V +iKk) @ u(x) - (V + iK)vdr = wzf p(x)u(x)odr,
Q Q

(5)

where v is an arbitrary square-integrable function. Due to the
spatial periodicity, u,(x) and the material constants can be
expanded in periodic wavelets.?* As in Ref. 24, we will use
the periodic Haar wavelet basis to represent the discontinu-
ous functions of the density p(x) and elastic stiffness tensor
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((x) and use the periodic Bior 3.9 wavelet basis for the
displacement fields wy(x). The wavelet expansions of these
functions are denoted as

uk(x) = E ljk,mbm ’ (6)
b, e‘lijJ

a(x) = 2 &k,mdm ’ (7)
d, e ‘I’jOJ

where a(x)=[p(x),C(x)]; d, and ty, are the correspond-
ing wavelet coefficients; and the localized basis set W Jod is

{(P?(?rlz(ffjkzkl = 0’ 72j0 - 1,k2 = O’ . ’2.f0 — 1}
U{grsety=1,2,3:k1 =0, ... 21 = 1;

J
k2=0,...,2 = 1;j=jg, ....J = 1}. (8)

Each function in this set is 2D periodic wavelets and scaling
functions consisting of a product of two 1D periodic wave-
lets and scaling functions.>* The integer J fixes the approxi-
mation degree as well as the maximum number 2%/ of the
wavelets and scaling basis functions used in the expansion.
An adaptive algorithm would add or remove wavelets during
calculations without restriction on the integer J and would
stop when a desired accuracy is obtained. For details, we
refer to Ref. 24.

Substituting Eq. (6) into Eq. (5) and then choosing the
arbitrary square-integrable function v=>5b,, we obtain

J C:[(V + k) ® Gy, ] - (V + k)b dr = o f p(x)tyb,b,dr,
Q Q
)
which may be rewritten in a compact form
AW, = 0’B W, (10)

where Wy is a column vector containing i, fyg, and d;
and Ay and By are large sparse matrices with their elements
given by

(A)py= f C:L(V +ik)b,]- (V+il)bydr,  (11)

o)
By, = f p(x)b,b,dr. (12)
Q
In Egs. (9)-(12), “~ > implies the dual basis functions. If the

BAWSs are considered, the frequencies can be obtained by
solving the eigenvalue equation (10). We have presented de-
tailed analysis and computation in Ref. 24 for the BAWs
with k,=0. But here in this paper, we are looking for the
SAW solutions; therefore, we should further consider the
boundary conditions at the surface z=0,

o-n|,_o=(C:Vu) -n|,_,=0, (13)

where the surface is assumed to be stress free; o~ and n are
the stress tensor and the unit normal vector of the surface.
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The displacement field for the SAW [Eq. (6)] can be rewrit-
ten as

um)= 2 2, (14)
bWE‘P
where kj=(k,,k,). Substituting Eq. (14) into Eq. (13), we
have

> 2HC[(V+ik?) @ dlb,] - n+C:[Vb, @ 6] n}
be‘l’,,/ 1

=0, (15)

which may be rewritten in an integral form

> X

be‘l’l g !

{CAV + kO] @ 60, } - nlb,
Q

+{C:[Vb, ® 4{"]-n}b,} =0, (16)

where k=(k,, k(l)) This leads to the linear equations for

iy,

I:ilik=0, (17)

where the expression of H may be obtained from Eq. (16)
and will not be given here.

The eigenfrequency and the complex wave number k,
(governing the localization of the wave near the surface) of
the SAW mode could be obtained by solving Egs. (9) and
(17) simultaneously, which however is a nontrivial task. Here
we will use the method of Tanaka and Tamura® to find the
solutions of the eigenfrequency and k, for a given k;. First
we solve k; 9 from Eq. (9) for a given 01rcular frequency o,
then calculate the normalized boundary-condition determi-

nant |det(H)|/|det(H)|,,.x and plot it as a function of the fre-
quency w. According to the exponential dependence of z in
Eq. (2), the real part of kgl) denotes the plane-wave propaga-
tion in the z direction, and a positive nonvanishing imaginary
part represents attenuation in the z direction. If the wave
vector k; parallel to the surface is real and all k(l) (I=1-3
X 2%/) have positive imaginary parts, the deep minimum of

the curve |det(H)|/|det(H)| .~ @ corresponds to the so-
called “pure” SAW (generally we omit the word “pure” in
this paper except when it is emphasized); if the wave vector
k, is expanded into a complex number k;(1+ie) with the
positive number & having the magnitude of 1X 1072 or less
and some of kil) have negative imaginary parts, the deep
minimum of the curve represents a PSAW. For details of the
above procedure, we refer to Ref. 5.

In calculation, we first compute |det(H)|/|det(H)| . ver-
sus the frequency w by taking e=0 for a given k. If we find
its value is less than 1X 107 at a particular frequency, we
introduce the decay parameter & and try its magnitude (near
1X1072 or less) to compute |det(H)|/|det(H)|,,, until
|det(H)|/|det(H) |, < 10710 is satisfied. Then we say that
this value contributes a minimum to a PSAW.
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TABLE 1. The elastic properties of the materials utilized in the
examples.

Material Density  Elastic constants (1 X 10'® N/m?)
(kg/m?) A o
Al 2695 6.1 2.5
Ni 8905 16.4 8
W 19300 19.74 15.13
Si 2330 5.27 6.7
Steel 7890 10 8.18
Gold 19500 16.03 2.99
Polymer 1350 1.4 0.8
Epoxy 1180 0.442 0.158

III. NUMERICAL EXAMPLES AND DISCUSSION

In this section, numerical results will be presented for
several typical phononic structures including solid/solid sys-
tems and mixed fluid/solid systems with or without defects.
These lattices consist of cylinders (A) embedded in a back-
ground material (B) forming square or triangular lattices
with lattice spacing a. To characterize the acoustic mismatch
of the systems, we define two acoustic impendence ratios,
74175 and Z)/Zp, where Z'=pc; and Z"=pc,. The elastic
properties of the materials utilized in the calculation are
listed in Table I. We compute not only the samples already
studied in literatures to validate the present method but also
some new samples to show more properties of SAWs and
PSAWs. In Figs. 1 and 6-15 illustrating the dispersion
curves, the solid lines are for the mixed BAWSs, the dashed
lines for the purely transverse BAWs, the solid circles for the
SAW modes, and the open circles for the PSAW modes. The
frequency w is normalized by a/c,p,e Where ¢, p,q i the
transverse-wave velocity of the background material.

A. Fluid/solid systems

In Ref. 11, the dispersion relations of the surface and bulk
modes in a square lattice of air/silicon with air filling fraction
f=0.283 were reported; the PWE method was used with as-
suming an artificial transverse velocity in the air. For com-
parison, we recompute their sample with f=0.28. Shown in
Fig. 1(a) are the dispersion curves produced from the present
method by taking 1024 wavelets. One may find that the
present result is in agreement with that in Ref. 11 where the
detailed discussion of BAWs and SAWs was presented. In
our method, no artificial transverse velocity in the air is as-
sumed. For comparison, we also calculate the band structures
of air/aluminum system with the same filling fraction; see
Fig. 1(b). Almost no difference can be observed between
Figs. 1(a) and 1(b) although the background materials are
different. We notice that the acoustic impedance ratios are so
small (Z% /Z5=1.63X 107,75 /75 =1.96 X 107) that the
air may be ignored in both systems.

It is worth noting that the first SAW branch appears above
the lowest BAW branch along most part of boundary of the
irreducible Brillouin zone especially along the highly sym-
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FIG. 1. Dispersion curves of BAW and SAW modes in square
lattices of air-filled circular holes in a (a) silicon host and (b) an
aluminum host. A SAW-SAW gap appears at point X. The higher
SAW mode ceased approximately at point Q where the sharp bend
of the bulk mode occurs.

metric directions I'=X and I'=M; It is also the case in Refs.
11 and 13. Calculations show that these surface modes are
indeed the “pure” SAWs. As an illustration, Fig. 2 plots the

curve of |det(H)|/|det(H)|,,,x with £=0 versus the frequency
for the point X of Fig. 1(a). Two deep minima appear at
Wa/ ¢y pae=2.04 and 2.46, which correspond to two “pure”
SAW modes. One may also notice that the first SAW branch
follows the purely transverse BAW branch (the dashed lines)
just below it along the whole boundary of the irreducible
Brillouin zone. Therefore, we infer that the SAW modes
should be closely related to this BAW branch instead of the
lowest BAW branch. Indeed, along the highly symmetric di-
rections the lowest BAW branch is a pure shear mode with
the horizontal polarization; but the SAWs are polarized in the
sagittal plane and thus are completely decoupled from this
bulk mode.’ The above-mentioned behavior is universal for
all systems with fluid scatterers embedded in a solid host; see
also Figs. 6-8.
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FIG. 2. The normalized magnitude of the boundary-condition
determinant |det(ﬁ)| with €=0 vs frequency at point X shown in
Fig. 1(a). Two deep minima are found at wa/c; p,e.=2.04 and 2.46,
which correspond to the SAW modes propagating parallel to the
interface.

Another interesting phenomenon is that the upper SAW
branch (the folded one) extends from point X to the left
vanishing at points P and to the right vanishing at points Q (it
is also the case in Refs. 11 and 13). The similar phenomenon
can be seen in Fig. 1(b) as well as in Figs. 6 and 8 (in Fig. 8,
SAW other than PSAW appears at point Q). It is noted that
point Q is the crosspoint of all BAW branches. Therefore
stop of the SAW branch at point Q might be owing to the
mode transformation at this point. However the physical ori-
gin of this feature at point P is still not clear. Here we show
why this happens at both points Q and P from mathematics.

Figure 3(a) displays the curve of |det(H)|/|det(H),,,,| for &

Imax
o
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ol ol il ol ol ol el sl ol oo ol

|det(H)|/|det(H)|

ka/n=(1,04) e=2.1E4
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FIG. 3. The normalized magnitude of the boundary-condition
determinant |det(H)| vs frequency at point Q shown in Fig. 1(a); (a)
for the SAW mode with £=0 at wa/c,p,s.=2.40 and (b) for the
PSAW mode with £=2.1 X107 at wa/c, pe=2.55.
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FIG. 4. The normalized magnitude of the boundary-condition
determinant |det(ﬁ)| vs frequency at (a) left and (b) right of point Q
shown in Fig. 1(a). Two deep minima with £=0 at wa/c;pue
=2.33 and 2.53 corresponding to the SAW modes are shown in (a),
and one deep minimum with =0 at wa/c,p,=2.45 in (b). No
PSAW modes are found.

=0 versus the frequency for point Q of Fig. 1(a). A deep
minimum appears at wa/c;p,=2.40 corresponding to a
SAW mode. A local minimum is shown at wa/c, py=2.53,
which will develop a deep minimum corresponding to a
PSAW mode when a small value (2.1 X 107*) of & is given

[see Fig. 3(b)]. We also calculate |det(H)|/|det(H),.,| with
e£=0 at the left and right of point Q and illustrate the curves
in Figs. 4(a) and 4(b), respectively. At the left of point Q, two
deep minima appear at wa/ ¢, p,s.=2.33 and 2.53, which rep-
resent two SAW modes, see Fig. 4(a); while at the right of
point Q [Fig. 4(b)], only one deep minimum is shown at
Wa/c;pse=2.45, that is, the upper SAW branch disappears
beyond point Q. Neither can we find PSAW modes beyond
points Q through the detailed calculations. At point P, two
deep minima of |det(H)|/|det(H) .| ~ @ curve with £=0 are
shown at wa/c,p,=1.91 and 2.47 corresponding to two
SAW modes; see Fig. 5(a). But beyond point P we find nei-
ther a SAW nor a PSAW mode. For instance, Fig. 5(b) illus-

trates the |det(H)|/|det(H),,,| ~  curve with £=0 at the left
of point P. Two minima with values less than 1 X 1073 appear
at wa/c p,e=2.65 and 2.77. These do not contribute to
SAWs. We then give positive values to € to show how deep
these two minima can go; see the inset of Fig. 5(b). It is
shown that the minimum at point A almost does go deeper
while that the minimum at B goes to 2.33X 107 near &
=0.01. According to the criterion to define a PSAW as dis-
cussed at the end of Sec. II, these two minima do not con-
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FIG. 5. The normalized magnitude of the boundary-condition
determinant |det(H)| vs frequency at (a) point P and (b) its left
shown in Fig. 1(a). Two deep minima with £=0 at wa/c,pyse
=1.91 and 2.47 corresponding to the SAW modes are shown in (a);
no deep minima contributing to SAW and PSAW modes are shown
in (b).

tribute to PSAWs. Therefore neither a SAW nor a PSAW
appears beyond point P.

To examine the influence of the scatterer shape and lattice
structure on the BAW and SAW dispersion relations, we il-
lustrate the dispersion curves for the air/silicon system with
square scatterers in a square lattice (Fig. 6) and with circle
scatterers in a triangle lattice (Fig. 7). The same filling frac-
tion as in Fig. 1 is chosen. Almost no difference can be
observed between the dispersion curves of SAWSs for circular
scatterers [Fig. 1(a)] and square scatterers (Fig. 6); although
the dispersion curves of BAWs for these two cases show
observable difference near point M. If we compare Figs. 1(a)
and 7, we may find distinguishing difference between the
curves in these two figures. PSAW modes are shown near
point M in the triangle structures and no SAW band gap
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FIG. 6. Dispersion curves of BAW and SAW modes in a square
lattice of air-filled square holes in a silicon host. A SAW-SAW gap
appears at point X. The higher SAW mode ceased approximately at
point Q where the sharp bend of the bulk mode occurs.

appears at point X (Fig. 7). Therefore we could say that the
scatterer shape has little influence but the lattice structure has
significant influence on the band structures for the surface
wave modes.

Next we compute the dispersion curves of SAWs for a
liquid/solid phononic crystal consisting of a square lattice of
water-filled holes in an aluminum host (Z%, /7% =0.086)
with the same filling fraction as before. The results are
shown in Fig. 8. Since the PWE method fails to liquid/solid
systems, no band structures of SAWs were reported until
now. A comparison of Fig. 8 to Fig. 1(b) shows the differ-
ence between the air/Al and water/Al systems: The disper-
sion curves of the two systems are different for BAWs (es-
pecially at higher frequencies) but similar for SAWs—the
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0-5_ ﬁ :r : ¥
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FIG. 7. Dispersion curves of BAW and SAW modes in a trian-
gular lattice of air-filled circular holes in silicon host. No SAW-
SAW gap appears at point X. The folded surface wave branch is
found at point M.
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M r
FIG. 8. Dispersion curves of BAW and SAW modes in a square
lattice of water-filled circular holes in an aluminum host. A SAW-
SAW gap appears at point X. Along the X-M direction, the higher

and lower SAW branches approach where the sharp bend of the
bulk mode occurs.

two SAW branches near point X are a little closer in water/Al
than in air/Al.

The numerical examples in this section show that the
present method can yield accurate results of band structures
for surface modes in fluid/solid phononic crystals with circu-
lar or square scatterers and square or triangle lattices. The
advantage of the present method is that no assumption of an
artificial transverse velocity in the air is necessary and that
the method does work well in liquid/solid systems for which
the PWE method fails.

B. Solid/solid systems with small acoustic mismatch

The PWE method can yield accurate numerical results for
the surface modes of the solid phononic crystals with small
acoustic mismatch (Z/Z% and Z%/Z} smaller than one),
which were extensively studied by Wu et al.® They consid-
ered four typical systems: AI/Ni, AlAs/GaAs, Al/ZnO, and
Al/Ba,NaNbsO;s. The background materials in the last three
cases are anisotropic solids with their material constants
given in Ref. 8. Here we recompute the AUNi (Z%,/Z%;
=0.32,74,/Z5,=0.31) and Al/Ba,NaNbsOs (Z%,/Z,
=O.50,Z§1/Z£a:0.44) square lattices as a check of our
method. The band structures with filling fraction f=0.6 for
both bulk and surface modes are plotted in Fig. 9. It is seen
that the present results are in good agreement with those
shown in Figs. 7 and 12 of Ref. 8. Detailed properties of the
surface modes in such systems were discussed in Ref. 8.
Here we would just mention that the SAW-SAW gap at point
X and PSAW-PSAW gap at point M decrease as the acoustic
impendence ratio increases to one because the heterogeneous
medium becomes more even. Next we will show the proper-
ties of the surface modes in solid/solid systems with moder-
ate and large acoustic mismatch (Z5/Z5 and Z}/Z} bigger
than one).
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FIG. 9. Dispersion curves of BAW and SAW modes in square
lattices of aluminum cylinders in a (a) nickel host and a (b) barium
sodium niobate host. A SAW-SAW gap appears at point X and a
PSAW-PSAW gap at point M. The higher SAW mode ceases ap-
proximately at point Q where the sharp bend of the bulk mode
occurs.

The transformation from the SAWs to PSAWs and visa
versa in the lowest branches of the surface modes can be
observed in Fig. 9. This happens when the branches surpass
the lowest BAW branches, in which case the surface wave
speed is lower than that of the slowest bulk wave. To see the
details, we illustrate in Fig. 10(a) the magnification of the
dispersion relations along I'=X direction of Fig. 9(a). Before
point A (marked with a cross symbol), the surface mode
appears as “pure” SAWs (the solid circles) below the lowest
BAW branch. Then after point A, the surface mode surpasses
the lowest BAW branch changing from SAWs to PSAWs.
This behavior is also demonstrated by the k,—k, section of
the constant-frequency surfaces of the bulk waves; see Fig.
10(b). For a given frequency a little higher than point A, the
wave number kpgyw of the surface mode is smaller than that
of the slowest bulk mode kgt. Then we can find a real wave

FIG. 10. (Color online) (a) Magnification of the dispersion re-
lations along the I'—X direction of Fig. 9(a). The points k;, kg, ks,
and kpgyw indicate the wave numbers in x—y plane of the bulk and
surface waves of a given frequency . (b) The section of the
constant-frequency (w=wy) surfaces of the bulk waves by the k,
—k, plane corresponding to (a). A real wave vector k with its com-
ponent parallel to the surface equal to kpgy is shown; and the cor-
responding group-velocity v, points inside the substrate (z>0). (c)
Decay parameter of the PSAW modes along the I'—X direction of
(a). The solid curve shows the result for the first branch. & decreases
as the wave vector k varies from point X to point A and vanishes at
point A where the wave mode transforms from PSAW into SAW.
The dashed line corresponds to the second branch. & vanishes at
point X where the wave mode transforms from PSAW into SAW. A
much small value of & appears at ka/ w=0.49.

vector k with its component parallel to the surface equal to
kpsw and the corresponding group-velocity v, points inside
the substrate (z>0). This means that if the surface wave
couples to the bulk mode, it will attenuate by radiating
acoustic energy into the bulk of the system leading to
PSAWSs. Decay parameters of the PSAW modes along the
I'=X direction are plotted in Fig. 10(c) for both the lowest
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FIG. 11. Dispersion curves of BAW and SAW modes in square
lattices of aluminum cylinders in a polymer host. A SAW-SAW gap
appears at point X and a PSAW-PSAW gap at point M. The higher
SAW mode ceases approximately at point Q where the sharp bend
of the bulk mode occurs.

(solid line) and upper (dashed line) surface mode branches.
For the lowest branch, & decreases as the wave vector k
varies from point X to point A and vanishes at point A where
the wave mode transforms from PSAW into SAW. This be-
havior, which is also shown in Figs. 11 and 12(b), has been
explored in details by Tanaka and Tamura® for the AlAs/
GaAs system.

C. Solid/solid systems with moderate and large
acoustic mismatch

In this section, we consider two solid/solid systems with
moderate acoustic mismatch: Al/polymer (Z%,/ Zf;olymer:2.7,
Za! Zyoryme=2-5) and WISi (Zy,/ ZG=4.71, 23,/ Z§;=4.33)
and two with large acoustic mismatch: Steel/epoxy
(Zisoer! Zioxy=15.25,Z oy Zipoxy=18.61)  and  Au/epoxy
(Ziu! Zipony=21.9.Z)/ Z30iy=17.7). The results of band
structures for both bulk and surface modes are shown in
Figs. 11-13. For the Al/polymer square lattice with f=0.6,
the band structures of the surface modes (Fig. 11) show the
similar properties as in Fig. 9 for the AI/Ni and
Al/Ba,NaNbsO;5 with small acoustic mismatch. Both SAW-
SAW gap at point X and PSAW-PSAW gap at point M ap-
pear. However, with the successive increase in acoustic mis-
match, the band structures exhibit more distinguishing
characteristics. For the W/Si square lattice with f=0.175
[Fig. 12(a)], there exist absolute BAW band gaps where the
PSAW branch appears, and the SAW branch appears below
the lowest bulk mode. It is generally expected that in an
absolute band gap the surface modes are pure SAW modes.
However detailed computation shows that they are indeed
the PSAW modes [see Fig. 12(c)], which shows the normal-
ized magnitude of the boundary-condition determinant
|det(H)| versus the frequency at point M in Fig. 12(a). Al-
though the exact physical origin of this feature is now clear,

PHYSICAL REVIEW B 78, 094306 (2008)
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FIG. 12. (Color online) Dispersion curves of BAW and SAW
modes in square lattices of tungsten cylinders in a silicon host with
(a) f=0.175 and (b) f=0.78. (c) Normalized magnitude of the
boundary-condition determinant |det(ﬁ)| vs frequency at point M in
(a). A PSAW branch appears in the BAW gap in (a), but no similar
PSAW branch appears in (b).
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FIG. 13. Dispersion curves of BAW and SAW modes in square
lattices of (a) steel cylinders and (b) gold cylinders in an epoxy
host. Only PSAW modes exist. (c) Decay parameter of the PSAW
modes along the I'=X direction of (b). & increases as the wave
vector k goes from point I to point X except near ka/m=0.3 where
a much small value of & appears. The inset of (c) shows the profile
of the displacements at the center of the Au cylinder corresponding
to the dip of & appearing near ka/m=0.3.

PHYSICAL REVIEW B 78, 094306 (2008)

5.1 T T T T

't base

o
©
3

40 1 1 1 1

r X

48 v T y T g T T T

47

46

45 ® SAWdefect modes b
g oo‘;/‘a....."".‘
c44ppdbdee i
@ []
3

43

42

4.1

4.0

FIG. 14. Dispersion curves of BAW and SAW modes in square
lattices of air-filled circular holes in silicon host with a (a) point and
(b) line defect in a 5X 5 supercell. The big solid circles represent
the defect modes of the SAW. The small solid circles spread out are
spurious roots.

one may attribute it to the larger acoustic mismatch of the
system. The similar behavior is also exhibited in Fig. 15 for
defected steel/epoxy system. When the filling fraction in-
creases to f=0.78 [Fig. 12(b)], both absolute BAW band gap
and PSAW branch disappear and the SAW degenerate to the

10 T
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FIG. 15. Dispersion curves of BAW and SAW modes in a square
lattice of steel cylinders in epoxy host with a line defect: a 5X5
supercell. The open triangles show the oblique bands of the
PSGAW modes appearing in the BAW gaps.
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PSAW near point M. This may imply that there exists a
critical value of the filling fraction at which the SAW and
PSAW will interchange.

For the steel/epoxy and Au/Epoxy square lattices with
very large acoustic mismatch (Fig. 13), a PSAW branch ap-
pears near the first band of the longitudinal wave while no
pure SAW exists. Decay parameter of the PSAW modes
along the I'-X direction for the Au/Epoxy system is de-
picted in Fig. 13(c). ¢ increases as the wave vector k goes
from point I' to point X except near ka/ w=0.3 where a much
small value (about 1 X 107) of & appears. A small £ means
that the PSAW is very stable. The inset of Fig. 13(c) shows
the profile of the displacements at the center of the Au cyl-
inder corresponding to the dip of & appearing near ka/m
=0.3. It is seen that the vibration is well localized near the
surface (within one lattice constant a from the surface). For
the steel/epoxy system, we can see the PSAW branches ap-
pearing at higher frequencies. It is noted that the PWE
method encounters difficulties for systems with large acous-
tic mismatch. Tanaka et al.® and Sun and Wu'? calculated the
steel/epoxy square lattice using the FDTD method. The
present results [Fig. 13(a)] are in basic agreement with Figs.
3(b) and 3(c) in Ref. 9 with a little difference at very high
frequencies. Generally we could say that the present method
is efficient for solid/solid phononic crystals with large acous-
tic mismatch.

D. Defect band structures for surface modes

Combined with the supercell technique, the present wave-
let method can be used to study the defect states of the sur-
face modes. Two systems, air/silicon and steel/epoxy square
lattices are considered. A 5X5 supercell technique is em-
ployed and 4096 wavelets are included in wavelet expan-
sions. Figure 14 illustrates the dispersion curves along T’
—X of the air/silicon square lattice with a point or line defect
(f=0.61). As the PWE method,'? the wavelet method also
yields scattered dots that represent the deep minima of the
boundary-condition determinant. This is not strange because
the main difference between these two methods is the basis
functions used in series expansions. Since not all these roots
represent the surface modes existing physically, we should
separate the physical bands corresponding to the defect
modes from the spurious roots. This can be done by selecting
a row of continuous dots forming a straight line based on the
physical features of the defect modes (it will be easier if
much more points of k are calculated). Fortunately, we can
indeed clearly see one flat band of the surface mode located
in the point-defect region and two oblique bands (guided
surface modes) in the line-defect region as shown by the big
solid circles in Figs. 14(a) and 14(b), respectively. The spu-
rious roots shown by the small solid circles are spread out.!?
The reason why the scattered roots appear is still an open
problem. The point-defect states for the vacuum/silicon
square lattice with f=0.608, a similar system as considered
here, were calculated by Huang and Wu'? (see Fig. 4 in Ref.
12), which is similar to Fig. 14(a).

PHYSICAL REVIEW B 78, 094306 (2008)

At last, we compute the line-defect modes in the steel/
epoxy system with large acoustic impedance, which was
studied by Tanaka et al.” and Sun et al.'® Shown in Fig. 15
are the results obtained with the present method. The pseu-
dosurface guided acoustic wave (PSGAW) modes are shown
by the open triangles. The present results are in good agree-
ment with Fig. 6 of Ref. 9, which only gave the dispersion
curves along I'=X. It is noted that unlike Fig. 14, no scat-
tered roots appear in Fig. 15. This difference may be due to
the different material combinations of the two systems: Fig.
14 for the fluid/solid system and Fig. 15 for the solid/solid
one.

IV. CONCLUDING REMARKS

The wavelet-based method developed in Ref. 24 to calcu-
late the band structures of bulk waves in 2D phononic crys-
tals is extended to surface wave modes. Both mixed fluid/
solid and solid/solid systems with small or large acoustic
mismatch were considered. The defect modes of the surface
waves are also calculated by using the supercell technique.
The method is validated by recomputing the samples already
studied in literatures. The results show some merits of the
present method. For instance, the method can yield accurate
results of band structures for surface modes in air/solid sys-
tems without assuming an artificial transverse velocity in the
air; it is efficient for liquid/solid systems and solid/solid sys-
tems with large acoustic mismatch for which the PWE
method fails. The present method may serve as an alternative
method for studying surface waves in general phononic lat-
tices.

In addition, we also apply the present method to some
new samples to show more properties of the surface modes.
The influences of various factors, especially the acoustic
mismatch, on the surface modes are discussed in detail. It is
found that the acoustic mismatch plays an important role in
the propagation of surface modes. For the cases with the
acoustic impendence ratios far smaller than one, e.g., the
fluid/solid systems, surface modes can propagate in almost
all directions. With the acoustic impendence ratio approach-
ing to one, the SAW-SAW or PSAW-PSAW gap becomes
smaller. With the acoustic impendence ratio increasing to a
larger value, the appearance of the SAWs becomes more dif-
ficult. For the systems with very large acoustic mismatch,
only PSAW modes exist. For the systems with band gaps, the
localized point-defect and the guided line-defect modes of
SAWs or PSAWs can propagate.

Finally we would like to mention that the present paper
still leaves some open problems; for instance, why the SAW
stops at point P in Figs. 1, 6, and 8; why many scattered roots
appear in Fig. 14; why the PSAW modes appear in the abso-
lute band gaps; etc. These problems deserve extensive re-
searches from both theoretical and experimental views.
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