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The stress-induced zircon-scheelite phase transition is theoretically studied by means of ab initio and shell-
model calculations. It is shown that this phase transition may originate from shear elastic strains which bring
together the structures of both phases and draw them unstable against the SiO4-tetrahedron rotations necessary
for direct and inverse conversions. As a result, a structural catastrophe occurs within the ZrO8 polyhedrons:
part of the Zr-O bonds disrupts and new ones form. Such a “bond switching” is crucial for the first-order
reconstructive character of the transition which, according to this study, would proceed via the D4h
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I. INTRODUCTION

A wide range of the first-order structural phase transitions
�SPTs� in solids can be characterized as reconstructive ones.
This term usually implies that the arrangement of interatomic
bonds necessarily changes �is reconstructed� during the tran-
sition, thus varying coordination polyhedrons around the at-
oms. Theoretical treatment of reconstructive SPTs is a much
more difficult problem than that of second-order “soft” SPTs
which involve only low-scale structural distortions and main-
tain the group-subgroup relation between parent and daugh-
ter phases. No valence bonds are broken, and coordination
polyhedrons do not change during these SPTs.

Recently, extension of the symmetry group-subgroup re-
lation to reconstructive SPT was proposed, allowing recov-
ery of the order-parameter concept through the idea of a
low-symmetry intermediate transition state.1 Microscopic
modeling of reconstructive transformations is based on the
consideration of the collective displacement of atoms pre-
serving long-range translational symmetry. This implies that
thermodynamic potentials must be theoretically calculated
for different structural configurations along the transforma-
tion path �TP�. The quest for a probability hierarchy among
possible TPs should include calculation of the free-energy
variation as well as quantitative estimates of kinetic param-
eters, such as activation energies and volume drops.2,3

At present, our understanding of the driving forces in-
volved in reconstructive transformation remains limited even
for relatively simple binary AX compounds. Extensive stud-
ies of pressure-induced phase transformations from the four-
fold coordinated �zinc blend or wurtzite� to the sixfold coor-
dinated �NaCl-type� structures, and from the latter to the
eightfold coordinated �CsCl-type� structures, have shown
that the set of alternative paths might be plenty. Therefore,
the TP sampling procedure inevitably involves a huge
amount of the energy calculations.

For many pressure-induced reconstructive SPT occurring
at room temperature, theoretical estimation of critical pres-
sure obtained from enthalpy equality condition can corre-

spond reasonably to experimental data only if the activation
energy �the height of energy barrier separated the two energy
minima� is sufficiently low. Generally speaking, it is not the
case for the SPTs with relatively high-energy barriers. As a
rule, such SPTs manifest sluggish character: the pressure in-
terval between the onset and the completion of a transforma-
tion is quite large, and the high-pressure phase is quenched
upon pressure release. The wurtzite to rocksalt transforma-
tion in AlN,3 the amorphization in SiO2,4 and the zircon-
scheelite transformation in ABO4 compounds5–7 are ex-
amples. In this case, when thermodynamically metastable
parent phase may persist throughout a wide pressure interval
above Pc, knowledge of the lattice-dynamical properties of
this phase can be very useful in order to correctly predict its
behavior.4,8,9 Indeed, analysis of the phonon spectrum and
elastic modulus makes it possible to reveal incipient
pressure-induced structural instabilities, which can eventu-
ally induce a continuous evolution from one phase to the
other at a pressure higher than Pc. In principle, then, the
optimal path through a transition enthalpy barrier can be
found in this way. Moreover, the role of vibrational states in
phase-transition mechanism can be clarified.

However, not infrequently analysis of the violation of
Born’s stability criteria in an isotropically compressed lattice
is insufficient to understand behavior of this “highly persis-
tent” metastable structure.4 Rather, nonhydrostatic stresses
were found to significantly influence the onset of transforma-
tion. This implies that anisotropic strains might be induced in
abundance in a compressed sample �especially a powdered
sample�, and that the daughter structure might nucleate spon-
taneously around such stress fluctuation domains with no
obvious deformation of the parent phase.

The ZrSiO4 zircon lattice �z phase� is known to undergo a
pressure-induced SPT to a scheelitelike lattice �s phase�
called reidite.10 A series of other ABO4 compounds including
vanadates5 and chromates6 manifest similar behavior, allow-
ing one to suppose that a pressure-induced z−s transforma-
tion is a property common to this family of structures. The
standard crystallographic unit cells of the z phase �D4h
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=bt=6.645 Å, ct=6.015 Å; Z=4� and s phase �C4h
6 ; at=bt

=4.734 Å, ct=10.51 Å; Z=4� of ZrSiO4 are shown in Fig.
1. It is seen that neither zirconium atoms nor the silicon
atoms change their positions in the cell during the transition.
Meanwhile, the oxygen atom arrangement retains the shapes
of the SiO4 and ZrO8 polyhedrons. Such structural similarity
and a clear group-subgroup symmetry correlation between
the lattices suggest that the z−s transformation could be
largely explained as a second-order SPT with the order pa-
rameter belonging to the A2g irreducible representation of the
D4h group, which should involve rotations of the SiO4 tetra-
hedrons. However a more detailed analysis of the experimen-
tal data7,10–17 concerning the structural, thermodynamic, and
mechanic aspects of this transformation supports its first-
order character.

The z−s SPT was observed for the first time in high-
temperature experiments at pressures around 10 GPa.10 The
relevant Clayperon slope dPc /dT was found to be positive,
giving Pc of about 6 GPa at T=0 K.16 At the same time,
room-temperature/high-pressure experiments showed that
the z phase persists at pressures higher than 20 GPa.7,17,18 A
Raman spectroscopy study7 revealed new spectral features
which could indicate the onset of a pressure-induced struc-
tural phase transition at 13 GPa. However, considerable over-
driving in pressure �up to 23 GPa� is needed to complete the
transformation. It was also found that the high-pressure born
s-phase persists upon pressure release but returns quickly to
zircon when heated to 1500 K. Experimental data collected
so far clearly show that the z−s and s−z transformations are
kinetically hindered. This means that the transformation is
governed by the thermodynamic equilibrium condition only
at sufficiently high temperatures where the parent and prod-
uct phases are close to equilibrium and the energetic barriers
associated with these transformations can be easily overcome
due to thermal fluctuations. Both z−s and s−z inversions can
be identified thus as first-order SPTs with rather high activa-
tion entropy and high persistence of the metastable phases.
Theoretical treatment of the inversions, then, should involve
joint analysis of enthalpy barrier and Born’s stability criteria
and should pay particular attention to the role of nonhydro-
static stresses.

Some ABO4 compounds having a zircon or scheelite
structure are important materials in the engineering of solid-
state scintillator detectors, optoelectronic devices, and solid-
state lasers. As for the “father” structure ZrSiO4, it is of great

geophysical interest as an important host mineral for heat
producing radioactive elements in the Earth’s crust.16 It can
be added that zircon is of the great utility in the ceramics
industry, thanks to a series of remarkable thermal and me-
chanical properties: low thermal conductivity, high melting
point, low thermal expansion, and good thermal shock resis-
tance. The compressibility and thermal expansion of zircon
are the lowest among the oxygen-based compounds. In
particular, it was noted that the s-phase ZrSiO4 is one of
the most incompressible compounds containing SiO4
tetrahedral.15

Understanding the nature of the z−s SPT is important
both theoretically and for industrial application. Indeed, this
crystal structure is more complex than the two-atomic ones
widely studied as model systems undergoing reconstructive
SPT. It can be thought that revealing the mechanism for the
z−s transformation would contribute significantly to theory
of the first-order reconstructive SPT at the level of both fun-
damental principles and modeling strategy. Our investigation
into the nature of the z−s phase transition is not the first.
Rather, we would like to argue in this paper that despite a
series of previous theoretical studies,18–21 the question on
microscopic mechanism of this SPT is still very far from
clarity.

II. COMPUTATIONAL METHODS

The results of previous theoretical studies using density-
functional theory �DFT� �Refs. 18 and 19� and the empirical
shell model20,21 were in line with experiment insofar as they
satisfactorily reproduced the equilibrium structures and dy-
namical properties of both polymorphs. In this study, we
used similar computational techniques. The program CASTEP

�Ref. 22� was used for the DFT calculations. We employed
the revised Perdew-Burke-Ernzerhof exchange-correlation
functional23 for generalized gradient approximation.
Monkhorst-Pack grids contained up to 6�6�7 k points to
allow greater accuracy. Core electrons were simulated by
norm-conserving pseudopotentials.24 The shell-model �SM�
potential developed by Mittal et al.21 was used for the lattice
dynamics simulations.

III. RESULTS AND DISCUSSION

A. Stability under pressure

First of all, we studied the role of volume variation which
is usually an important �if not crucial� factor for a pressure-
induced SPTs. E�V� dependencies for both structures as cal-
culated by the DFT and SM methods are shown in Figs. 2�a�
and 2�b�, respectively �E is the potential energy and V is the
specific volume�. These calculations included the geometry
optimization over all structural parameters other than unit-
cell volume. Such calculations are equivalent to simulation
of structural evolution under an external pressure �corre-
sponding pressure values can be determined as the derivative
P=−dE /dV�.

Absolute energy values given by the SM cannot be com-
pared with quantum-mechanical energies derived from ab
initio calculations. However, the SM parameters were ad-

(b)(a)

FIG. 1. Crystal structures of �a� zircon and �b� reidite. SiO4 units
are shown as tetrahedrons, and Zr atoms are shown as balls.
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justed in such a way as to provide reasonable values of en-
ergy variations related to structural variations. In order to
compare results obtained by the two methods, only relative
energy values will be discussed. The zero-energy level is
assigned to the energy of the z phase in its energy minimum
configuration. Thus, the energy values discussed in the paper
correspond to the energy of elastic strains relative to the
absolute energy minimum. Hereinafter this strain energy is
referred to as deformation energy.

It is seen in Fig. 2 that the two Ez�V� and Es�V� curves in
Fig. 2 intersect but never merge. This fact clearly shows that
the two lattices can never simultaneously share three coin-
ciding thermodynamic parameters: potential energy, volume,
and pressure. This fact points to the first-order character of
the SPT.

Since SPT under consideration is induced by increasing
external pressure at room temperature, it can be suggested
that the relevant theoretical modeling can be simplified by
assuming that T=0 K. In such a case, the free energy can be
replaced by enthalpy H=E+ PV. Theoretical estimate of the
critical pressure Pc was obtained from the condition Hz�P�
=Hs�P�. Graphically, this condition is equivalent to the com-
mon tangent construction represented in Fig. 2 by dashed
lines According to the DFT �SM� results shown in Fig. 2�a�

�Fig. 2�b��, the thermodynamic equilibrium condition would
occur at Pc equal to 15 �10� GPa with the z-phase volume
exceeding that of the s phase by 10% �8.5%�, respectively.
However, the enthalpy equality is a necessary but not suffi-
cient condition for SPT. If at P= Pc both structures are me-
chanically stable, the probability of a transformation is deter-
mined by the height of the energy barrier and by the ability
of the system to overcome this barrier.

We studied the effect of volume variation on mechanic
stability of both phases. For this purpose, phonon frequen-
cies and elastic constants have been calculated in a wide
pressure interval. No marked phonon softening was found:
frequencies of all zone-center phonons remain higher than
100 cm−1 at pressures up to 100 GPa. The only exception is
the B2u mode of the z phase. Its frequency goes to zero at 24
�50� GPa according to DFT �SM� calculations. However, this
does not lead to drastic structural reconstruction but to a soft
second-order SPT involving small-scale antiphase rotations
of neighboring SiO4 tetrahedra around the tetragonal axis
and a symmetry change from D4h

19 to D2d
12. Since this SPT is

predicted to occur at rather high pressure and results in minor
alterations of structural and lattice-dynamical properties of
the z phase, we will neglect it in the forthcoming analysis.

The stability of a lattice with respect to homogeneous
deformations was tested by analysis of the eigenvalues of the
elastic constant matrix �hereinafter in this paper these quan-
tities are referred to as the elastic moduli�. It was found that
all the elastic moduli increase with pressure. The only excep-
tion is the C66 modulus in the z phase, which decreases and
then vanishes at P�70 GPa. Therefore, it can be concluded
that in a wide pressure interval extending to pressures much
greater than Pc both structures are mechanically stable. Nei-
ther the experimental data nor the theoretical calculation re-
veals any indication of the disappearance of the z−s energy
barrier under hydrostatic compression or of any predisposi-
tion to instability in response to pressure values as much as
two to three times greater than Pc values observed experi-
mentally or predicted by thermodynamic equilibrium condi-
tion. This means that the potential-energy surface of the
ZrSiO4 lattice in this pressure interval is characterized by a
coexistence of two steep minima corresponding to the two
phases under consideration.

B. Potential surface analysis and transformation path
sampling

Theoretical treatment of the first-order SPT requires iden-
tification of a TP which interconnects the two minima over
the lowest energy barrier possible. To find such a TP, the area
of a potential surface between the two minima must be quan-
titatively analyzed. First, a coordinate space must be chosen
such that the potential surface can be represented in a simple
but physically meaningful manner. In our case, the z−s phase
transition is accompanied by a dramatic variation of the lat-
tice cell parameters but not of relative atomic positions.
Therefore, it is our belief that the potential surface can be
considered in the coordinate space of the unit-cell param-
eters; at any point along the TP, corresponding atomic posi-
tions can be determined by energy minimization. However,
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FIG. 2. Energy versus volume dependencies for the z-phase
�squares� and s-phase �triangles� structures calculated by �a� DFT
and �b� SM methods. Common tangents are shown in the figures as
dashed lines. Points are plotted in intervals of 5 GPa at pressures
ranging from 0 GPa for the z phase and from −5 GPa for the s
phase. Vertical arrows indicate the experimental values of specific
volumes of the two polymorphs at zero pressure.
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even this relatively simple approach was found to be com-
putationally expensive for ab initio calculations, and our
analysis was necessarily limited to SM calculations.

According to the results of Sec. III A, the hydrostatic
pressure cannot play an important role in driving the trans-
formation. Therefore, a potential-surface analysis assuming
P=0 can provide a simple but quite reasonable first approxi-
mation �pressure effect will be considered afterwards�. In
fact, as it is shown below, only two TPs were found warrant-
ing a detailed quantitative analysis.

1. Transformation path A (TPA)

By this term we denote a macroscopic homogeneous de-
formation which directly transforms the tetragonal unit cell
of the z phase with at=bt=6.623 Å and ct=6.164 Å �Fig.
1�a�� into the tetragonal unit cell of the s phase with at=bt
=4.775 Å and ct=10.830 Å �Fig. 1�b��, and vice versa
�hereinafter we cite the values calculated by SM model�. The
ratio �=ct /at was used as a coordinate of transformation for
TPA. We have come from the two terminal points, i.e., from
the energy minimum configurations of the z phase ��
=0.93� and the s phase ��=2.27�, and passed along the TPA
by gradually changing the � value in the interval 0.93��
�2.27, every time optimizing the lattice geometry with re-
spect to all the other structural parameters �keeping P=0�.
This procedure is equivalent to a simulation of structural
evolution under external anisotropic stresses,

S1 = �S,S,− 2S,0,0,0� . �1�

Hereinafter, presentation of the stress vector implies the use
of the six Voigt’s indices. Recall that a positive sign of S
corresponds to external stress extending the lattice. Conse-
quently, the S values in Eq. �1� are positive for s phase and
negative for z phase.

The calculated Ez��� and Es��� curves are presented in
Fig. 3�a�. It is seen that they merge together at ��1.625,
indicating the identity of the structures of both phases at this
point. The frequency of one of the zone-center phonon
modes vanishes at approaching this point from both sides
�see Fig. 3�b��. This mode belongs to the A2g representation
in the z phase and to the Ag species in the s phase. It involves
the in-phase rotations of the SiO4 tetrahedrons around the c
axis. Thus it can be concluded that along TPA at ��1.625
the second-order displacive SPT would occur giving rise to
the D4h−C4h symmetry variation.

It should be emphasized that the point of the summit of
the energy barrier with �=�2 does not correspond to any
particular anomaly. However, this point is of a special inter-
est for us. Actually, for �=�2, the structure of the z phase
can be considered as a cubic lattice with twice bigger unit
cell whose basic vectors relate to those of the tetragonal unit
cell as follows:

a = at + bt, b = at − bt, and c = ct. �2�

Analysis of this cubic structure showed that it corresponds to

the Fd3̄m �Oh
7� space group and can be described as a super-

position of two interpenetrating lattices of ZrO2 and SiO2
isomorphous to �-cristobalit which are shifted one against

another for � 1
200�. This cubic structure can be considered as a

virtual transition state, i.e., a highest symmetry protostruc-
ture which can be smoothly transformed into both polymor-
phs. Calculated potential energy of this structure �2.9516 eV/
molecule� provides us an estimate of activation energy for
TPA.

Hereinafter we shall call the unit cell defined by Eq. �2� as
the c cell and use it as a universal extended unit cell for a
unified description of all the crystalline structures related to
the z- and s-phase lattices along arbitrary TP. According to
our calculations, the c-cell parameters of the cubic Oh

7 struc-
ture of ZrSiO4 are

a = b = c = 8.274 Å, �3�

whereas for the optimized z-phase structure they are

a = b = 9.366 Å, c = 6.164 Å, �4�

and for the optimized s-phase structure they are

a = b = 6.753 Å, c = 10.830 Å. �5�

Since the three mutually orthogonal fourfold rotation axes
of the cubic c cell are equivalent, each of them can theoreti-
cally be considered as a germ of the C4 axis for the z- or
s-phase structures. Thus, when using the unified set of the a,
b, and c vectors, the tetragonal lattices can be specified by
three differently oriented but physically equivalent c cells
corresponding to the three possible directions of their C4
axes. In line with this, the calculated c-cell parameters of the
structures in question can be presented as follows:
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z phase c phase s phase

�6.164,9.366,9.366� �10.830,6.753,6.753�
�9.366,6.164,9.366� ⇔�8.274,8.274,8.274�⇔ �6.753,10.830,6.753�
�9.366,9.366,6.164� �6.753,6.753,10.830�

�6�

To unequivocally determine by which unit cell a given
structure is specified, we shall use the subindices indicating
the orientation of its tetragonal axes �for example, Sa will
denote the s lattice in which the tetragonal axes are chosen
parallel to a�. For example, the considered above TPA trajec-
tory has connected the configurations Zc and Sc and involved
the following variation of the c-cell parameters:

�9.366,9.366,6.164� ⇔ �6.753,6.753,10.830� . �7�

Evidently, the transformations Za⇔Sa and Zb⇔Sb are
equivalent to this.

The relations presented in schema �6� mean that, along
with the just-mentioned three TPA transformations keeping
the orientations of the tetragonal axes, the six other equiva-
lent TPs connecting the configurations with mutually perpen-
dicular tetragonal axes �e.g., Za⇔Sb, Za⇔Sc, etc.� must be
considered. The seven sets of the c-cell parameters given in
schema �6� determine seven points in the configuration space
specified by the a, b, and c vectors. The projections of those
points on the plane orthogonal to the �111� direction of this
space are shown in Fig. 4. They are situated on two circles
�different for the z phase and the s phase� surrounding the C
point corresponding to the Oh

7 cubic lattice.
The potential curve corresponding to the TPA is a cross

section of the potential surface along the line connecting the
points Za−C−Sa �it is shown in Fig. 4 by the wavy line for
better visualization�. Figure 4 clearly shows that the lines

directly interconnecting the nearest neighbors �e.g., Sa and
Zc� represent the six TP other than TPA. Those TP are physi-
cally equivalent and represent an alternative to TPA. We call
this alternative as TPB.

2. Transformation path B (TPB)

In regarding the traces of TPA and TPB in Fig. 4, it is seen
that whereas the former inevitably passes through the C point
related to the maximum of the potential surface, the latter
would go past this point. Moreover, comparing the limiting
points of TPB, e.g., those corresponding to the path Za−Sa,

Zc Sa

�9.366,9.366,6.164� ⇔ �10.830,6.753,6.753�
, �8�

with the analogous points of TBA given by Eq. �7�, one can
see that TPB would involve lesser uniform strains than TPA.
These facts allow us to think that the energy barrier corre-
sponding to the TPB can be lower, and consequently, this
path is more thermodynamically preferable. So it is worthy
of more detailed consideration.

Transformation path B interconnecting the points Zc and
Sa can be quantitatively characterized by analyzing the po-
tential function E�a ,b ,c� in the area of the configuration
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tion. Trajectories of the TPA and TPB transformations are depicted
schematically as dotted curves.
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space surrounding those points. Figure 5 shows the cross
sections of the potential surface by a plane passing through
the points Zc, Sa, and C. This reveals the existence of the two
different potential surfaces. One of them corresponds to
function Ez�a ,b ,c�, which is defined in the vicinity of Zc and
determines the energy of the z-phase structure, and the sec-
ond one corresponds to function Es�a ,b ,c�, which is defined
in vicinity of Sa and determines the energy of s-phase struc-
ture. The areas of definition of these functions correspond to
domains of stability of the two structures with respect to
uniform deformations described by variations of the a ,b ,c
parameters.

It is also seen that these domains overlap. However, the
two surfaces do not merge together but intersect �two points
of intersection are shown in Fig. 5 as P and T�. The common
points thus found belong to the line of intersection. The ex-
istence of such points means that the uniform deformations
as themselves do not imply a necessity of the phase transfor-
mation. Actually, such deformations can result in the z and s
lattices having the same energies and the same unit cells in
which the atomic positions stay inherent to the z-phase and
the s-phase structures.

Thus it can be concluded that in contrast to a “classic”
situation, where the interphase barrier is specified by one
potential surface having two potential wells separated in the
configuration space and one saddle point associated with
transition state, the situation in our study is characterized by
presence of two potential wells with overlapping walls. In
such a situation, the phase transition should arise when a
parent system is impetuously brought by thermal fluctuations
to the boundary of stability in the domain of the coexistence
of the two phases. Then, after crossing the line of intersec-
tion and on approaching the point of instability, the system
could spontaneously transform into a lower-energy phase
structure. Thus, to reveal this effect theoretically, it is neces-
sary to scan over the boundary of stability of the parent
phase in looking for an instability arising at minimal defor-
mation energy. Afterward, the study must be accomplished
by the analysis of the atomistic displacement pattern related
to such instability in order to check that this would drive the
lattice to the daughter structure.

The z-phase and s-phase structures, being deformed via an
arbitrary variation of the abc parameters, reduce their start-
ing symmetries from tetragonal D4h

19 to an orthorhombic D2h
24

and from tetragonal C4h
6 to monoclinic C2h

6 , respectively. It is
important that for the s-phase structure, this symmetry reduc-
tion gives rise to nonvanishing cross terms between the U1,
U2, and U3 deformations related to variation of the abc pa-
rameters and one of the shear strains. For the s-phase struc-
ture taken within the Sa setting it is the U4 deformation. This
strain was included in the relaxation procedure: for any set of
the abc parameters, the s-phase structure was optimized not
only with respect to atomic positions but also with respect to
� angle between vectors b and c. The calculations revealed
that the � angle variation does not exceed �4° within the
whole domain of stability of the s phase, and thus the rel-
evant effects can be neglected. It is important to note that the
direct group-subgroup relation occurs between the D2h

24 and
C2h

6 symmetries, and that the distortion transforming the
orthorhombic z lattice into the monoclinic s lattice would

belong to the B3g representation of the former lattice.
The complementary information is available if we take

into account that the constant pressure condition imposes a
constraint on possible variations of the a ,b ,c parameters. If
two new independent variables, �=a /b and �=c /b, are in-
troduced and if the TPB is considered in the �� ,�� space, the
points C, Zs, and Sa are specified by coordinates �1,1�,
�1,0.658�, and �1.603,1�, respectively. The potential energy
of z-phase Ez�� ,�� calculated at P=0 is shown in Fig. 6�a�.
It is seen that the potential valley of the z phase is markedly
elongated toward the Sa point. The line of intersection corre-
sponding to the condition Ez�� ,��=Es�� ,�� is shown by the
bold line.

The area in Fig. 6 covered by isoenergetic lines approxi-
mates to the domain of stability of the z-phase structure.
According to the model calculations of phonon frequencies
and elastic modulus, various types of the lattice destabiliza-
tion can be found on approaching to any point on the bound-
ary of this area. The instabilities which arise at lowest defor-
mation energy are situated near the point where the boundary
crosses the Zc−Sa line �see the dashed lines in Fig. 6�a��.
They correspond to the soft-mode behavior of the lattice vi-
bration related to the in-phase librations of the SiO4 tetrahe-
drons. It is significant that such structural distortion is ex-
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actly what is anticipated for the transformation of the Zc
structure into the Sa structure. The point R in Fig. 6�a� cor-
responds to the point of instability of the z-phase structure
with minimal deformation energy. Thus, a trajectory which
comes from Zc point and arrives in R point could be consid-
ered as TPB with minimal energy barrier.

The stress tensor calculated for the R-point structure is
�0,−2.6,2.6,0 ,0 ,0� GPa. This suggests that such a structure
may results from the initial z-phase structure in response to
external anisotropic stress,

S2 = �0,− S,S,0,0,0� . �9�

The calculations �see open circles in Fig. 6� show that the
structural evolution, corresponding to external stresses �9�
with gradually increasing S values, results in configuration
trajectory which passes near the bottom of the potential val-
ley and arrives to the point R Therefore, a detailed analysis
of the structural and lattice-dynamical property variations
along this trace can provide insight into the microscopic
mechanism of the Zc−Sa transformation.

Theoretically, a structure corresponding to external
stresses defined by Eq. �9� would provide a minimum of the
Ez�� ,�� function with respect to � at fixed �. So, variable �
can be considered as a coordinate of transformation. The
calculated Ez��� dependency is shown in Fig. 7�a� by
squares. This trajectory crosses the line of intersection of the
two potential surfaces at �=0.87. This means that for greater
� values, energies of the s-phase structures with the same
abc parameters �see triangles in Fig. 7�a�� are lower. Hence,
these structures are thermodynamically more preferable.

The crucial factor triggering the process of the z−s trans-
formation was clarified by the results presented in Fig. 7�b�.
These show �see open circles in Fig. 7�b�� that increasing �
would cause one of the Raman-active vibrational mode,
namely, that corresponding to the SiO4 tetrahedron rotations
around the axes parallel to �100�, to soften and eventually to
vanish at �=0.92. In the initial z-phase structure this mode
belongs to the Eg representation of D4h

19 symmetry group. In
the strained D2h

24 structure it belongs to the B3g representation.
Theoretically, such a mode must be coupled with the U4
strain, and its softening would drive the lattice unstable
against this strain.25 In line with this, our calculations show
that the C44 elastic module vanishes at Q point corresponding
to �=0.90 �see black circles as given against the left-hand
axis in Fig. 7�b��. This means that the Q point should be
considered as the critical point at which the z structure ceases
to be stable against the U4 shear deformation distorting the
orthorhombic unit cell into a monoclinic one, which would
be accompanied by the atomic rearrangement process whose
onset is mainly related to the eigenvector of the B3g soft
mode.25 The atomic displacement pattern corresponding to
this process can be termed as an internal z−s transforma-
tions, whereas the preceding uniform deformation of z-phase
lattice from the initial stress-free configuration up to point of
the lattice destabilization—as an external z−s transforma-
tion.

According to our calculations, the deformation energy at
Q point is 1.497 eV/molecule. This value can be considered
as activation energy for the z−s transformation at P=0. Ful-

fillment of the condition Ez���=Es���, which takes place at
�=0.87, corresponds to a deformation energy of 1.202 eV/
molecule. This value can be interpreted as energy of the ex-
ternal z−s transformation. The difference Ez�0.90�
−Ez�0.87�=0.295 eV /molecule can be related to the energy
required for initiation of the internal z−s transformation.

According to experimental data, the z−s transformation
occurs at room temperature only upon hydrostatic compres-
sion up to about 20 GPa. This may mean that hydrostatic
compression is capable of lowering the z−s energy barrier
enough that it can be overcome even at such a low
temperature.7 The effect of pressure on stability of the z
phase with respect to finite-scale strains was considered
within our model treatment. Figure 6�b� shows the Ez�� ,��
function calculated at P=20 GPa. When comparing Figs.
6�a� and 6�b� one can see that the points Zc and Sa approach
each other with increasing pressure, and simultaneously both
the stability domain and the potential-well depth diminish for
z phase. The TPB trajectory at P=20 GPa stays rather simi-
lar to that at P=0. According to our calculations, the above
discussed instability �C44↘0� at P=20 GPa arises at a de-
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formation energy of 1.021 eV/molecule, which is about 30%
lower than at P=0. Although it is still higher than thermal
energy at room temperature, the tendency toward lowering
the activation energy with increasing pressure is well dem-
onstrated. It is worth emphasizing that at P=20 GPa the
conditions C44=0 and Ez���=Es��� are fulfilled at about the
same � values. Thus, it can be concluded that at P
=20 GPa the onset of the internal transformation does not
require any additional energy input. It occurs immediately
after completion of the external transformation.

As for the s-phase structure, the model calculations al-
lowed us to conclude that the minimal energy instability in
s-phase structure �taken in Sa configuration� is induced by
the shear stress which obeys the Eq. �9� with S	0. Upon
decreasing S value the s-phase structure evolves along con-
figuration trajectory which passes in vicinity of the Sa−Zc
line. The elastic instability arises at deformation energy equal
to 0.81 eV/molecule. This value must correlate with the ac-
tivation energy for the s−z transformation. As it was men-
tioned above, the s phase, which may exists at zero pressure
as a metastable phase, returns into the z phase after being
heated up to T=1500 K.7 This temperature corresponds to
thermal energy of 0.77 eV/molecule. This denotes a good
accord between theory and experiment. As a final point of
this analysis it can be inferred that the Zc−Sa trajectory via

the Q point passes the lowest-energy barrier separating the z
and s structures. This unequivocally means that the relevant
TPB should be considered as the most probable TP for the
z−s transformation.

C. Atomistic pattern of transformation

Different stages of the atomic arrangement evolution
along TPB are represented in Figs. 8�a�–8�d�. Fragments of
the unit cells of the Zc and Sa structures in their initial stress-
free configurations are shown in Figs. 8�a� and 8�d�, respec-
tively. The same structures at a critical point Q just before
and after the z−s internal transformation are shown in Figs.
8�b� and 8�c�. For transparence, only one of the SiO4 tetra-
hedrons with surrounding Zr atoms is shown, thus allowing
us to see how the coordination spheres around oxygen atoms
change along the TPB �the notation of the atoms is given in
Fig. 8�c��.

The first stage of z−s transformation, which has been
termed above as external deformation, is represented in Figs.
8�a� and 8�b�. It can be seen that the Zc lattice at the critical
point is extended along the c axis and contracted along the b
axis as compared with its initial configuration. Such a varia-
tion of the cell’s shape results in a distortion of the SiO4
tetrahedrons accompanied by a marked shortening of the
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FIG. 8. �Color online� View along the TPB of c cells of various structures: �a� stress-free z phase, �b� z phase at a critical point before
internal transformation, �c� s phase at a critical point after internal transformation, and �d� stress-free s phase. Only one of the SiO4

tetrahedrons is shown. Zr-O bonds shorter and longer than 2.5 Å are shown by solid and dashed lines, respectively. Eigenvector of the soft
mode is shown by arrows in �b�.
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O1-O2 edges, which, indeed, must destabilize the structure.
One more source of the destabilization can be revealed in a
lengthening of the Zr1-O1 and Zr1-O2 bonds �dashed lines
in Fig. 8�b�� so that these Zr¯O separation exceeds the
lengths typical for Zr-O chemical bonding. These two factors
cause the B3g mode mentioned in Sec. III B to soften, thus
inducing the z−s transition. The eigenvector of this mode is
shown in Fig. 8�b� by arrows, and its detailed analysis can
give us a key to understanding the microscopic mechanism
of the transition.

First, we note that the lattice being deformed along this
eigenvector loses the symmetry operations necessary to keep
the O1 and O2 atoms equivalent. Furthermore, this shortens
the Zr1¯O1 contact, thus retaining a length typical for a
Zr-O valence bonding and putting the O1 atom in the posi-
tion which is characterized, as in initial stress-free state, by
the existence of the three valence bonds: Zr1-O1, Zr3-O1,
and Si-O1. At the same time, exceptionally intriguing situa-
tion arises with atom O2. Actually, the Zr1-O2 bonds break,
and the O2 atoms, being connected by only two valence
bonds �Zr4-O2 and Si-O2�, may freely move to elongate the
O1-O2 contact. In doing so, the O2 atom approaches the Zr2
position thus resulting in formation of a new Zr2-O2 valence
bond. In fact, this is a crucial moment of the z−s conversion.

The optimized atomic positions arising in course of this
process which we have called internal z−s transformation
are shown in Fig. 8�c�. It is clearly seen that the new atomic
arrangement thus formed is very close to that of the Sa struc-
ture �shown in Fig. 8�d��. Figures 8�c� and 8�d� show the
final stage of transformation which can be specified as an
external s-phase relaxation. Similarly, the inverse s−z trans-
formation may be illustrated by a consequence of Figs. 8�d�–
8�a�.

The detailed quantitative analysis shows that the rupture
of a quarter of the Zr-O bonds accompanied by the formation
of the others, which we call as bond-switching process, is a
central point of the transformation from the energetic point
of view. The anatomy of this process may be illustrated by
analysis of the Zr-O bond-length variation along the TPB
trajectory. Figure 9 shows the � dependencies of Zr-O bond
lengths. One can see that in the initial z-phase configuration
every Zr atom forms eight Zr-O bonds: four relatively
shorter ones, Zr3-O1 and Zr4-O2, and four relatively longer
ones, Zr1-O1 and Zr1-O2. The elastic strain, which is con-
sidered as driving force of the transformation, forces the
longer Zr-O bonds to lengthen more thus making the lattice
unstable against the U4 strain. This instability triggers a
spontaneous internal transformation which makes the
Zr1-O1 and Zr1-O2 bonds nonequivalent: the first ones
shorten down to 2.27 Å and the second ones elongate up to
3.17 Å are broken.

An opposite variation is manifested by the Zr2-O1 and
Zr2-O2 distances: being rather long �4.06 Å� in the initial
z-phase structure, their shorten to 3.43 Å at the critical
point. The spontaneous internal transformation forces the
Zr2-O1 contacts to lengthen and the Zr2-O contacts to
shorten markedly, thus providing a “germ” to formation of
new Zr-O valence bonds, which “substitute” the broken ones.
A joint consideration of Figs. 8 and 9 allows us to conclude
that the central act of the internal z−s transformation consists

in a concerted displacements of O2 atoms from Zr1 atoms to
Zr2 atoms, accompanied by breaking the Zr1-O2 bond and
by the formation of the Zr2-O2 bond.

On considering Fig. 8�b�, it can be understood that TPA
transformation scenario, which retains orientation of the C4
axis and equivalence of O1 and O2 atoms, implies substitu-
tion of the Zr1-O1 and Zr1-O2 bonds by the Zr2-O1 and
Zr2-O2 bonds. Thus, it can be concluded that the TPB sug-
gests two elementary bond-switching acts per every Zr atom
�or per every SiO4 tetrahedrons�, whereas the TPA transfor-
mation necessitates four elementary bond-switching acts per
every Zr atom and therefore is energetically more expensive.
This seems to be in line with the fact that the latter transfor-
mation is found to be energetically twice as expensive as the
former �cf. Figs. 3�a� and 7�a��.

IV. SUMMARY AND CONCLUSIONS

In accordance with experiment, the DFT and SM simula-
tions of the two crystalline polymorphs of ZrSiO4, zircon and
reidite, have shown that at P=0 the potential energy of zir-
con is lower than that of reidite, whereas the specific volume
is 10% greater. The energy difference was estimated at 1.3
and 0.36 eV/molecule by DFT and SM calculations, respec-
tively.

The results of the calculations performed for increasing
hydrostatic compression were also in line with experimental
evidence. Indeed, they showed that above a pressure esti-
mated at 15 and 10 GPa �by DFT and SM, respectively�, the
reidite structure is thermodynamically preferred since its en-
thalpy becomes lower than that of zircon. However, no
lattice-dynamical factors which could trigger the z−s trans-
formation were revealed in this manner. Indeed, even at pres-
sure reaching 70 GPa, neither of the polymorphs was found
to be mechanically unstable to undergo this structural con-
version. This result allowed us to conclude that it is not
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necessarily hydrostatic compression which directly inspires
the z−s phase transformation. Rather, it was suggested that
this phenomenon could be induced by anisotropic strains,
which push the system to the limits of mechanical stability.
These strains may result from nonhomogeneity of stress dis-
tribution arising in real crystals in high-pressure experiments
which deal with synthetic powderlike samples17 or with im-
pure natural samples.7 These anisotropic strains could bring
the system toward the border of mechanic stability. It is logi-
cal to expect that these strains would correspond to transfor-
mation path of the lowest-energy barrier and thus of the low-
est activation energy. So, it is not surprising that they were
found to be shear strains. According to our results, such a
strain in zircon corresponds to the lattice extension along the

�110� or �11̄0� directions with simultaneous contraction
along the �001� direction. In reidite, this strain corresponds to
the U6 shear deformation.

Our calculations show that at the critical values of these
strains, one of the eigenvalues of the elastic constant matrix
vanishes, and the lattice undergoes spontaneous homoge-
neous deformation accompanied by internal structural reor-
ganization. During this process, half of the oxygen atoms
displace by about 1 Å from their initial positions. Conse-
quently, quarter of Zr-O bonds are broken, and new bonds
are formed such that the atomic arrangement characteristic of
one phase is transformed into the atomic arrangement char-
acteristic of the other. This bond-switching process results in
drastic alternations inside the ZrO8 polyhedrons, which is a
central point of the z−s and s−z transformations.

Since a major part of our calculations were based on the
empirical shell-model treatment, we wish to underline here
some points which argue for the logical transparency and
objectiveness of our results. Actually, the correlation be-
tween the sets of the units cell parameters of two lattices
offers, in a model-independent manner, only two possibilities
to interconnect the corresponding points in configuration
space. Refusing a possibility of the phase transition through
amorphization, it must be objectively established that this is

associated with the anisotropic macroscopic deformations
considered in this study. If so, the structural evolution be-
tween initial and final structures may pass either in a direct
D4h

19 −C4h
6 way or via an intermediate crystalline structures

having symmetries which are either higher or lower than
those of both end structures.

Taking into account that both end structures have center
of inversion, it can be assumed that this symmetry invariance
is retained in the course of such an evolution. Therefore, by
using the table of correlation between the symmetries of the
32 crystallographic classes, one can readily find only one
pathway for the z−s transition via an intermediate structure
of higher symmetry, namely, D4h−Oh−C4h. In a similar man-
ner, only one pathway can be found for the transition via the
lower symmetry structures, namely, D4h−D2h−C2h−C4h.
The two transformation pathways considered in the present
paper correspond to these two scenarios of the symmetry
evolution.

Finally we wish to point out that the comparison of the
z-phase and s-phase structures presented in their standard
crystallographic orientations should necessarily confuse a
reader since, according to the most probable scenario of the
transformation, the tetragonal fourfold c axis of the scheelite-
like lattice derives from one of the twofold axes lying in the
ab plane of the zircon lattice. Thus, comparison of the unit
cells in Fig. 1 should, indeed, have misleading consequences,
which was intuitively predicted more than 20 years ago by
Kusaba et al.13
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