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We apply the model introduced by Anghel et al. �Phys. Rev. B 75, 064202 �2007�� to calculate the
anisotropy effect in the interaction of two-level systems with phonons in disordered crystals. We particularize
our calculations to cubic crystals and discuss the available experimental data. The results presented here
provide a way to determine the distribution of the orientations of two-level systems in a disordered crystal, if
specific experimental data would be available; for our examples, we assumed isotropic distribution of
orientations.
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I. INTRODUCTION

The low-temperature acoustic and thermal properties of
amorphous, glassy materials are remarkably similar and they
can be explained to a large extent by assuming that the ma-
terial contains a large number of dynamic defects. These dy-
namic defects are tunneling systems which are modeled by
an ensemble of two-level systems �TLSs�.1,2 Crystals with
defects—with a large enough amount of disorder—exhibit
also glasslike properties, but these properties are not so uni-
versal and, even more, they are not isotropic; for example,
the sound absorption and the velocity change depend on the
crystallographic direction in which the sound propagates.3

Since a detailed microscopic model of tunneling systems
in glassy materials is still not available, the study of disor-
dered crystals is especially interesting because it offers an
additional opportunity for their clarification: in some materi-
als we know quite well which are the entities that tunnel
between different equilibrium positions. Besides this, the an-
isotropy of the TLS-sound wave interaction in crystals rep-
resents another challenge to the interaction models of TLSs
which requires clarification.

In this paper we give an explanation for the anisotropy
observed in the glasslike properties of general, disordered
crystals by employing a model recently published.4 In this
model we assume that each TLS is characterized by a direc-
tion in space, call it t̂—this might be the direction defined by
the two potential wells of the tunneling system or the axis of
rotation of the tunneling entity, and we introduce a coupling
between the TLS and a strain field �S�, which depends on the
amplitude of �S� at the position of the TLS and on the ori-
entation of t̂ with respect to �S�. In Ref. 4 the model was
applied to an amorphous solid, assuming that the directions t̂
are isotropically distributed, and the effective coupling of an
elastic wave with a TLS was calculated as the average over
the directions of the TLS. In this way it was proved on very
general grounds that, on average, the longitudinal waves
couple with the TLSs stronger than the transversal
waves—in standard notations �l� �4 /3��t.

4

In a disordered crystal with TLSs, there could be at least
two sources of anisotropy. The first one is that the TLSs

might not be anymore isotropically oriented so the effective
coupling of elastic waves with them depends, through t̂, on
the waves’ direction of propagation and on their polarization.
The second source of anisotropy is that besides the relative
orientation of t̂ and �S�, the symmetry of the crystal is mani-
fested also in the interaction of elastic waves with TLSs.4,5

This leads to anisotropy effects in the interaction of elastic
waves with TLS even if the TLS distribution is isotropic.

In this paper we analyze the second source of anisotropy.
We shall assume that the TLS orientations are isotropically
distributed and we shall calculate the anisotropy effects im-
posed only by the lattice symmetries onto the interaction
Hamiltonian. We shall particularize our calculations to crys-
tals of cubic symmetry, which would enable us to discuss
briefly the experimental results of Topp �see Ref. 6 and ref-
erences therein�.

There is not enough experimental data to check the
model, but if the results presented in this paper are confirmed
or not, we would still constitute a test for the assumption of
isotropy of the TLS orientations in a crystal of cubic sym-
metry.

II. ANISOTROPIC INTERACTION OF TWO-LEVEL
SYSTEMS WITH SOUND WAVES

In the standard tunneling model �STM�, the Hamiltonian
of an isolated TLS is written in a two-dimensional basis as1,2

HTLS =
�

2
�z −

�

2
�x �

1

2
� � − �

− � − �
� , �1�

where � is called the asymmetry of the potential and � the
tunnel splitting. The basis in which the Hamiltonian of Eq.
�1� is written is chosen in such a way that a perturbation to
the TLS, caused by a strain field, say, �S�, is described by a
diagonal Hamiltonian

H1 =
1

2
�� 0

0 − �
� , �2�

with ��2��� : �S� and ��� a second-rank tensor of coupling
constants; by “:” we denote the dyadic product. Typically, in
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the STM one considers the coupling of TLSs with trans-
versely or longitudinally polarized sound waves, so not too
much attention has been given to the ��� tensor and in gen-
eral � is written simply as �=2�l,tSl,t, with � and S being
scalars �S is the amplitude of the strain field� and l and t
denoting the longitudinal �l� or the transversal �t� polariza-
tion of the sound wave, respectively. Such a simple descrip-
tion of the TLS-strain field interaction has several shortcom-
ings, e.g., � is not invariant and even leads to physical
ambiguities at the rotation of the coordinates axes, and can-
not account for the anisotropy of the TLS-phonon interaction
in disordered crystals. As a consequence, in Ref. 4 we pro-
posed a model which eliminates the shortcomings and takes
into account the symmetries of the material in which the
TLSs are embedded and the orientation of the TLS with re-
spect to the strain field. Let us describe briefly how this is
done.

We construct from the components of t̂ the simple 3	3
symmetric tensor �T� of components Tij = titj and we intro-
duce the fourth rank tensor of TLS-strain field coupling con-
stants ��R��. With these two objects, we build the general
tensor ���, as �ij =TklRklij—throughout this paper we assume
summation over the repeated indices. The fourth rank tensor
��R�� has a similar structure as the fourth rank tensor ��c�� of
stiffness constants and reflects the symmetries of the crystal
that contains the TLS.4,7

For the convenience of the calculations we work here, like
in Refs. 4, 5, and 7, in abbreviated subscript notations and
write �T� and �S� as the six elements vectors T
��T11,T22,T33,2T23,2T13,2T12�t and S��S11,S22,S33,2S23,
2S13,2S12�t, where by “·t” we denote the transpose. Follow-
ing the notations of Auld,8 the components of the symmetric
tensors will be denoted in abbreviated subscript notations by
a single, upper case subscript, e.g., TI, SI, and T3�T33= t3

2;
also in abbreviated subscript notations, the tensors ��R�� and
��c�� will be written as 6	6 matrices �R� and �c� of compo-
nents RIJ and cIJ, respectively. Putting all these together we
get the expression �=2Tt · �R� ·S.4,5,7

Having now the full expression for the interaction Hamil-
tonian H1, we can calculate the amplitude of excitation of a
TLS, of parameters � and �, by a phonon of wave vector k
and polarization �; we denote by nk� the number of phonons
on the mode �k ,�� after the TLS excitation process. The
displacement field of the phonon uk� is normalized to Nk�

��
 / �2V��k�� and has the strain field Sk�=�Suk� �where
by �S we denote the symmetric gradient, whereas � and V
are the density and the volume of the solid�. This way we get

	nk�,↑
H̃1
nk� + 1,↓�uk�
= −

�



�nk�Tt · �R� · Sk�, �3�

where 
=��2+�2 is the excitation energy of the TLS. There-
fore the phonon-scattering rate by a TLS in the ground state
is

�k��t̂� =
2�




�2nk�


2 
Tt · �R� · Sk�
2��
 − 
�� . �4�

The main characteristic of the TLS-elastic strain interaction
is contained in the quantity Mk,��t̂��Tt · �R� ·Sk�, which we
shall calculate next.

As mentioned above, �R�, like �c�, reflects the symmetries
of the lattice. The most general type of lattice is triclinic, in
which case �R� is a symmetric matrix containing 21 indepen-
dent elements. Such a lattice is very complex and in general
does not sustain simple transversely or longitudinally polar-
ized elastic waves, but instead, the elastic waves propagating
through the crystal will be complex superpositions of longi-
tudinally and transversely polarized plane waves. So, to start
with a simpler case and also to be able to compare our cal-
culations with available experimental data,6 we shall focus in
this paper on lattices of cubic symmetry. The tensor �R� for
the cubic lattice is very similar to the one for an isotropic
material,4,5,7 but it contains three independent constants in-
stead of two, such as in the isotropic case. So we can pre-
serve the notations of Refs. 4, 5, and 7 and write

�R� = �̃ ·�
1 � � 0 0 0

� 1 � 0 0 0

� � 1 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �


 , �5�

without imposing the isotropy constraint �+2�=1; similarly,
the tensor of elastic stiffness constants is

�c� =�
c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


 . �6�

Using �c� we can write the Christoffel equation to find u
and S for the elastic waves propagating in different direc-
tions and then we can calculate M for any t̂, �, and �. In the
end, we average over the ensemble of TLSs to determine the
attenuation of the elastic wave or the scattering rate of the
phonon. We shall apply this procedure for strain fields cor-
responding to elastic waves propagating along the crystallo-
graphic directions 	100�, 	110�, and 	111� of the cubic lat-
tice. Along these directions, the cubic lattice can sustain
simple, longitudinally, and transversely polarized elastic
waves for any allowed values of the parameters c11, c12, and
c44.

Solving the Christoffel equations we find that the sound
velocities of the longitudinal waves propagating in the 	100�,
	110�, and 	111� directions are cl,	100�=�c11 /�, cl,	110�

=��c11+c12+c44� /�, and cl,	111�=��c11+2c12+2c44� /�,
respectively. Similarly, the sound velocities of the transversal
waves propagating in the 	100� and 	111� directions are
ct,	100�=�c44 /� and ct,	111�=��c11−c12−c44� /�, respectively,
whereas for the transversal waves propagating in the 	110�
direction the sound velocity depends on the direction of po-
larization: if the wave is polarized in the 	100� direction �and
perpendicular to the direction of propagation�, the sound ve-
locity is ct,	110�

	100� =�c44 /�, and if the wave is polarized in the
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	110� direction �and also perpendicular to the direction of
propagation�, the sound velocity is ct,	110�

	110�

=��c11−c12−c44� /�. Now we can calculate M for these three
directions of propagation.

Since the three directions x̂, ŷ, and ẑ are equivalent, let us
take the 	100� direction as the ẑ direction. We also define t̂
by the angles � �nutation� and � �precession� as t̂
��sin � cos � , sin � sin � , cos ��t. With these conventions,
we get for the longitudinal wave ukẑ,l�r�=Nẑeikẑ·r,

Mkẑ,l = ik�̃Nkẑ,l�� + cos2 ��1 − ��� , �7a�

�to simplify the expressions without reducing the clarity, we
shall always drop the exponential from the expressions of M
and the subscripts of N; the implicit subscripts of N are al-
ways the same as the ones of M and u� and for the two
reciprocally perpendicular transversal waves ukẑ,t,x�r�
=Nx̂eikẑ·r and ukẑ,t,y�r�=Nŷeikẑ·r,

Mkẑ,t,x = ik�̃�N sin�2��cos��� , �7b�

Mkẑ,t,y = ik�̃�N sin�2��sin��� . �7c�

For the waves propagating in the 	111� direction we get
the following results. For the longitudinal wave
uk�x̂+ŷ+ẑ�/�3,l�r�=N x̂+ŷ+ẑ

�3 exp�ik x̂+ŷ+ẑ
�3 ·r�,

Mk�x̂+ŷ+ẑ�/�3,l = N
ik�̃

3
��2 sin�2���sin � + cos ��

+ 2 sin�2��sin2����� + 2� + 1� , �8a�

and for the two transversal waves

uk�x̂+ŷ+ẑ�/�3,t,p1
�r� = Np̂1 exp�ik x̂+ŷ+ẑ

�3
· r�

and

uk�x̂+ŷ+ẑ�/�3,t,p2
�r� = Np̂2 exp�ik x̂+ŷ+ẑ

�3
· r�

with polarizations p̂1= −x̂+ẑ
�2

and
p̂2= −x̂+ŷ

�2
, we have

M k�x̂+ŷ+ẑ�
�3

,t,p1
= N

ik�̃

�6
�2��cos � − cos � sin ��sin � sin �

+ �cos2 � − cos2 � sin2 ���1 − ��� �8b�

and

Mk�x̂+ŷ+ẑ�/�3,t,p2
= N

ik�̃

�6
�sin�2���sin � − cos ���

− sin2 � cos�2���1 − ��� , �8c�

respectively.
For the longitudinal wave

uk�x̂+ŷ�/�2,l�r� = N x̂+ŷ
�2

eik
x̂+ŷ
�2

·r

propagating in the 	110� direction,

Mk�x̂+ŷ�/�2,l = N
ik�̃

2
�2 sin�2��sin2 �� + �1 + cos2 ��� + sin2 �� ,

�9a�

and for the two transversal waves propagating in the same
direction, uk�x̂+ŷ�/�2,t,p1�

�r�=Np̂1� exp�ik x̂+ŷ
�2 ·r� and

uk�x̂+ŷ�/�2,t,p2�
�r�=Np̂2� exp�ik x̂+ŷ

�2 ·r�, with polarizations p̂1�= ẑ

and p̂2�= −x̂+ŷ
�2

, we have

Mk�x̂+ŷ�/�2,t,p1�
= N

ik�̃�

�2
sin�2���sin � + cos �� �9b�

and

Mk�x̂+ŷ�/�2,t,p2�
= N

ik�̃

2
sin2 � cos�2���� − 1� , �9c�

respectively.
Now we can calculate the phonon’s scattering rates by

averaging �k� of Eq. �4� over the distribution of TLS param-
eters �, �, �, and �, and taking into account the scattering of
phonons from and into the mode �k ,��. We assume that the
parameters � and � are independent of the parameters � and
�, and their distribution is the standard P�� ,��= P0 /�,
where P0 is a constant.1,2 We change the variables � and �
into the variables 
 and u�� /
, with the probability distri-
bution P�
 ,u�= P0 / �u�1−u2� and we assume that the frac-
tion of excited TLSs, of energy 
, is thermal and corresponds
to a temperature T: n


�TLS�= �1+e
/kBT�−1. The distribution
over � and �, say, f�� ,��, is unknown. Plugging all these
quantities into the standard scattering rate calculation, we get

�k�
−1 =

P0 tanh� 

2kBT�

2

nk��

0

�

sin �d��
0

2�

d�
Mk�

	�t̂��,���
2f��,��

�
2�P0 tanh� 


2kBT�



nk�	
Mk��t̂�
2� . � �10�

Now, if we would know f�� ,��, we could use the expres-
sions �7�, �8�, and �9� for M to calculate scattering rates of
phonons propagating in the three different directions.

Since we have no microscopic model for f�� ,��, we shall
assume that it is constant �i.e., TLSs are isotropically ori-
ented�. Then the results obtained for the scattering times can
be compared with experimental results to obtain relations
between the parameters � and �. Under this assumption, us-
ing Eq. �7a� we calculate the absorption rate of the longitu-
dinally polarized phonons propagating in the 	100� direction,

�kẑ,l
−1 =

3 + 4� + 8�2

15
P0�̃2K tanh� 


2kBT
� , �11a�

while for the transversely polarized waves, both Eqs. �7b�
and �7c� give the same result,
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�kẑ,t
−1 =

4�2

15
P0�̃2K tanh� 


2kBT
� , �11b�

where we simplified the notation by introducing the constant
K�2�N2nk�k2 /
.

Similarly, in the direction 	111� we get

� k�x̂+ŷ+ẑ�
�3

,l

−1
=

5 + 20� + 20�2 + 16�2

45
P0�̃2K tanh� 


2kBT
� ,

�12a�

and

� k�x̂+ŷ+ẑ�
�3

,t

−1
=

2��1 − ��2 + 2�2�
45

P0�̃2K tanh� 


2kBT
� ,

�12b�

where again, the two transversely polarized waves Eqs. �8b�
and �8c� give the same result.

Finally, for the phonons propagating along the 	110� di-
rection we obtain the average scattering rates

� k�x̂+ŷ�
�2

,l

−1
=

2 + 6� + 7�2 + 4�2

15
P0�̃2K tanh� 


2kBT
�

�13a�

for the longitudinal wave,

� k�x̂+ŷ�
�2

,t,z

−1
=

4�2

15
P0�̃2K tanh� 


2kBT
� �13b�

for the transversal wave polarized in the p̂1� direction, and

� k�x̂+ŷ�
�2

,t,p2�

−1
=

�� − 1�2

15
P0�̃2K tanh� 


2kBT
� �13c�

for the transversal wave polarized in the p̂2� direction.
Now we write down the STM results for comparison.

Writing ��=2��S�, with �= l or t, the expression for the
transition rate is4

��k,�
�STM��−1 = P0��

2K tanh� 


2kBT
� . �14�

Therefore, if the transition rate �or, more exactly, the sound
absorption rate� varies from one direction to another, we say
that the product P0��

2 depends on the wave’s propagation
direction. This dependence of the absorption rate on the
wave’s propagation direction is obvious in the model used
here and Eqs. �11a�, �11b�, �12a�, �12b�, and �13a�–�13c� give
the expressions for the products P0��

2’s corresponding to the
propagation directions 	100�, 	110�, and 	111�. Notice that if
we impose the condition for isotropy �+2�=1, all Eqs. �11a�,
�11b�, �12a�, �12b�, and �13a�–�13c� reduce to the isotropic
expressions of Ref. 4.

Topp �see Ref. 6 and references therein� measured internal
friction along the crystallographic directions 	100� and 	111�
of the cubic lattice of Ca stabilized zirconium and from the
experimental data they concluded that the product P0�t

2 is the
same for the two directions. From this and using Eqs. �11b�
and �12b� we obtain the equation �1−��2=4�2, which is sat-

isfied by the isotropy condition �+2�=1. If this is indeed the
case �i.e., this is true within the experimental errors�, then the
products P0��

2 are independent on the propagation direction
in the material measured in Ref. 6.

Nevertheless, Topp noticed in Ref. 6 another difficulty of
the standard interpretations. In the STM, the TLS relaxation
time, by absorbing or emitting a phonon, is

��
,T
�TLS��−1 =

�2


2 ��l
2

cl
5 +

2�t
2

ct
5 � 
3

2��
4coth��


2
� �

�2


2 ��min,
,T
�TLS� �−1

�15�

�see, for example, Refs. 9 and 10�, which, for a given TLS
energy 
 and temperature T, attains its maximum ��min,
,T

�TLS� �−1

when �=
, and therefore �=0 �we kept explicit the depen-
dence on T in Eq. �15� for reasons that will be clarified
shortly�. In this case the strong dependence of �min,
,T

�TLS� on the
sound velocities ct and cl, which both depend on the
phonon’s propagation direction, would imply a strong depen-
dence of �min,
,T

�TLS� on the propagation direction. But the relax-
ational attenuation of an elastic wave of angular frequency �
has two asymptotic regimes, namely, ��min,
=2kBTco,Tco

�TLS� �1 for
low T and ��min,
=2kBTco,Tco

�TLS� �1 for high T, where the attenu-
ation has very different temperature dependences. The two
asymptotic regimes are separated by a crossover temperature
Tco defined by the equation ��min,
=2kBTco,Tco

�TLS� =tanh�1�, which
gives

Tco = � 2��
4�

8kB
3��l

2/cl
5 + 3�t

2/ct
5��1/3

. �16�

From the internal friction experiments of Topp Tco appears to
be independent of the phonon’s propagation direction, but
according to Eq. �16�, this cannot happen unless �l and �t
depend strongly on the propagation direction �see Secs. 3.5.2
and 3.6 in Ref. 6�. Since, on the other hand, the product P0�t

2

is independent of the propagation direction, this would imply
that also P0 depends on the propagation direction, which is
very odd—P0 is proportional to the density of tunneling
states and, therefore, is a scalar in the problem.

From our perspective, this puzzle has a simple solution.
To put it short, from the scattering rate Eq. �4� one can cal-
culate the TLS relaxation rate, but when summing over the
phonon modes we average the anisotropy in the phonon
propagation properties.

More clearly, by standard calculations we get from Eq.
�4�, instead of Eq. �15�, the following expression for �
,T

�TLS�:

��t̂,
,�
�TLS��−1 =


3

2��
4

�2


2 coth��


2
� 1

4�
�

0

�

d�k

	sin �k�
0

2�

d�k�
�


Tt · �R� · s
2

c
k̂,�

5

�
�2


2 ��min,
,t̂
�TLS� �−1 �17�

�where we introduced in the notation the unit vector t̂ to
distinguish the relaxation time calculated by Eq. �17� from
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the STM one, Eq. �15��. To make the comparison between
Eqs. �15� and �17� more clear, we denoted s�S /N, where N
is the phonon’s normalization constant. In Eq. �17�, the in-
fluence of the phonon’s propagation anisotropy on ��TLS� is

eliminated by the average over the directions k̂, defined by
the angles �k and �k. Therefore the strong dependence of
��TLS� on the sound velocity variation in different propagation
directions disappears under the averaging procedure. The
only dependence on direction is through t̂, but this is even-
tually irrelevant since in determining the regime of relax-
ational attenuation one compares the frequency of the elastic
wave with the relaxation rate of the ensemble of TLS and,
therefore, with the average of the relaxation rates over the
directions t̂.

III. CONCLUSIONS

We applied the formalism introduced in Ref. 4 to describe
the interaction of phonon modes �or elastic waves� with the
ensemble of two-level systems in a disordered cubic crystal.
We showed that the interaction is in general anisotropic
and—in the language of the standard tunneling model—the
coupling constants �l and �t may depend on the phonon
propagation direction. We focused our calculations on
phonons propagating along the crystallographic directions

	100�, 	110�, and 	111�, for which we gave explicit expres-
sions for the phonons’ relaxation times.

Using the experimental results of Topp �see Ref. 6 and
references therein�, namely, that the product P0�t

2 has the
same value for phonons propagating in both crystallographic
directions 	100� and 	111� in cubic Ca stabilized zirconium,
we deduced that for this material the matrix of TLS-phonon
coupling constants �R� can satisfy the isotropy condition �
+2�=1 �see Eq. �5��. This would imply that P0�t

2 and P0�l
2

have the same values in any direction—in which pure trans-
versal or longitudinal waves can be sustained. This condition
can be checked experimentally by measuring the attenuation
rate of elastic waves propagating along other crystallo-
graphic directions or having longitudinal polarization. Such
experiments could also help us determine if the distribution
of TLS orientations in the crystal is isotropic or not.

We discussed from our model’s perspective the relaxation
time of a TLS to the phonons’ bath and showed that it is not
influenced by the anisotropy of the sound propagation in the
crystal, which is eliminated by averaging.
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