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It has been known for a long time that the adsorption and condensation of gas cause elastic deformation of
the porous matrix. The reversible formation of an adsorbed film, which precedes capillary condensation, results
in an extension of the porous material while, in the hysteresis region, the negative liquid pressures under the
concave menisci contract the porous matrix. The elastic deformation exhibits a hysteresis loop in the same
pressure region as the adsorption phenomenon. These deformations have been neglected in practically all the
theoretical treatments of adsorption. There are two reasons for this. First, the deformations are small in
magnitude and were supposed to have small effects on the adsorption process, and second, no experiment has
contradicted the existing model according to which, in systems where the pores interact, the source of inter-
actions is pore-pore intersections. They are the experimental results obtained in SBA-15 and p+-type porous
silicon, systems in which the pores interact whereas they are not connected, which lead us to question these
models and consider the elastic deformation of the pore walls as a possible coupling parameter. Based on the
experimental work of C. H. Amberg and R. McIntosh �Can. J. Chem. 30, 1012 �1952��, who measured both the
linear deformation of a porous glass rod and the adsorbed amount during isothermal adsorption of water, we
develop a thermodynamic approach which includes the elastic energy of the solid. This approach is generic to
all porous materials. In the region of reversible adsorption preceding the capillary condensation where the
variation of the surface free energy can be deduced from adsorption data, the linear extension of the solid is
proportional to the variation of the surface free energy and to the elastic constant of the solid. This is the crucial
point of the paper: thermodynamics of adsorption is directly connected to the elastic properties of the porous
solid. In the hysteresis region, this linear relation can be used to deduce the variation of the surface free energy
from the deformation measurements, a calculation which cannot be done from adsorption data. We find that the
surface free energy related to the elastic deformation is an important component of the total free energy. It is
shown that the condensation branch represents the more stable states and that an energy barrier exists to
evaporation, which depends essentially on the elastic deformation. The pores interact through the deformation
of the walls. Based on this interaction mechanism and on the shape of the scanning curves, which are common
to materials with interconnected pores such as porous glass or noninterconnected pores such as p+-type porous
silicon and SBA-15, we propose scenario for the filling and emptying of these porous materials.
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I. INTRODUCTION

This paper originates in the experimental observations we
made when studying the adsorption of gas in p+-type porous
silicon.1,2 This porous system, formed on highly boron-
doped Si�100� substrate, is composed of straight pores, per-
pendicular to the substrate, separated from each other
by single crystal Si walls of apparent constant thickness
��5 nm�. The section of the pores by a plane parallel to the
substrate is polygonal. The pore size distribution �PSD� is
large, for example 13�6 nm for a porosity of 50%. Except
the presence of different facets on the Si walls which gives
some roughness, the amplitude of which is smaller than the
apparent wall thickness and a fortiori than the pore size, the
pore section does not vary along the pore axis. The pores are
not interconnected.

At a first glance, this system can be hence classified as
ordered porous system composed of independent pores. Nev-
ertheless, we have shown that the hysteretic behavior of such
a system, i.e., the shape of the main loop and of subloops
inside the main loop, is characteristic of the presence of a
strong interaction mechanism between the pores.2 In Fig. 1

we have represented the main features which characterize
this system.

�i� The boundary hysteresis loop, of type H2 in the Inter-
national Union of Pure and Applied Chemists �IUPAC�
classification,3 is asymmetrical with a broad condensation
branch characteristic of the broad PSD and a steeper evapo-
ration branch, which suggests, but not proves, that as soon as
the pressure is reduced to a critical value p�, the system
begins to empty, leading to the emptying of the whole system
in an avalanchelike manner.

�ii� If the emptying of the system is commenced when it is
not completely filled, at points M1, M2, M3 on the boundary
condensation branch for example, we obtain the so-called
primary descending scanning curves �PDSCs�. Along the
PDSCs shown in Fig. 1, evaporation occurs at pressure
higher than p�, which clearly shows that the evaporation
pressure of a given pore depends on the state of the system.

�iii� The two subloops between the same pressure end
points shown in inset of Fig. 1 are not superimposable. For
independent pores, according to Preisach model,4 they
should be.
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The pores of porous silicon interact strongly whereas they
are not connected.

Similar observations have been made in other noninter-
connected porous systems. MCM-41 and SBA-15,5–7 are
composed of almost uniform cylindrical pores and exhibit
hysteresis loops of type H1 with steep and parallel branches,
but inside the main loop, the PDSCs are qualitatively similar
to that represented in Fig. 1. For SBA-15, we have shown
that two subloops between the same pressure end points are
not congruent, which proves unambiguously that the pores of
SBA-15 interact during the evaporation process.7

Surprising though it may seem, the hysteretic behavior
represented in Fig. 1 is quite similar to that observed by
Brown8 in porous glass, a disordered porous material com-
posed of cavities connected to one another by constrictions, a
spongelike structure: the same hysteresis loop of type H2,
the same PDSCs as porous silicon. Mason9 has developed a
model, the so-called pore blocking/percolation model, to ex-
plain the family of PDSCs obtained by Brown. From this
model, in porous materials where the pores interact, the
source of interactions is thought to be pore-pore
intersections.10

The hysteretic behavior of SBA-15 has been compared to
that of Kit-6, an ordered mesoporous silica which consists of
a three-dimensional �3D� network of interconnected pores of
almost cylindrical shape and same size. Morishige and
coworkers11 noted that despite a large difference in porous
structure, the shape and thermal behavior of the adsorption
hysteresis, as well as the sorption scanning behavior for these
two materials, are indistinguishable.

Finally, if we disregard the boundary hysteresis loops, the
shape of which depends on the porous material, H1 for
MCM-41, SBA-15, and Kit-6, H2 for porous glass and

p+-type porous silicon, the hysteretic features inside the main
loop are qualitatively the same for all these porous systems
and show that none of them is composed of independent
pores. This suggests that the physical parameter which
couples the pores is not interconnectivity.

The hysteresis loop and PDSCs shown in Fig. 1 have been
qualitatively reproduced using mean-field density-functional
theory or Monte Carlo calculations applied to a disordered
lattice-gas model or to a simulated disordered matrix.12–16

The calculations show the presence of multiple metastable
states within the hysteresis region, which are connected by
PDSCs similar to that experimentally observed. As noted by
the authors, these calculations reproduce the main features
observed in disordered porous material without explicitly in-
troducing pore blocking/percolation effects.

Following these calculations, it has been proposed that the
hysteresis loop of type H2 observed in porous silicon is not
due to “local pore blocking caused by individual constric-
tions of pore” but is rather the consequence of a strong dis-
order imposed by “large number of minor variations” in pore
diameter17 or by variation in the fluid/wall interaction along
the pore.18 We have already discussed this idea2 and con-
cluded that the disorder in each pore of porous silicon cannot
explain why the pores interact.

In the present paper, we will thus consider a new physical
parameter, common to all these porous systems, which
couples the pores during the adsorption-desorption process:
the elastic deformation of the porous matrix.

The deformations of porous materials caused by adsorp-
tion and condensation of gas is an old subject.19 On the other
hand, these deformations have been neglected in practically
all the theoretical treatments of capillary condensation, that
is, the condensed phase was always treated as a one-
component system of adsorbed molecules in the potential
field of the adsorbent. However, as far back as 1956, Yates20

noted that “the fact that the size changes do occur, even if
small in magnitude, makes the assumption of an inert adsor-
bent, for physical adsorption, of very doubtful validity.”

Hill first introduced, in the classical thermodynamics of
adsorption, the porous matrix as a second element in addition
to the adsorbate.21 Following this thermodynamic develop-
ment, Quinn and McIntosh in a paper published in 1957,
showed that the free energy of the porous glass-butane and
porous glass-water22 systems depends importantly on the
elastic deformation of the porous matrix.

Recently, Shen and Monson, based on the same thermo-
dynamic property relationships as that developed by Hill,
have made a Monte Carlo simulation study of gas adsorption
in a semiflexible porous network.23 They show that the flex-
ible network makes a significant difference to both the ad-
sorption and desorption isotherms. The evaporation, and to a
lesser extent the condensation branches are shifted toward
lower pressures. At the end of the paper, the authors noted
that “the fact that the phase change involves a contraction of
the solid volume may add to the barriers to the phase change
and the ease with which hysteresis is exhibited by the sys-
tem.”

The thermodynamic approach developed in the present
paper is quite different from that of Hill.21 The equilibrium
condition for mass transfer is not given by the equality of the
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FIG. 1. Nitrogen adsorption isotherm at 77.4 K for a p+-type
porous silicon layer of 50% porosity exhibiting a large PSD
�13�6 nm�, together with three PDSCs starting from points M1,
M2, and M3 on the boundary condensation branch. p� is the critical
pressure below which the fully filled system begins to empty. The
inset shows a magnification of the hysteresis loop region and two
subloops between the same pressure end points. The lack of con-
gruence shows that the pores are nonindependent.
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chemical potentials of the adsorbate and the vapor but de-
pends on the variation of the free energy of the solid with the
adsorbed amount. This equilibrium condition allows us to
introduce, in the thermodynamic relationships, the elastic en-
ergy of the solid besides the surface free energy that is to
connect the deformation of the solid to the variation of the
surface free energy.

The paper is organized as follows. In Sec. II A, we
present the results found in the literature dealing with the
elastic deformation of porous materials. In Sec. II B, we es-
tablish a thermodynamic approach of adsorption-desorption
process, which takes into account the elastic deformation of
the porous matrix. In this thermodynamic approach, we use
the experimental work of Amberg and McIntosh.24 We esti-
mate the numerical values of the different components of the
free energy of the system adsorbate solid. In Sec. II C, we
show how the pores can interact through the elastic deforma-
tion of the pore walls and we present a qualitative descrip-
tion of the hysteretic behavior shown in Fig. 1, which is
common to all porous materials whether the pores are inter-
connected or not.

II. RESULTS AND DISCUSSION

A. Elastic deformation of porous materials

Adsorption and desorption of gas cause deformations of
the porous matrix. These deformations have been studied in a
number of systems such as porous glass,24 charcoal,25 silica
aerogel,26 and porous silicon.27 The magnitude of the linear
deformation depends on the stiffness of the bulk material, on
the porosity, and on the properties of the adsorbed molecules.
For adsorption of pentane, at ambient temperature, in p+-type
porous silicon, the variation of the lattice parameter ��a /a�,
along the �100� axis perpendicular to the substrate, measured
with regard to the Si substrate by x-ray diffraction observa-
tions, is a few 10−4. For the other cited porous materials, the
order of magnitude of the linear deformation ��l / l� is typi-
cally 10−3 for water in charcoal and porous glass and a few
10−2 for neon �T=43 K� in silica aerogel.

Despite the porous materials cited above having very dif-
ferent morphologies, the deformation during the condensa-
tion and evaporation of fluids presents common features.
Figure 2 represents schematically a hysteresis loop of type
H2 and typical deformations observed in these porous mate-
rials during an adsorption-desorption cycle.

Along the reversible path OA preceding capillary conden-
sation, the formation of an adsorbed film results either in a
marked extension of the porous material �porous glass� or in
small or insignificant changes in the other materials. The
two-dimensional �2D� pressure exerted on the pore walls by
the film is usually called spreading pressure. Between points
A and B, where the condensation process takes place, a con-
traction is generally observed. During this step, the pores
sequentially fill, from the smallest to the largest; menisci are
presumably formed at the top of the filled pores, and the
thickness of the adsorbed film increases reversibly in the
empty pores leading to a further extension of the porous
material. Therefore, the net contraction generally observed
during capillary condensation is attributed to the negative

pressure created under the concave menisci. At point B, all
the pores are filled. Along BC, the upper region of the iso-
therm, a marked extension occurs, attributed to the vanishing
of the negative pressure within the fluid as a result of the
flattening of the concave menisci.

Conversely, along CD, marked contraction occurs due to
large negative fluid pressure generated by the formation of
concave menisci. In the region BCD, both adsorption and
deformation data are generally reversible except for pentane
in porous silicon27 for which the authors note that at the
pentane saturation pressure �60 kPa� the extension has not
reached the maximum value found for full immersion in the
liquid. It is necessary to increase the pressure above the va-
por saturation pressure by slightly heating the liquid reser-
voir above the temperature of the sample to obtain a full
wetting. We have never observed such a phenomenon in the
case of adsorption of N2, Ar, or Kr in porous silicon: as soon
as the pores are filled �point B�, the adsorption-desorption
path BCD is reversible.1,2

Along DA, the pores empty by evaporation and the defor-
mation recovers the initial value at point A. From A to O, the
path is the reverse of that along OA.

Recently, it has been shown that along CD, the lattice
constant of solid Kr �90 K� confined to mesoporous spherical
cavities increases as the vapor pressure is decreased.28 As the
increase in the interatomic distance of the fluid is equivalent
to an increase in the negative liquid pressure value, this sup-
ports the above explanation—according to which the con-
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FIG. 2. Schematic representation of an adsorption isotherm pre-
senting a hysteresis loop of type H2 and the corresponding typical
linear extension ��l / l� observed during the adsorption-desorption
cycle.
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traction of the porous matrix along CD is due to the in-
creased value of the negative liquid pressure under menisci.

The above results clearly display the deformation of the
porous matrix during the reversible adsorption �OA�, the
capillary condensation �AB�, and the evaporation �DA� pro-
cesses.

Our aim is now to establish the thermodynamic relation-
ships which take into account the elastic deformation of the
porous matrix during the adsorption-desorption process.

B. Thermodynamics of adsorption in elastically deformed
porous materials

1. Reversible adsorption

When a porous matrix of surface area A is brought into
contact with N gas molecules contained in a volume V at a
constant temperature T, the thermodynamic potential of the
adsorption system, including the porous solid �so�, the adsor-
bate ���, and the gas reservoir �v�, is the free energy F:

F = F� + Fso
bulk + Fv, �1�

where Fso
bulk and Fv are the bulk free energies of the solid and

of the vapor. F�, which includes the bulk of the adsorbate
and the adsorbate-vapor and adsorbate-solid interfaces, de-
pends, for isothermal conditions, on three extensive indepen-
dent variables, V�, the volume of the adsorbed phase, N�, the
number of adsorbed atoms, and A, the surface of the porous
solid.

dF� = − P�dV� + ��dN� + �dA , �2�

where �� is the chemical potential of the adsorbed atoms and
� is the surface free energy per unit surface area.

The equilibrium condition for mass transfer, at constant T,
Vv, V�, N=N�+Nv, and A is

� �F

�N�
� = 0 = � �F�

�N�
�

V�,A
+ � �Fso

bulk

�N�
�

Nso

+ � �Fv

�N�
�

Vv

, �3�

where Nso is the total number of solid atoms.
As ��Fv /�N��V�,A=−�v since dN=dNv+dN�=0, equilib-

rium condition �3� becomes

�� = �v − � �Fso
bulk

�N�
�Nso. �4�

If the properties of the bulk of the porous solid are sup-
posed to be unaffected by the adsorbed molecules,

� �Fso
bulk

�N�
�

Nso

= 0. �5�

and equilibrium condition �4� becomes

�� = �v. �6�

The study of the adsorbed phase can be then disconnected
from that of the porous solid as is generally done.

Now, if the elastic deformation of the solid is taken into
account, ��Fso

bulk /�N��Nso
�0 and the equilibrium condition is

given by Eq. �4�, contrary to what has been assumed in all

the papers where the deformation of the solid has been taken
into account.21–23 Actually, as is shown below, the shift ���

−�v� is small, but even small it cannot be ignored if we want
to treat consistently the influence of the elastic deformation
on adsorption. Then, for isothermal conditions, F� can be
written as

dF� = − P�dV� + �vdN� − � �Fso
bulk

�N�
�

Nso

dN� + �dA . �7�

For a given porous solid, A=aNso where, let us point out it,
Nso is the total number of solid atoms and not the number of
surface atoms. Equation �7� becomes

dF� = − P�dV� + �vdN� − � �Fso
bulk

�N�
�

Nso

dN� + ��dNso,

�8�

where ��=a� is the surface free energy per solid atom.
It is convenient to introduce in Eq. �8�, instead of the total

free energy of the solid, the change of its free energy with
adsorption, which is nothing other than the elastic energy
stored in the solid during the adsorption process, Fso

el :

Fso
el = Fso

bulk − Fso
�bulk, �9�

where Fso
�bulk�T ,Vso

� ,Nso� is the bulk free energy of the porous
matrix without adsorbate �the empty matrix� but at the same
T and P as Fso

bulk�T ,Vso ,Nso�. Vso
� and Vso are the volumes of

the porous solid before and after adsorption. Fso
el can be ex-

pressed as a function of the independent variables
�T ,N� ,Nso� instead of �T ,Vso ,Vso

� ,Nso�. Note that N� is not
an extensive variable for Fso

el in contrast to Nso:

Fso
el = Nsofso

el �T,N�� , �10�

where fso
el �T ,N�� is the elastic energy per solid atom. For

isothermal conditions, we get

dFso
el = � �Fso

el

�N�
�

Nso

dN� + fso
eldNso. �11�

As ��Fso
el /�N��Nso

= ��Fso
bulk /�N��Nso

, equilibrium condition �4�
becomes

�� = �v − � �Fso
el

�N�
�

Nso

�12�

and Eq. �11� can be rewritten as

dFso
el = ��v − ���dN� + fso

eldNso. �13�

Finally, from Eqs. �8� and �11�, we obtain

d�F� + Fso
el � = − P�dV� + �vdN� + �dNso, �14�

where we have put

� = fso
el + ��. �15�

� can be considered as an “effective” surface free energy
per solid atom. After integrating and by introducing the new
notation F�+Fso

el =F�,so, Eq. �14� becomes

F�,so = − P�V� + �vN� + �Nso. �16�
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a. Relationship between � and the elastic deformation.
The Gibbs-Duhem relationship is, for isothermal conditions,

− V�dP� + N�d�v + Nsod� = 0. �17�

Assumming that the vapor follows the perfect gas law, and
that P�� P, Eq. �17� becomes

Nso	 d� =	 N��v� − kBT/P�dP , �18�

where v�, the volume occupied by an adsorbed molecule, is
much smaller than kBT / P, the volume occupied by a vapor
molecule, and can be neglected. P� is in general different
from the vapor pressure P since in porous materials the
adsorbate-vapor interface is curved but, as long as we are
concerned by the reversible adsorption of a few monolayers
before the capillary condensation takes place, the term P�V�

is much smaller than �A and can be neglected:29

Nso	 d� = −	 N�kBT
dP

P
. �19�

Equation �19� gives � as a function of adsorption data.
At this stage, it is noteworthy that the calculation of �

from adsorption data does not provide any information about
the magnitude of the porous solid deformation. Independent
measurements are hence necessary.

Some investigators24,30 have measured the deformation of
a porous glass rod and have observed a linear variation of
the relative extension of the rod length ��l / l� with

N�kBTdP / P:

	
0

P

N�kBT
dP

P
= k� l − l0

l0
� , �20�

where l0 and l are the rod length before and after adsorption
and k, a proportionality factor.

From Eq. �19� and experimental relation �20�, we get

Nso���l� − ��l0�� = − k� l − l0

l0
� . �21�

Figure 3 shows for example the data obtained by Amberg
and McIntosh24 for adsorption of water in porous glass.
Similar results have been obtained in the case of butanol
adsorption on exfoliated graphite.31 For further discussions,
we have also represented in Fig. 4 the relative extension
��l / l� as a function of the adsorbed amount.

b. Relationship between k and the elastic constants of the
porous matrix. For small deformation, Fso

el can be represented
by the equation

Fso
el =

1

2
CVso

� � l − l0

l0
�2

, �22�

where C is a constant which depends on the elastic constants
of the porous solid, i.e., Young’s modulus and Poisson’s ratio
and also on the geometry of the material. In adsorption ex-
periment, if the porous material is isotropic, the stresses and
the deformations are isotropic. In this condition, the classical
theory of elasticity gives C=9 K, where K is the bulk modu-
lus.

Equation �16� can be written in the form:

F�,so = − P�V� + �vN� +
1

2
CNsovso

� � l − l0

l0
�2

+ �A . �23�

The minimization of F�,so with respect to l, keeping constant
all the other variables, i.e., V�, N�, and l0 �that is Nso�, yields

�F�,so

�l
= 0 = CVso

� �l − l0�
l0
2 +

���A�
�l

. �24�

l�� /�l�=�A�� /�A�, where � is a coefficient, the value of
which depends whether or not the porous material is isotro-
pic. If the material is isotropic, as it is always the case for
powders, dA /A=2dl / l and �=2. In the case of porous sili-
con, the porous layer is supported by the substrate and the
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planes perpendicular to the interface are constrained to have
the same interatomic spacing as that of the substrate so that
the transverse deformations can be neglected and �=1. We
get:

�A
���A�

�A
= l0

���A�
�l

. �25�

The partial derivative, ���A� /�A, is directly related to the
spreading pressure, 	, exerted by the adsorbed film on the
substrate. Thus, equilibrium condition �24� leads to

	 =
���A�

�A
= − C

Vso
�

�A

�l − l0�
l0

, �26�

which is Hooke’s law. The relation between the spreading
pressure 	 and the surface free energy per unit area � fol-
lows from Eq. �25�:

	 =
���A�

�A
= � + A

��

�A
= � +

l0

�

��

�l
�27�

or

	 = � +
��

��� l
l0
� , �28�

which is a relation analogous to that established by
Shuttleworth.32 Similar calculations have been done by Dash
et al.33 and by Thibault et al.34 to determine the relation
between the deformation of a porous solid and the variation
of the surface free energy.

The fact that Nso� varies linearly with ��l / l� as shown by
Eq. �21�, indicates that fso

el 
�� �see Eq. �15��. In this condi-
tion, as Nso��=�A, Eq. �21� becomes

��l� − ��l0� � −
k

A

�l − l0�
l0

. �29�

Hence,

��

�� l
l0
� = −

k

A
�30�

and from the above equations, we get

k =
CVso

�

�
�31�

and

	 = ��l� − ��l0� = −
CVso

�

�A

�l − l0�
l0

. �32�

The spreading pressure 	 exerted by the adsorbed molecules
on the porous matrix is hence equal to the variation of the
surface free energy. The difference between these two quan-
tities is discussed in a note.33

Equation �31�, applied to an isotropic material, gives k
=9KVso

� /2, a relation identical to that found by Scherer35 for
adsorption on a spherical material.

Equation �32� is the crucial point of our problem. The
variation of the surface free energy is directly connected to

the variation of the elastic energy of the porous solid. This is
an old result which has never been taken into account in the
physics of adsorption.

c. Numerical estimations. The comparison of elastic con-
stants deduced from adsorption measurement �internal stress�
and from external loading is a complicated task since it re-
quires geometrical model describing the porous solids and is
not the subject of this paper. We only give here an estimation
of Young’s modulus, E, deduced from the data represented in
Fig. 3, where k=1.39�104 J /g.adsorbent. Assuming that
porous glass is isotropic, we have k=9KVso

� /2 and K
=E /3�1–2��, where Poisson’s coefficient � equals 0.2 to
0.25.35 Taking a density of 2.7 g /cm3, we find �14 GPa. If,
on the other hand, the transverse deformations are neglected
as has been done by Amberg et al.,24 k=EVso

� which gives
E=37.7 GPa. These values are of the same order of magni-
tude as those found by Scherer35 using sonic resonance
namely in the range �15–30 GPa�.

Now, compare the elastic energy stored in the porous ma-
trix to the corresponding variation of the surface free energy.
Equations �22� and �32� show that the ratio Fso

el /�A is of the
order of ��l / l�. More precisely, in Fig. 3, the last measure-
ment point, for example, corresponds to a variation of sur-
face free energy equal to 125 mJ /m2�129 m2 /g=16 J /g.
The corresponding extension is ��l / l�=1.19�10−3 so that
Fso

el =70�10−3 J /g.
Fso

el is hence a small perturbation of F�,so but even small, it
cannot be ignored if we want to understand how the surface
free energy is connected to the relative deformation ��l / l�.

Finally, we can estimate the difference ��v−���. From
Eq. �13� we get, at constant Nso as is the case in adsorption
experiments,

	 ��v − ���dN� = Fso
el 
 �A , �33�

which means that ��v−��� is small compared to each of the
two terms.

d. Summary. The above thermodynamic approach is quite
different from that of Hill.21 The phase equilibrium is not
given by Eq. �6� as is assumed by Hill, but by Eq. �4�. This
allows us to introduce, in the thermodynamic relationships,
the elastic energy of the solid besides the surface free energy
that is to connect the deformation of the solid to the variation
of the surface free energy. In the approach of Hill, the surface
term is not separated from the perturbation undergone by the
bulk of the solid. Moreover, this perturbation is not clearly
depicted since the variation of the volume of the solid in-
duced by adsorption, i.e., the elastic energy, is not taken into
account.

2. Hysteresis region

As shown above, the variation of the surface free energy
is proportional to the deformation. Quinn and McIntosh were
the first to use this fact to determine the variation of the
surface free energy within the hysteresis loop by measuring
the dimensional change of the solid; in fact this cannot be
done any other way.

In the hysteresis region, it is interesting to estimate the
variation of F�,so between two states �� ,� corresponding to
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the same adsorbed amount, N�, on the two branches of the
hysteresis loop as has been done by Quinn and McIntosh for
the porous glass-water and porous glass-butane22 systems.
The sign of this variation indicates which of these states is
the more stable.

For such an estimate, we use the data of Amberg and
McIntosh represented in Fig. 5, which correspond to water
adsorption isotherm data in a porous glass rod together with
the associated variation of the rod length. We consider two
states �� ,� at the top of the hysteresis loop. Let us recall
that in this region, the adsorption is reversible just as the
marked observed contraction so that no capillaries empty. It
has been suggested that this contraction is due to the in-
creased value of negative pressure as a result of the changing
radii of concave menisci at the outer region of the porous
solid.24

According to Eq. �16� we have

�F�,so��
 = �− PLVL��

 + kBTN� ln�P

P�
� − k�l

l


�



, �34�

where PL is the liquid pressure.
The term k��l / l� concerns the solid-liquid interface. Rig-

orously, we must take into account a new interface, the in-
terface between the liquid which fills the pores and the vapor,
by introducing the term �lv�Am��

, where �lv is the surface
tension at the liquid-vapor interface and Am is the surface
area of the menisci. The order of magnitude of the surface
area of the menisci is given by the external surface area of
the porous material. In Amberg and McIntosh experiment,
the porous glass rod used was 0.73 cm in diameter and 11.1
cm in length, which corresponds to an external surface area
of 2.1 cm2 /g. As �lv�70 mJ /m2, �lv�Am��

 is of the order of
10−5 J /g, which is extremely small compared to the two last
terms of Eq. �34� as shown below.

The estimation of the first term is not so easy. The pores
are full of liquid submitted to negative pressures due to the
presence of concave menisci at the liquid/vapor interface.
The problem is how to estimate PL.

In a porous solid assumed to be inert, the liquid pressure
is classically calculated as follows. Two equilibrium condi-
tions are formulated simultaneously. One mechanical given
by Laplace’s law

P − PL = 2
�lv

rm
, �35�

where �lv is the surface tension at the liquid/vapor interface
and rm is the radius of the menisci, the other chemical given
by Eq. �6� if the porous solid is supposed to be inert. The
Laplace-Kelvin equation resulting from these two equilib-
rium conditions gives PL as a function of P:

PL − P =
kBT

vL
ln� P

P0
� � PL, �36�

where vL is the molecular volume of the liquid.
As we have already noted in Sec. I, the hysteresis loop

observed in porous glass is explained so far by the so-called
pore blocking model. At the top of the hysteresis loop the
porous system cannot empty as long as the constrictions lo-

cated at the outer surface of the porous system are full of
liquid. As the vapor pressure is reduced, menisci are formed
in these constrictions, all the menisci having the same radius.
Thus, if the emptying of porous glass is indeed controlled by
pore blocking, the liquid pressure should obey Eq. �36� as
long as the porous system is full of liquid. According to Eq.
�36�, PL should be, at a given vapor pressure, 5.9 times
higher for water than for butane.

Hooke’s law tells us that the deformation is proportional
to the pressure:

�PL = − 3K��l/l� , �37�

where K is the bulk modulus. Thus, in the same vapor pres-
sure range, ��l / l� should be also 5.9 times higher for water
than for butane. It is not the case. Indeed, if we consider the
results shown in Fig. 5 �water at 18.75 °C� together with
those of Ref. 22 �butane at −6.2 °C�, we find that along the
reversible region at the top of the hysteresis loop, the rela-
tionship ��l / l� vs ln�P / P0� is practically linear but the slope

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

A
d

so
rb

ed
a
m

o
u

n
t

(g
.
H

2
O

/g
)

N
�

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

�
l/
l

(1
0

-3
)

Relative pressure

��

(��l/l)
�

(��l/l)
�

FIG. 5. Adsorption isotherm of water in porous glass at
18.75 °C and the corresponding linear extension measured during
the adsorption-desorption cycle by Amberg and McIntosh �Ref. 24�.
For a given adsorbed amount, equal to 0.22 g.H2O /g.porous
glass, we have represented the two corresponding states of the
system, � �P� / P0=0.81, ��l / l��=0.145�10−2� and  �P / P0
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is only 1.9 times higher for water than for butane.
This leads to an embarrassing result: the K value is found

to depend markedly on the adsorbate: it is 3 times higher for
water than for butane. In those days, these results were dis-
cussed at length. According to Quinn and McIntosh, this dis-
crepancy could be due to “a different stress distribution in
the solid in the �two� cases, owing possibly to different dis-
tributions of adsorbate.” The question is why this occurs only
when the pores are full of liquid. On the contrary, when the
pores are full of liquid, there should be a nearly uniform
stress distribution throughout the adsorbent. The idea of
Quinn and McIntosh was also criticized by Sereda and
Feldman,19 who proposed that “perhaps the real reason for
the discrepancy is that the concept of changing curvature of
the menisci is not valid.”

In fact, the above results can be explained if we take into
account the elastic deformation of the porous matrix. PL is
not given by Eq. �36� because the chemical equilibrium of
the system is governed by Eq. �12� and not by Eq. �6�. Con-
cerning the mechanical equilibria, in addition to the liquid-
vapor interface �Eq. �35��, we must take into account the
solid-liquid interface. For a cylindrical interface of radius R,
Laplace’s law can be written as

�n − PL =
�sl

R
, �38�

where �n is the bulk stress along the normal to the interface
and �sl is the surface tension at the solid-liquid interface.
Thus, through Eq. �38�, PL depends on the state of deforma-
tion of the solid and through Eq. �35�, rm depends on PL. The
radius of the menisci can be controlled through the deforma-
tion of the porous solid to homogenize, for example, the
liquid pressure in the porous material if the pores are nonin-
terconnected as it is the case, e.g., in porous silicon.

A last remark concerning the experiment of Quinn and
McIntosh. The linear deformation is significantly higher for
water adsorption than for butane adsorption, which suggests
that the deformation increases with the surface tension ��lv
�70 mJ /m2 for water and �15 mJ /m2 for butane36�. This
was also observed by Herman et al.26 in silica aerogel.

We consider the results of Quinn and McIntosh as the first
proof that the evaporation of fluid from porous glass is not
governed by pore blocking.

Finally, we cannot use Eq. �36� to determine the term
�−PLVL��

 in Eq. �34�, but we know that PL decreases with the
vapor pressure P since the relative extension ��l / l� de-
creases with P so that this term is positive.

The two last terms of the right member of Eq. �34� can be
easily calculated. We obtain

�F�,so��
�J/g . adsorbent� = �− PLVL��

 − 5.14 + 7.06. �39�

Thus, the free energy difference at the top of the plateau is
positive and at least equal to �7.06–5.14� J/g.adsorbent.

Consider now the case of porous Si. We have no informa-
tion on the deformation of porous silicon for N2 adsorption
but we know that in the hysteresis region, the deformations
of porous material depend on the negative pressure of the
liquid and thus, through Eq. �35�, on the surface tension �lv.

For pentane at ambient temperature,27 �lv�14 mJ /m2,
while for nitrogen,3 �lv�9 mJ /m2. Thus, we can expect that
for nitrogen adsorption, the deformation is of the same order
of magnitude as for pentane. We can repeat the calculations
represented by Eq. �34� for the isotherm of Fig. 1, where
�P / P0�=0.65 and �P / P0��=0.8. We find kBTN� ln�P / P��
=−1.64 J /g �the mass of the porous solid equals 36.36
�10−3 g�.

From Eq. �31�, we can estimate the proportionality factor
k. As we have seen above, in the case of porous silicon
layers, the contraction or the extension is unilateral. Thus
�=1 and, according to classical theory of elasticity,37 the
constant C defined by Eq. �22� is related to Young’s modulus
Ep by the relation

C = Ep
1 − �p

1 − �p − 2�p
2 , �40�

where �p is the Poisson’s coefficient of the porous layer.
Young’s modulus Ep for porous silicon can be estimated by
the Gibson and Ashby38 relation Ep=E�1− Por�2, where E
=166 GPa is Young’s modulus for silicon and Por is the
porosity of the layer. In our case, Por�0.5 so that Ep
�40 GPa. For a porous sample39 similar to that under study,
�p=0.09 so that C�Ep. For pentane, the relative contraction
of the lattice parameter of the porous layer perpendicular to
the substrate, ��a /a��, measured in the hysteresis region,
equals a few 10−4. Taking ��a /a��=10−4 and a density of
2.32 g /cm3 for silicon, we find k���a /a����

=1.72 J /g. We
see that, as for porous glass, the variation of the surface free
energy caused by the deformation of the porous material is
an important component of the total free energy.

We note, concerning the assumption of inert adsorbents,
that if the solid is supposed to be inert, we have

�F���
 = �− PLVL��

 + kBTN� ln�P

P�
� + �lv�Am��

, �41�

where PL is given by Eq. �36�. In this case, �−PLVL��
=

−kBTN� ln�P / P�� so that �F���
��lv�Am��

. We found that
�lv�Am��

�10−5−10−4 J /g for porous glass and porous sili-
con. Thus, the difference of the free energy between the two
branches of the hysteresis loops would be extremely small
compared to the two first terms of Eq. �41�. The fluctuations
of each of these two terms in adsorption experiments are
certainly higher that 10−5−10−4 J /g so that the hysteresis
phenomenon should be unobserved for these porous materi-
als.

At the end of this section we summarize a few important
conclusions which can be extended to all the porous materi-
als:

�i� The surface free energy is directly related to the elastic
deformation of the solid and is a major component of F�,so,
the total free energy of the two-component system.

�ii� The variation of F�,so between two states �� ,� cor-
responding to the same adsorbed amount, N�, on the two
branches of the hysteresis loop is positive. This shows that
the condensation branch represents the more stable states and
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that a barrier exists to the emptying of the porous system, the
height of the barrier depending essentially on the solid de-
formation.

In the following section, we describe qualitatively how
the pores can interact during the adsorption-desorption pro-
cess through the pore wall deformation.

C. A qualitative description of the interaction between the
pores during the adsorption-desorption process through the

pore wall deformation

We have seen in Sec. II A that the deformation of porous
materials during the condensation-evaporation process pre-
sents common features. The amplitude of these deformations
depends evidently on the stiffness of the porous material.
The stiffer the material, the lower the amplitude of the de-
formation. Intuitively, we could believe that the effect of the
elastic deformation on the adsorption-desorption process
would be small in stiff material and large in weak material. It
is not the case. Actually, in Sec. II B, we have shown that the
crucial parameter is the surface free energy, which is propor-
tional to the linear elastic deformation and to the elastic con-
stant of the solid, so that the effect of which we speak—the
surface free energy change—can be as important in stiff ma-
terial such as porous silicon or porous glass as in weak ma-
terial such as aerogel.

At this stage, we must specify the limits of the following
discussion. It concerns porous materials for which:

�1� the notion of pores separated by walls makes sense,
which is not the case of the low density aerogels40,41 which
rather consist of void in which some small solid particle
impurities have aggregated.

�2� the change in pore size or volume upon condensation
or evaporation can be neglected which is not the case of most
of aerogels.42 This does not mean that the effect that we
analyze in this paper does not exist in these materials—the
thermodynamics approach developed in Sec. II B is
generic—this means that this effect is in addition to others
which complicates the analysis. For example, the analysis of
subloops inside the boundary hysteresis loop which is essen-
tial to determine whether a porous material is composed of
independent pores or not is rendered problematic if the
change in pore size cannot be neglected.

In the present section, we describe qualitatively how fluid
molecules adsorbed in neighboring pores can interact
through the elastic deformation of the pore walls. Basing on
this interaction mechanism and on the hysteretic behavior
shown in Fig. 1, we then propose a qualitative description of
the pore filling and emptying.

1. Interaction mechanism through pore wall elastic deformation

The linear relationship between the variation of the sur-
face free energy and the elastic deformation of the solid �Eq.
�32�� is the result of equilibrium conditions. The first, given
by Eq. �12�, corresponds to chemical equilibrium, the sec-
ond, given by Eq. �24�, corresponds to mechanical equilib-
rium. Adsorption or capillary condensation of gas in a given
pore causes elastic deformation not only of its inner pore
walls but also of the inner walls of its neighbors and thus
causes a change of their surface free energy.

Figure 6 gives, for example, a picture of the interaction
between a filled pore with a meniscus and surrounding larger
empty pores with an adsorbed film on their walls. The nega-
tive pressure of the liquid in the filled pore tends to contract
its inner walls whereas the inner walls of the neighboring
empty pores are submitted to the spreading pressure exerted
by the adsorbate. The forces exerted on both sides of the pore
walls create elastic stresses in the solid, which reduce both
the contraction of the inner walls of the filled pore and the
extension of the inner walls of the empty pores. Thus, the
surface free energy of a pore, and hence the adsorbed amount
if it is empty �see Figs. 3 and 4� or the liquid pressure,
according to Eqs. �35� and �38�, if it is filled, depends on the
state of the neighboring pores.

2. Scenario for the pore filling and emptying

Based on this interaction mechanism, we give here a
qualitative description of the pore filling and emptying. We
take p+-type porous silicon as an example, the morphology
of which is pretty well known and has the advantage of being
easily and accurately schematized as a 2D image1,2 such as
those shown in Figs. 7 and 8.

The beginning of the condensation process is illustrated in
Fig. 7�a� where the smallest pores are filled. They are ran-
domly distributed in the porous matrix, most of them being
surrounded by larger pores still empty. The walls of the
neighboring empty pores contract compared to their states
before the filling of the central pore, their surface free energy
increases, resulting in a decrease in the adsorbed amount �see
Fig. 4�. Thus, the presence of a filled pore tends to delay the
filling of its neighbors toward higher pressure or at least does
not favor their filling. During the condensation process the
filled pores are not grouped but rather randomly scattered.
The order according to which the pores fill is not perturbed
by the interaction mechanism: they fill sequentially from the
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FIG. 6. �Color online� Schematic representation of the deforma-
tion of the pore walls �in black� surrounding a filled pore with a
concave liquid meniscus. The negative pressure of the liquid in the
filled pore contracts its inner walls and reduces the extension of the
inner walls of the neighboring empty pores submitted to the spread-
ing pressure exerted by an adsorbed film �hatched zones�.
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narrowest to the largest. This is supported by the fact that the
extension of the condensation branch on the pressure axis is
representative of the pore size distribution. As shown below,
it is not the case for evaporation.

In the beginning of the condensation process, the average
distance between the filled pores is the longer as they are
fewer. The interaction between them can be neglected. They
do not “see” each other. The PDSCs shown in Figs. 1 and 9
indicate that as the reversal point M on the condensation
branch approaches the lowest closure point of the hysteresis
loop, the hysteresis phenomenon is less and less important.
These two observations suggest that the emptying of filled
pores surrounded by empty pores and located far from other
filled pores is quasireversible.

As the vapor pressure is increased, larger pores, in various
environments, fill. Figure 7�b� illustrates two extreme cases:
two filled pores of similar size, number 1 with neighboring
empty pores, number 2 with neighboring filled pores. The
walls of the filled pore are less contracted in the first case

than in the second. Clearly, the surface free energy of these
two pores is different and this can change their evaporation
pressure. The PDSCs shown in Fig. 1 indicate that the hys-
teresis phenomenon becomes increasingly important as the
reversal point tends to the highest closure point of the hys-
teresis loop. Since, as we saw previously, a filled pore sur-
rounded by empty pores fills and empties quasireversibly,
this suggests that the emptying of a pore surrounded by filled
pores is blocked by the presence of the neighboring filled
pores. This idea is supported by the calculations of the pre-
vious section which show that when the porous material is
completely filled, there is an energy barrier to evaporation,
the height of which depends essentially on the elastic defor-
mation.

Consider now the boundary evaporation branch. As the
pressure is decreased from C to D �Fig. 2�, the porous mate-
rial contracts under the effect of the negative liquid pressure
created under the concave menisci at the top of the pores. As
one further decreases the pressure, the porous system begins
to empty.

At this stage, very little is known about the exact manner
in which the pores empty. According to the pore blocking
model and its derivatives, a concave meniscus is formed at
the liquid-vapor interface and recedes from the interface to
the inside of the porous solid, at thermodynamic equilibrium.
In p+-type porous silicon, this model has been ruled
out.1,2,17,43 For example, the experiment of Wallacher et al.17

shows that a porous layer can drain across layers, several
microns thick, full of liquid. In porous glass, the experimen-
tal observations of Quinn and McIntosh do not match this
model either. This suggests that the evaporation of fluid from

FIG. 7. �Color online� Binary image of a bright field transmis-
sion electron microscopy plane view of a porous Si layer obtained
by reproducing both the porosity of the layer and the consistency in
the wall thickness �see Ref. 2 for more details�. The empty pores �in
white� and the filled pores �in gray� are separated by Si walls �in
black�. Panels �a� and �b� represent different steps for the adsorption
process, the vapor pressure increasing from panel �a� to �b�. In
panel �b� we have pointed out two filled pores of similar size, num-
ber 1 with neighboring empty pores and number 2 with neighboring
filled pores.

FIG. 8. �Color online� Schematic representation of the begin-
ning of the evaporation viewed from the same binary image such as
that shown in Fig. 7. The vapor pressure decreases from panel �a� to
�b�. Panel �a� shows two pores �in white� in which the evaporation
is initiated. Panel �b� shows the evaporation of the nearest neigh-
boring pores in a single cooperative event.
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FIG. 9. �Color online� Magnification of the hysteresis loop re-
gion of the nitrogen adsorption isotherm shown in Fig. 1, together
with three PDSCs starting from points M4, M5, and M6 on the
boundary condensation branch. As the reversal point approaches the
lowest closure point of the hysteresis loop, the hysteresis loop
shrinks.
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porous materials is either via the formation of gas bubbles or
via the sudden propagation of the menisci leading to evapo-
ration out of equilibrium. This will be discussed in detail in a
future paper.43

What is known is that the evaporation branch is steeper
than the condensation branch, which indicates that the
evaporation occurs in an avalanchelike manner. Some pores
begin to empty �Fig. 8�a��, leading to the extension of the
neighboring pore walls. The neighboring filled pores are now
in contact with empty pores, which, as we have seen above,
facilitates their draining, leading to the emptying of some of
them in a single cooperative event �see Fig. 8�b��. Note that,
in Fig. 8�b�, the distribution of the empty pores, around the
two pores at the origin of the evaporation, is schematic, the
exact manner in which the empty pores “propagate” being
probably more complicated.

Avalanche phenomena have been experimentally ob-
served in draining of superfluid helium from Nuclepore.10,44

The authors attributed this behavior to the presence of both
the mobile helium film and pore-pore intersections. How-
ever, since the presence of pore-pore intersections has no
significant role in the evaporation process, their presence is
probably not relevant in these avalanche phenomena. To con-
firm this idea it would be interesting to carry out such ex-
periments in porous silicon.

Pore-space correlation in porous glass has been studied
using ultrasonic attenuation and light scattering.45,46 These
studies show that the distributions of the empty pores are
quite different on filling and on draining. During the conden-
sation process, no long-range correlation of the empty pores
are observed, while, on drainage, the empty pores exhibit
long-range correlations with a fractal structure, which ac-
cording to the authors, suggests that the drainage can be
modeled by analogy to invasion percolation. We have seen
above that in porous glass, the experimental observations of
Quinn and McIntosh do not match a pore blocking/
percolation process. According to our wall elastic deforma-
tion model, the emptying of pores occurs from neighbor to
neighbor, a mechanism which seems difficult to distinguish,
at a first glance, from percolation. It is the reason why the
hysteretic behavior simulated by Mason9 resembles qualita-
tively the experimental hysteretic behavior of porous silicon.

III. CONCLUSION

It has been known for a long time that the adsorption and
condensation of gas induce elastic deformation of the porous
matrix. The reversible formation of an adsorbed film, which
preceeds capillary condensation, results in an extension of
the porous material while, when the pores are full of liquid,
a marked contraction occurs due to large negative liquid
pressure generated by the formation of concave menisci. The
elastic deformation exhibits a hysteresis loop in the same
pressure region as the adsorption phenomenon.

In the present paper, we develop a thermodynamic ap-
proach which takes into account these elastic deformations.

In addition to the adsorbate and the adsorbate-solid interface,
the two-component system we consider includes the elastic
energy stored in the solid during adsorption, a parameter
which has been always ignored in the physics of adsorption.

Our theoretical approach is developed in parallel to the
experimental work of Amberg and McIntosh,24 who mea-
sured both the length change of a porous glass rod and the
adsorbed amount during adsorption of water. In the region of
reversible adsorption, before capillary condensation occurs,
they found that the relative extension of the rod is propor-
tional to the decrease in the surface free energy.

Taking into account the elastic energy of the solid, we
explain why the variation of the surface free energy depends
on the deformation and on the elastic constants of the porous
solid. The surface free energy is an important component of
the total free energy: the assumption of an inert solid in
physics of adsorption is totally unjustified.

In the hysteresis region, we show that the condensation
branch represents the more stable states and that an energy
barrier exists to the evaporation, the height of which depends
essentially on the elastic deformation of the substrate.

Since the surface free energy of pores is directly related to
the deformation of their inner walls, the fluid inside them
interacts through the deformation of the pore walls. Based on
this interaction mechanism and on the shape of the descend-
ing scanning curves, which are similar for all the studied
porous systems, we propose a scenario for the filling and
emptying of pores.

During the condensation process, the interaction mecha-
nism does not modify the order according to which the pores
fill, i.e., from the smallest to the largest. The emptying of a
filled pore surrounded by empty pores is quasireversible and
becomes irreversible when it is surrounded by filled pores.
This provides an explanation for the steepness of the bound-
ary evaporation branch. When the porous system begins to
empty, the filled pores in contact with empty pores will first
empty, leading to the emptying of their neighbors and then of
the whole system in an avalanchelike manner. The irrevers-
ibility of the adsorption-desorption process in porous media
would not originate in the irreversibility of the process in
individual pores but would be a property of the whole sys-
tem.

MCM-41 and SBA-15 porous materials exhibit boundary
hysteresis loops of type H1, with steep and parallel conden-
sation and evaporation branches while porous silicon and
porous glass present hysteresis loop of type H2 with a broad
condensation branch and a steep evaporation branch. Two
different mechanisms for evaporation were attributed to
these two hysteresis loops: evaporation at thermodynamic
equilibrium for H1 type, pore blocking/percolation process
for H2 type. The present paper and previous ones show the
fallacy of this classification: the cylindrical pores of SBA-15
and MCM-41 do not empty at equilibrium,7,47 and there is no
pore blocking/percolation process in porous silicon2 and in
porous glass. Hysteresis loops of type H1 and H2 could be
simply characteristic of a narrow pore size distribution
�PSD� and of a large PSD, respectively, whatever the shape
of the pores is and whether they are connected or not.

The interaction mechanism we propose acts as an alterna-
tive to the percolation process. The coupling parameter is the
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surface free energy, which is transmitted from a pore to its
neighbors through the elastic deformation of the pore walls.
This coupling parameter, which is common to all porous ma-
terials, allows us to explain why the pores interact whether
they are interconnected or not.
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