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We analyze the phase diagram of a quantum particle confined to a finite chain and subjected to a dissipative
environment described by an ohmic spectral function. Analytical and numerical techniques are employed to
explore both the perturbative and nonperturbative regimes of the model. For small dissipation of the coupling
to the environment leads to a narrowing of the density distribution and to a displacement toward the center of
the array of accessible sites. For large values of the dissipation, we find a phase transition to a doubly
degenerate phase, which reflects the formation of an inhomogeneous effective potential within the array.
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I. INTRODUCTION

The problem of a quantum particle interacting with an
environment deserves special attention since it has implica-
tions in fundamental areas such as quantum measurement
theory, quantum dissipation, and quantum computation,
among others. A quantum particle interacting with an envi-
ronment consisting of a continuum of degrees of freedom
�the Caldeira-Leggett model�1 is actually the simplest model
that can be used to study the destruction of quantum coher-
ence and the emergence of classical behavior in the frame-
work of quantum mechanics.

It is generally believed that the Caldeira-Leggett model
captures the essential features of the behavior of more com-
plicated open quantum systems. Therefore, its study as a toy
model can be justified even if it is not connected to any
particular experimental realization. However, some exten-
sions of this model are known to be relevant in real systems,
for instance, when analyzing dephasing in a qubit2 or in a
dissipative Josephson junction.3 Another application recently
pointed out is the study of the decoherence induced in me-
soscopic systems by external gates.4–6 This can be seen as a
consequence of Caldeira-Leggett model reproducing the
long-time dynamics of particles interacting with ohmic
environments.7

Three variations of this model have been particularly well
studied. �i� The dissipative two-level system,8–11 which is
probably the most analyzed model in the context of quantum
computation, being the archetype of a qubit in the presence
of a bath.12 �ii� A particle moving in a periodic potential,13,14

in a magnetic field,15 and in both a periodic potential and a
magnetic field.16,17 The case of a dissipative particle in a
periodic potential is relevant to the study of defects in Lut-
tinger liquids,18 while the case with both a magnetic field and
a periodic potential applies to a junction between more than
two Luttinger liquids.19 Finally, �iii� the dissipative free
particle20,21 is of interest in the study of quantum Brownian
motion. In the first two cases the system undergoes a phase
transition, for a critical value of the coupling to the bath, to a
phase where the particle is localized. This kind of transition,
which belongs to the general class of boundary quantum

phase transitions,22 has been studied in the literature with
many different approaches including path integral, renormal-
ization group, and variational ansatz.

In the present work, we study the phase diagram of a
particle confined to a finite tight-binding chain coupled to an
ohmic dissipative environment through its coordinate vari-
able. This is the simplest intermediate instance between two
of the limiting cases described above: the dissipative two-
level system and a particle in an infinite array. It represents a
quantum particle interacting with an ohmic reservoir whose
motion is restricted to a finite region. As discussed in detail
below, the inclusion of the hard wall boundary conditions
introduces inhomogeneities in the density distribution of the
particle and it yields a nontrivial phase diagram, with a quan-
tum critical point, which can be characterized in detail by
using numerical techniques.

This paper is organized as follows: First we describe the
model and briefly review the main results of related models
obtained in the past. Then, we discuss the main techniques
employed to analyze the ground state of the system. The
calculated phase diagram is discussed as well as the way
various observable quantities are affected by the dissipation.
Section V of this paper summarizes the main results of the
work.

II. MODEL

As we have noted above, the model we address is that of
a particle coupled to a dissipative bath, which can hop be-
tween M sites. The Hamiltonian reads

H � Hkin + Hbath + Hint + Hct,

Hkin � − t�
m=1

M

cm
† cm+1 + H.c.,

Hbath � �
k��c

kbk
†bk,

Hint � �q �
k��c

�k�bk
† + bk� ,
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Hct � �2q2 �
k��c

1. �1�

Here t is the hopping between the nearest-neighbor sites and
� is the strength with which the bath couples to the position
of the particle q��m�m−m0�cm

† cm, where m0 labels the cen-
ter of the chain. The bath is characterized by a high-energy
cutoff �c. The last term of the Hamiltonian is a counter term
introduced in order to preserve the degeneracy between the
energies of the different sites. We assume that the coupling
leads to ohmic dissipation, so that

J��� = ��2 �
k��c

k��� − k� = 2�����, for � � �c, �2�

where ���2 / �4�� and J��� is the spectral weight function.
Through a unitary operation the Hamiltonian can be trans-

formed into one in which all sites are treated on the same
footing because the transformed bath couples to the intersite
hopping. In order to arrive at this form, which can be useful
in the study of the phase diagram, we use the transformation

U=e−�q�k1/�k�bk
†−bk� on the Hamiltonian, yielding13,23

H = �
k��c

kbk
†bk − t�

m=1

M

�cm
† cm+1e−��k1/�k�bk

†−bk� + H.c.� . �3�

Hamiltonians �1� and �3� contain two limiting cases of inter-
est. The case �=0 is that of a confined particle decoupled
from the bath. The Hamiltonian is readily diagonalized and
the ground state corresponds to a particle delocalized with a
density �m= 2

M+1sin2� �m
M+1 �. On the other hand, the case t=0

corresponds to a particle without kinetic energy. From
Hamiltonian �3� we see that the ground state is M-fold de-
generate in the subspace of site states adiabatically dressed

by a cloud of bosons, �m	 � e−m��k1/�k�bk
†−bk��0	. In general, we

will be mainly interested in generic values of the parameters
t and � of the Hamiltonian. Here, the bath can be regarded as
performing repeated measurements of the position of the par-
ticle, localizing it in the sites basis as opposed to the kinetic
term, which tends to delocalize it. As in the dissipative two-
level system and the dissipative particle in a periodic poten-
tial, the phase diagram is expected to reflect the two oppos-
ing tendencies through a quantum phase transition.

In this work we will analyze the regime t	�c, where we
expect that the low-energy properties will depend only on the
dimensionless parameters t /�c and �. Notice that in the con-
tinuum limit, M 
1, where the couplings satisfy �	1; the
model should reduce to a particle described by an effective
mass in a dissipative environment, which admits a complete
analytical solution.20 For larger couplings we expect, as men-
tioned, a phase transition as seen in related models. To ana-
lyze this region we will concentrate in a small number of
sites ranging between two and six, where both numerical and
analytical calculations are easier to perform.

III. CALCULATIONS

A. Preliminary remarks

The existence of a phase transition for a large enough
strength coupling can be seen simply by normal ordering of

Hamiltonian �3�. This operation, which can be regarded as a
resummation of an infinite series of tadpole diagrams for the
interacting vertex,23 gives a renormalized hopping tren

= te−�2/2�k1/k. Performing the summation we can write from
this expression a flow equation for the hopping parameter in
terms of the cutoff of the bath, giving the celebrated result,24

d

d log �c

���c�

�c
� = �� − 1�

���c�
�c

, �4�

From this equation it follows that a phase transition exists for
�=1 from a regime in which tren is finite to another where
this quantity is effectively renormalized to zero, thus sup-
pressing quantum fluctuations. In general, however, this is
not the whole story and more precise calculations are needed
in order to get the right critical line, which can have a de-
pendence on the hopping parameter. This is the case, as is
well known, for the dissipative two-level system, where the
transition is shown to be of the Kosterlitz-Thouless �KT�
kind25 when higher corrections to the flow equations are
computed.8,9,23 On the contrary, for the dissipative particle in
a periodic potential, there are no higher-order corrections to
the flow equations and the transition line in the �-t phase
diagram is vertical.26

A similar analysis can be tried for the dissipative confined
particle, but the computation of higher-order corrections to
the transition line is very tedious because of the large number
of coupled flow equations that must be analyzed. This is due
to the lack of symmetries of this model �only parity is pre-
served�, which generates an important number of counter
terms that must be taken into account in the critical region
close to �=1. In particular we can have higher charges of the
form

tl�
m=1

M

�cm
† cm+le

−�l�k1/�k�bk
†−bk� + H.c.� ,

where l�1, generating next-to-nearest-neighbor hoppings
and beyond in the low-energy theory. However, by normal
ordering, this term is shown to be irrelevant close to the
transition. Also, a renormalization of the potential can be
expected, �m=i

M vmcm
† cm, with vm=v−m in order to preserve par-

ity symmetry. And finally, a renormalization of �, which we
do not show here. The complexity of the problem justifies
the application of numerical techniques such as the numeri-
cal renormalization group �NRG�, which deals with the
whole effective low-energy Hamiltonian.

B. Variational ansatz

Some deeper insight into the physics of the problem can
be obtained by using a generalization of the variational an-
satz proposed by Silbey and Harris,27

�G	 = eq�kfk/k�bk
†−bk��0	 � �

m

cm�m	 . �5�

For the application to our problem, we have enlarged the
original set of variational parameters �fk� in order to include
the on-site amplitudes of the wave function cm. Without loss
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of generality, the latter are taken real. The energy of the
above proposed ground state is

EG = 2tren�
m

cm+1cm + �q2	Gg , �6�

where we have defined tren� te−1/2�kfk
2/k2

and g��k��+
fk
�k

�2.
The minimum condition imposes the following set of equa-
tions:

tren�cm+1 + cm−1� + 
g

2
�m − m0�2 − EG�cm = 0, �7�

tren
fk

k2�
m

cm+1cm − �q2	G �

�k
+

fk

k
� = 0. �8�

The first set of equations can be seen as those of a particle in
a chain with renormalized hopping tren and moving in a sym-
metric parabolic potential vm=g�m−m0�2 /2. The second
equation is a self-consistent condition for the parameters fk,
once we have determined the lowest EG and the correspond-
ing set of cm from Eq. �7�.

1. Results

The solution of these equations gives a phase transition
for the critical coupling �c=1 as expected from Sec. III A.
For ��1 the particle is not localized, as tren is nonzero, but
a certain degree of localization at the center arises from the
existence of the potential term g. In the limit

tren

�q2	G
	�c, this

factor is given by g=−2
tren

�q2	G
��mcm+1cm. As the coupling

strength approaches the critical value, the localization of the
particle in the central site becomes sharper as can be seen in
Fig. 5 for a chain of five sites. In this figure the position
mean square of the particle is plotted as a function of the
coupling strength. At the critical point the particle is com-
pletely localized in the center as a consequence of the renor-
malization to zero of the hopping parameter and the appear-
ance of the confining potential.

For ��1 the particle gets localized, with tren=0, and an
M-fold degenerate ground state �in which the parity symme-
try is broken� is predicted. This is actually the result of solv-
ing exactly the Hamiltonian �3� in the limiting case t=0 as
discussed in Sec. II. The transition line predicted by this
approach is vertical, not having any dependence on the hop-
ping parameter. A phase diagram containing these features is
shown in Fig. 1.

The variational calculation shows that despite the
Caldeira-Leggett model includes a counter term to ensure
homogeneous dissipation, the boundary conditions are re-
sponsible of some nonhomogeneous effects such as the cre-
ation of an effective parabolic potential, which confines the
particle at the center. However, as we will see in Sec. III C,
the numerical results suggest that the situation close to the
critical point is more complicated, with other inhomoge-
neous terms playing an important role in the solution.

C. Numerical renormalization group

In order to include higher-correlation effects, it is neces-
sary to go beyond the variational solution. A powerful

method to study quantum impurity problems is Wilson’s
NRG.28,29 Originally conceived to deal with fermionic envi-
ronments, it has been recently adapted to handle bosonic
baths.30,31 Bosonic environments can also be analyzed using
the well-known correspondence between bosons and fermi-
ons in one dimension,32–35 used, e.g., in the study of dissipa-
tive gates.36,37 However, the fermionic model covers only a
part of the bosonic one as the dissipation strength is limited
to the range 0���1. Exactly because of this fact, we use
the bosonic version of the problem.

When working with bosonic degrees of freedom, we use
the so-called star-NRG �Ref. 31� method, schematically
shown in Fig. 2. As opposed to the conventional “chain”
NRG, this version allows us to deal with the counter term in
the Hamiltonian. This issue arises due to the fact that the
counter term, which only involves particle operators, is of
the order of the cutoff. In the chain NRG, the Hamiltonian is
transformed in such a way that all the particle dependence is
included in the first iteration of the algorithm. The inclusion
of the counter term here requires much greater precision in
the calculations as opposed to the star NRG, where it is
included iteratively. This is no longer the case in the absence
of the counter term as shown in Ref. 38. There the authors
used the chain NRG to study dissipative exciton transfer.

The star-NRG method is based on the introduction of a
different basis of bosonic states for which the couplings to
the particle decrease exponentially as −n, where  is a scal-
ing factor between 2 and 3 and n labels the bosonic sites.
Then, the Hamiltonian is diagonalized iteratively, adding a
new bosonic site in every step.

The basis is truncated with both an upper cutoff in ener-
gies, which is progressively reduced in each iteration with
the scaling factor , and an upper cutoff in the occupation

0 0.5 1 1.5 2
α
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t 1 2 3 4 5
m

0
0.1
0.2
0.3
0.4

ρ m

1 2 3 4 5
m

0.1

0.15

0.2

0.25

ρ m

α=0.1, t= 0.01

α=1.2, t= 0.01

FIG. 1. �Color online� Phase diagram predicted by the varia-
tional calculation for a chain of five sites. The model shows a phase
transition at the critical coupling �c=1, where the parity symmetry
is broken. For ��1 there is a delocalized phase, with tren finite and
an effective quadratic potential dependent on the coupling strength,
that is responsible for the increasing localization of the particle at
the central sites. For ��1 there is a localized phase, with tren=0,
and an M-fold degenerate ground state is predicted. Notice that, in
the variational approach, a similar phase diagram is predicted for a
chain of six sites.

PHASE DIAGRAM OF THE DISSIPATIVE QUANTUM… PHYSICAL REVIEW B 78, 085439 �2008�

085439-3



number of the bosonic sites. The first one is chosen to have a
number of kept states in each iteration of Ns=100–120,
while for the second we let Nb=30–40 bosons per site. We
check that the procedure gives well-converged results, re-
gardless of the chosen truncation parameters.

We exploit the parity symmetry of the Hamiltonian in the
code, both for reducing the size of the matrices to be diago-
nalized and for minimizing numerical errors. Let � be the
parity operator, under which the operators of the Hamiltonian
transform as

�cm
† �† = c−m,

�bk
†�† = − bk

†,

�q�† = − q . �9�

Bosonic states have a well-defined parity, ��bk
†�nb�0	

= �−1�nb�bk
†�nb�0	. The particle states must be rotated to the

basis of eigenstates of parity, cm,p= 1
�2

�cm+ pc−m�. For M odd
the central site is always guaranteed to be a parity eigenstate.
The states used to diagonalize the NRG Hamiltonian at zero
iteration are then �m , p ;nb ; P	, with total parity P= p�−1�nb

being a good quantum number. The total Hamiltonian then
splits into two separated sectors of well-defined total parity,
reducing by two the size of the matrices to be diagonalized.
The same is shown to be true at iteration N+1, where the
total parity states �r , p ;nb ; P	N+1 are constructed adding a
new bosonic site to the eigenstates at iteration N with parity
p. The matrix elements of the NRG Hamiltonian verify, in
this basis,

�r�,p�;nb�;P��HN+1�r,p;nb;P	 � �P,P�.

The output of the NRG procedure are the flows of the
lowest-lying energy states as the cutoff is reduced iteratively.
At some point the flows are expected to converge to stable
�low-energy� fixed points. The effective Hamiltonian can be
reconstructed analyzing the evolution of those flows as well
as the evolution of other observables of the system. Here we
will use the evolution of the averaged position of the particle
�q	N and its mean-squared deviation �q2	N, evaluated in the
ground state. Those flows are enough to characterize the dif-
ferent phases of the system.

1. Results

In this paper we analyze chains with a number of sites
ranging between two and six. For two sites the NRG repro-
duces the phase diagram of the dissipative two-level system
as was shown by Bulla et al.31 For larger chains and small
dissipation, the results are in quantitative agreement with the
variational solution �see below�, predicting a delocalized
phase with renormalized hopping and a renormalized poten-
tial, which tends to localize the particle at the center as the
coupling strength is enlarged. As far as the phase transition is
concerned, the case of M =3,4 does not deviate too much
from the dissipative two-level system. In both cases there is
a phase transition in which tren=0, but for M =3 the parity
symmetry is not broken because the particle is localized at
the center. For M =4 the phase transition is that of the dissi-
pative two-level system, the edge sites being decoupled in
energy from the central ones. This is all in contrast to the
variational solution, where a transition to an M-degenerate
state is predicted.

Of more interest are the cases of M =5,6. Here a different
behavior is observed, which should be representative of the
one expected for larger chains. The energy flows for small
and large dissipations are shown in Figs. 3 and 4. Again,
weak dissipation induces some localization at the center of
the array of the particle density as can be seen in the inset of
the figures, where �q2	N is computed. As mentioned above, in
this regime the results agree quantitatively with the varia-
tional solution as shown in Fig. 5, where the mean-squared
position of the particle is calculated in both approximations
for a chain of five sites �a similar plot can be obtained for six
sites, the main difference being that the mean-squared posi-
tion tends to a finite value for �→1, having two states in the
center instead of one�.

The differences between the localized phase predicted by
the variational calculation and the NRG are even sharper for
those longer chains. Above a critical strength coupling �c of
order one, we find a doubly degenerate state for odd and
even number of sites in which the parity symmetry is broken.
For M =5 the particle localizes next to the center, while for
M =6 it does initially in the central sites and for larger dis-
sipation in the next to the center ones. This result follows
from analyzing the degeneracy of the ground state, extracted
from the energy flows, as well as the evolution of the mean-
squared position operator. The converged values of the latter
can be used to make an ansatz of the sort of ground-state
density matrix to which the flow converges.

a0

a0

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

...

a

b

aa1 2 3a

t t t t t

...

FIG. 2. Sketch of the star-NRG Hamiltonian used in this work.
�a� Every bosonic site an couples to the particle. In each iteration a
different site is added and the resulting Hamiltonian is diagonalized,
giving the energy spectrum. �b� The particle Hamiltonian coupled to
the first bosonic site. Notice that the structure of the couplings is the
same for the rest of bosons. See the text for more details on the
calculations.
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In Table I, the zoo of stable fixed points of the model is
shown for chains of M =5,6 sites. In the case of M =6 there
is an extra fixed point in the localized regime, corresponding
to a situation in which the particle finds more favorably to
get localized in the sites next to the edges than next to the
central sites. This second transition also occurs for a critical
value of the coupling strength, but there is neither a symme-
try breaking nor a change in the degeneracy of the ground
state. Thus, the information provided by NRG is not enough
to fully characterize the nature of this phase transition.

This is not the only limitation of the numerical method. It
also does not allow us to study large values of the dissipa-
tion, �
1, as the occupancies of the bosonic states become
high. The question of whether other phase transitions can be
ruled out for high values of � remains open and deserves a
separate study with different techniques.

From the energy flows, some extra information can be
extracted. In the delocalized phase, a single energy scale
seems to be playing a part in the evolution from high-energy
to low-energy behaviors. Actually, the flow in this phase is
similar to that in the dissipative two-level system and in the
same way we can define a crossover scale T��−N�

from the
iteration N� at which the flow changes from its initial behav-
ior to the low-energy regime. As shown in Fig. 6, T� tends to
zero exponentially as the coupling strength approaches the
critical value, log T��1 / ��c−��. Hence, our results suggest
that the transition is continuous, being consistent with the
existence of a KT transition.30

The flows in the localized phase show a different behav-
ior. Here, two different energy scales appear in the course of
the flow, revealing an unstable fixed point in an intermediate
regime. Those scales are defined now from the iterations N1

�

and N2
� at which the energy levels decouple from the low-
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FIG. 3. �Color online� Representative flows of the NRG trans-
formations carried out in this work for M =5 sites. The horizontal
axis is the iteration number and the graphs are scaled energy levels.
�a� Flow toward a nondegenerate ground state ��=0.8 and t=0.01�.
The inset shows the flow of the mean-squared position of the par-
ticle, which becomes localized around the center. �b� Flow toward a
degenerate ground state ��=1.2 and t=0.01�. The lower inset gives
details of the way in which the lowest-energy levels flow to the
fixed point. The top inset shows the localization of the particle
beyond the center as indicated by its mean-squared position. Notice
that, in this regime, two energy scales are playing a part in the flow,
delimiting an intermediate regime, which is dominated by an un-
stable fixed point.
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FIG. 4. �Color online� Flows of the NRG for M =6 sites. �a�
Flows in the first region of the localized phase ��=1.2 and t
=0.01�, where the particle is confined at the central sites. �b� Flow
in the second region of the localized phase ��=1.4 and t=0.01�.
Here the particle is confined in the next to the center sites, suggest-
ing the formation of a double-well effective potential in the array. In
both cases the lower insets show in detail the flow of the lowest-
energy levels. Notice that, as what happened in the chain of five
sites, two energy scales apparently delimit the onset of an unstable
fixed point, corresponding to an effective chain of M =4 sites. This
is actually well conformed by the value of the mean-squared posi-
tion of the particle �inset�.
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energy sector, giving rise to two crossover temperatures Ti

�−Ni
�

with i=1,2. From the mean-squared position flows, it
can be deduced that the upper energy scale marks the decou-
pling of the sites located at the edges as the values of this
operator are well fitted to the expected ones in free tight-
binding chains with finite hoppings but sites in the edges
suppressed �effectively reducing the chain to one with two
less sites�. In this way, the intermediate fixed point would
correspond to an effective cluster of three sites in the M =5
case and four sites in the M =6 one, with a renormalized
hopping parameter tren. The lower-energy scale corresponds
to the onset of the phase transition; here the parity symmetry
is broken and only two sites remain in the low-energy re-
gime.

IV. PHASE DIAGRAM

A phase diagram of the model, including all the features
discussed above, is presented in Fig. 7. As in the widely
studied dissipative two-level system, there is a phase transi-
tion between a delocalized regime and a localized one. In the
delocalized phase the effect of the bath is that of reducing the
effective hopping and of generating a renormalized potential,
which makes the density of the particle higher around the
center. In the localized phase the parity symmetry is broken
and in both cases, odd and even, the particle localizes in one
of two degenerate sites. This transition is continuous and the
numerical results are consistent with a transition of the KT
type as in similar dissipative systems.

The variational calculation shows how a parabolic effec-
tive potential emerges from the coupling to the bath, being
responsible of some localization of the particle at the center.
However, the numerical results suggest the existence of a
more complicated renormalized potential, which would ex-
plain �both� the almost complete localization of the particle
as �→1 from below and the inhomogeneous degenerate
ground state in the localized phase. A simple guess, which
works well qualitatively, is an effective potential in the form
Vm= �g0 /2��m−m0�2+ �g1 /4!��m−m0�4. If g0� ��c−��, this
ansatz has a minimum at m=m0 in the delocalized phase and

at m=m0��−6g0

g1
in the localized one, explaining not only

the doubly degenerate state, but also that in the case of M
=6 there is a second transition to a phase in which the par-
ticle localizes in the next to the center sites. From the point
of view of renormalization theory, such an ansatz is reason-
able as higher corrections to the potential should be more
irrelevant.

As far as we have analyzed the phase diagram ���2�, we
have not found any further crossover to a region where the
particle is confined to the edges. This could be explained by
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FIG. 5. �Color online� Mean-squared position of the particle as a
function of the coupling strength in the delocalized phase of the
model, for M =5, as predicted by the variational calculation and the
NRG. Both approaches agree quantitatively, predicting an increas-
ing localization of the particle at the center of the chain as the
coupling strength gets larger. This effect arises due to the renormal-
ization of the hopping parameter and the emergence of an effective
confining potential.

TABLE I. Stable fixed points of the NRG for chains of M
=5,6 sites. The fixed points are characterized by the ground-state
degeneracy GSdeg and the position mean-squared value �q2	NRG,
whose values can be obtained with the NRG �in the localized phase
there is a single value for every �, while in the delocalized one, the
value depends on the coupling strength as shown in Fig. 5 for a
chain of five sites�. Those are used to propose an ansatz for the
ground-state density matrix �̂, which fits it correctly. The states �i	
represent a particle sitting at site i. �tren ,�	 is the ground state of a
free tight-binding chain with hopping tren and a parabolic potential,
dependent on the strength coupling �. The latter is the output of the
variational calculation for the delocalized phase, which fits quite
well with the numerical data.

Type M GSdeg �q2	NRG �̂

Deloc. 5 1 �q2	NRG �̂= �tren ,�	�tren ,��
Loc. 5 2 1 �̂= 1

2 ��2	�2�+ �4	�4��
Deloc. 6 1 �q2	NRG �̂= �tren ,�	�tren ,��
Loc. I 6 2 0.25 �̂= 1

2 ��3	�3�+ �4	�4��
Loc. II 6 2 2.25 �̂= 1

2 ��2	�2�+ �5	�5��
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FIG. 6. �Color online� Plot of the dependence of the crossover
scale T� on the distance to the critical coupling strength. Here T�

�−N�
, with N� chosen as the iteration for which the first-excited

level verifies N�
EN�,1=0.03. The figure shows the results for two

different hopping parameters. In both cases there is a good agree-
ment with an exponential decay of T� as a function of the distance
from the critical coupling, log T��1 / ��c−��.
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the role played by the intermediate unstable fixed point in the
localized phase. By studying the case of three and four sites,
the only way to get a phase transition in which the particle
localizes at the edges is by starting with slightly lower-site
energies here as compared to the center. Hence, the decou-
pling of the edges would be necessary to give rise to such a
renormalization of the on-site energies, favoring the phase
transition to a more stable regime.

For larger chains we expect a similar picture to work and
different features should not appear as far as the continuous
limit is not reached. The phase diagram should show a tran-
sition to a localized phase for a critical value �c also around
the unity. Close to this phase transition, the renormalized
potential gets quartic corrections and the particle becomes
localized in the resulting double-well profile. As the mini-
mum of this effective potential depends on the dissipation
strength, there should be several crossovers to regions in
which the particle is localized at points increasingly farther
from the center. However, the particle should never localize

at the edges, since their decoupling seems to be crucial to the
realization of this inhomogeneous transition. Thus, in the lo-
calized phase, two or more energy scales are expected to
play a role, depending on the number of energy levels that
are decoupled from the low-energy sector until the stable
fixed point is reached. In the continuous model, which cor-
responds to the case of an infinite number of sites in the
array, we expect only a single phase transition—at �c around
the unity—to a phase where the particle is localized in a
double-well potential profile whose minimum depends on the
coupling strength.

V. CONCLUSIONS

We have analyzed the simplest extension of the widely
studied dissipative two-level system, which interpolates be-
tween this model and the also extensively analyzed dissipa-
tive quantum particle in a periodic potential. The main re-
sults are obtained with a numerical renormalization-group
technique specifically adapted to bosonic coordinates. For
small and intermediate values of the dissipation parameter �,
our results provide a well-controlled approximation to the
ground state of the system.

When dissipation is weak, we find that the density distri-
bution of the particle becomes narrower and localized around
the center of the array. This result is consistent with the ex-
pectation that the environment acts as a measurement appa-
ratus on the position of the particle, leading to a more local-
ized distribution. The initial degeneracy between the sites of
the array is broken by the combination of the abrupt bound-
ary conditions and the dissipation. As a result, an effective
local potential is induced, with a minimum at the center of
the array, leading to the confinement of the particle near the
center.

For values of the dimensionless dissipation strength �
�1, we find a transition to a situation with a doubly degen-
erate ground state, in which the parity symmetry is broken.
In this case, the combined effect of boundary conditions and
dissipation leads to the formation of an effective double-well
potential irrespective of the number of sites in the array.

The formation of an inhomogeneous effective potential
from a spatially homogeneous coupling to a dissipative bath
should be a generic feature in similar models. A more re-
markable result is that, in some cases, this effective potential
is nonmonotonic so that simple confinement geometries can
lead to complicated patterns in the localized regime for high
values of the dissipation. An open question is to what extent
these results may depend on the particular choice of particle-
bath coupling. It has been argued in Ref. 39 that the intro-
duction of a counter term is insufficient to introduce full
translational invariance in some dynamic contexts such as
that of a suddenly introduced coupling. An extension of the
present equilibrium study to models of truly translationally
invariant dissipation39 could shed some light on this issue.
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