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We compute the optical conductivity of graphene beyond the usual Dirac-cone approximation, giving results
that are valid in the visible region of the conductivity spectrum. The effect of next-nearest-neighbor hopping is
also discussed. Using the full expression for the optical conductivity, the transmission and reflection coeffi-
cients are given. We find that even in the optical regime the corrections to the Dirac-cone approximation are
surprisingly small �a few percent�. Our results help in the interpretation of the experimental results reported by
Nair et al. �Science 320, 1308 �2008��.

DOI: 10.1103/PhysRevB.78.085432 PACS number�s�: 78.40.Ri, 81.05.Uw, 73.20.�r, 78.66.Tr

I. INTRODUCTION

Graphene, an atomically thin material made only of car-
bon atoms arranged in a hexagonal lattice, was isolated only
recently.1,2 Several reviews on the physics of graphene are
already available in the literature.3–6

At low energies, E�1 eV, the electronic dispersion has
the form ��k�= �3tka /2, where t is the nearest-neighbor
hopping integral and a is the carbon-carbon distance. The
effective theory at these energy scales is that of a massless
Dirac Hamiltonian in �2+1� dimensions. If the experimental
probes excite the system within this energy range, the Dirac
Hamiltonian is all there is for describing the physics of
graphene. On the other hand, for excitations out of this en-
ergy range, it is necessary to include corrections to the Dirac
Hamiltonian, which will modify the energy spectrum and
thus the density of states of the system. One immediate con-
sequence is that the energy dispersion is no longer a function
of the absolute value of the wave number k. In this paper, we
will calculate the optical conductivity of graphene including
the leading corrections to the Dirac-cone approximation.

One of the first calculations of the optical conductivity of
graphene using the Dirac Hamiltonian were done by Gusynin
and Sharapov.7 This first study was subsequently revisited a
number of times8–10 and summarized in Ref. 11. However,
these authors did not include nonlinear effects in the calcu-
lation. Also the effect of disorder was done on a phenomeno-
logical level, by broadening the delta functions into Lorent-
zians characterized by a constant width �. We note that in the
Dirac-cone approximation, the conductivity can also be ob-
tained from the polarization. The calculations for finite
chemical potential and arbitrary �q� and � were done by
Wunsch et al.12 and Hwang and Das Sarma.13

The calculation of the optical conductivity of graphene, in
the Dirac Hamiltonian limit, including the effect of disorder
in a self-consistent way was done by Peres et al.,14 and re-
cently also corrections due to electron-electron interaction
were discussed.15,16 The calculation for the graphene bilayer
with disorder was done by Koshino and Ando17 and by Nils-
son et al.18 The optical conductivity of a clean bilayer was
first computed by Abergel and Fal’ko19 and recently gener-
alized to the biased20–22 bilayer case by Nicol and Carbotte.23

Within the Boltzmann approach, the optical conductivity
of graphene was considered in Refs. 24 and 25 where the

effect of phonons and the effect of midgap states were in-
cluded. This approach, however, does not include transitions
between the valence and the conduction band and is, there-
fore, restricted to finite doping. The voltage and the tem-
perature dependence of the conductivity of graphene were
considered by Vasko and Ryzhii26 using the Boltzmann ap-
proach. The same authors have recently computed the pho-
toconductivity of graphene, including the effect of acoustic
phonons.27

The effect of temperature on the optical conductivity
of clean graphene was considered by Falkovsky and
Varlamov.28 The far-infrared properties of clean graphene
were studied in Ref. 29 and 30. Also this study was restricted
to the Dirac-spectrum approximation.

It is interesting to note that the conductivity of clean
graphene, at half filling and in the limit of zero temperature,
is given by the universal value of �e2 / �2h�.31,32 On the other
hand, if the temperature is kept finite the conductivity goes to
zero at zero frequency, but the effect of optical phonons does
not change the value of the conductivity of clean graphene.33

This behavior should be compared with the calculation of the
dc conductivity of disordered graphene which, for zero
chemical potential, presents the value of 4e2 / ��h�.14,31,34,35

From the experimental point of view, the work of Kuz-
menko et al.36 studied the optical conductivity of graphite
in the energy range of �0,1� eV and showed that its beha-
vior is close to that predicted for clean graphene in that
energy range. An explanation of this odd fact was attempted
within the Slonczewski-McClure-Weiss model. The complex
dielectric constant of graphite was studied by Pedersen37

for all energy ranges. The infrared spectroscopy of Landau
levels in graphene was studied by Jiang et al.38 and Deacon
et al.,39 confirming the magnetic field dependence of the
energy levels and deducing a band velocity for graphene
of 1.1�106 m /s. Recently, the infrared conductivity of a
single graphene sheet was obtained.40,41

Recent studies of graphene multilayers grown on SiC
from terahertz to visible optics showed a rather complex
behavior42 with values of optical conductivity close to those
predicted for graphene at infrared frequencies as well as to
those measured in graphite.36 This experiment42 especially
indicates the need for a graphene theory valid all the way to
optical frequencies. The absorption spectrum of multilayer
graphene in high magnetic fields was recently discussed in

PHYSICAL REVIEW B 78, 085432 �2008�

1098-0121/2008/78�8�/085432�8� ©2008 The American Physical Society085432-1

http://dx.doi.org/10.1103/PhysRevB.78.085432


Ref. 43, including corrections to the Dirac-cone approxima-
tion.

In this paper we address the question of how the conduc-
tivity of clean graphene changes when one departs from the
linear spectrum approach. This is an important question for
experiments done in the visible region of the spectrum.44 The
paper is organized as follows: in Sec. II we introduce our
model and derive the current operator; in Sec. III we discuss
the optical conductivity of graphene by taking into account
its full density of states; in Sec. IV we discuss the effect on
the optical conductivity of a next-nearest-neighbor hopping
term; in Sec. V we analyze the scattering of light by a
graphene plane located at the interface of two different di-
electrics and give the transmissivity and reflectivity curves in
the visible region of the spectrum; and finally in Sec. VI we
give our conclusions.

II. HAMILTONIAN AND THE CURRENT OPERATORS

The Hamiltonian, in tight-binding form, for electrons in
graphene is written as

H = − t�
R,	

�
�=�1−�3

�a	
†�R�b	�R + �� + H.c.�

−
t�

2 �
R,	

�
�=�4−�9

�a	
†�R�a	�R + �� + H.c.�

−
t�

2 �
R,	

�
�=�4−�9

�b	
†�R�b	�R + �� + H.c.� , �1�

where the operator a	
†�R� creates an electron in the carbon

atoms of sublattice A, whereas b	
†�R� does the same in sub-

lattice B; t is the hopping parameter connecting first-nearest
neighbors, with a value of the order of 3 eV; and t� is the
hopping parameter for second-nearest neighbors, with a
value of the order of 0.1t. The vectors �i are represented in
Fig. 1 and have the form

�1 =
a

2
�1,�3�, �2 =

a

2
�1,− �3�, �3 = − a�1,0� ,

�4 = a�0,�3�, �5 = − �4, �6 =
3a

2 �1,
1
�3

	 ,

�7 = − �6, �8 =
3a

2 �1,−
1
�3

	, �9 = − �8. �2�

In order to obtain the current operator we modify the hop-
ping parameters as

t → tei�e/
�A�t�·�, �3�

and the same for t�. Expanding the exponential up to second
order in the vector potential A�t� and assuming that the elec-
tric field is oriented along the x direction, the current opera-
tor is obtained from

jx = −
�H

�Ax�t�
, �4�

leading to jx= jx
P+Ax�t�jx

D. The operator jx
P reads

jx
P =

tie



�
R,	

�
�=�1−�3

��xa	
†�R�b	�R + �� − H.c.�

+
t�ie

2

�
R,	

�
�=�4−�9

��xa	
†�R�a	�R + �� − H.c.�

+
t�ie

2

�
R,	

�
�=�4−�9

��xb	
†�R�b	�R + �� − H.c.� . �5�

The operator jx
D can be found from the linear term in Ax�t�

expansion of the Hamiltonian.

III. OPTICAL CONDUCTIVITY

A. Kubo formula

The Kubo formula for the conductivity is given by

	xx��� =

jx

D�
iAs�� + i0+�

+
�xx�� + i0+�
i
As�� + i0+�

, �6�

with As=NcAc, the area of the sample and Ac=3�3a2 /2 �a is
the carbon-carbon distance�, the area of the unit cell; from
which it follows that

R	xx��� = D���� +
I�xx�� + i0+�


�As
, �7�

and

I	xx��� = −

jx

D�
As�

−
R�xx�� + i0+�


�As
, �8�

where D is the charge stiffness, which reads

D = − �

jx

D�
As

− �
R�xx�� + i0+�


As
. �9�

The function �xx��+ i0+� is obtained from the Matsubara
current-current correlation function defined as

�xx�i�n� = �
0





d�ei�n�
T�jx
P���jx

P�0�� . �10�

In what follows we start by neglecting the contribution of t�
to the current operator. Its effect is analyzed later and shown

a

A B

δ4

δ5

δ7

δ8

δ9

δ3

δ1

δ2

δ6

FIG. 1. �Color online� Representation of the vectors �i, with i
=1–9. The carbon-carbon distance a and the A and B atoms are
also depicted.
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to be negligible. The function I�xx��+ i0+� is given by

I�xx�� + i0+� =
t2e2a2

8
2 �
k

f���k���nF�− t���k�� − ��

− nF�t���k�� − �������� − 2t���k��/
�

− ���� + 2t���k��/
�� , �11�

where nF�x� is the usual Fermi distribution, � is the chemical
potential, and the function R�xx��+ i0+� is given by

R�xx�� + i0+� = −
t2e2a2

8
2 P�
k

f���k���nF�− t���k�� − ��

− nF�t���k�� − ���
4t���k��

�2 − �2���k���2 , �12�

with

f���k�� = 18 − 4���k��2 + 18
�R��k��2 − �I��k��2

���k��2
,

�13�

and P denotes the principal part of the integral. The
graphene energy bands are given by ��k�= � t���k��, with
��k� defined as

��k� = 1 + ek·��1−�3� + ek·��2−�3�. �14�

B. Real part of the conductivity

The expression for Eq. �11� can almost be written in terms
of the energy dispersion ��k� except for the term

�R��k��2 − �I��k��2

���k��2
. �15�

In order to proceed analytically, and for the time being �see
Sec. III C�, we approximate this term by its value calculated
in the Dirac-cone approximation �see Appendix A�

1

Nc
�

k

�R��k��2 − �I��k��2

���k��2
g����k��� 
 0, �16�

where g����k��� is some given function depending only on
the modulus of ��k�. With this approximation, we have

f���k�� 
 18 − 4���k��2. �17�

Introducing the density of states per spin per unit cell ��E�
defined as

��E� =
1

Nc
�

k
��E − t��k�� , �18�

the expression for the real part of the conductivity reads

R	xx��� = 	0
�t2a2

8Ac
�
��
�/2��18 − �
��2/t2�

��tanh

� + 2�

4kBT
+ tanh


� − 2�

4kBT
� . �19�

Equation �19� is essentially exact in the visible range of the

spectrum; missing is only the contribution coming from Eq.
�16�, whose contribution will later be shown to be negligible.
In the above equation, 	0 is

	0 =
�

2

e2

h
. �20�

The momentum integral in Eq. �18� can be performed lead-
ing to

��E� =
2E

t2�2�
1

�F�E/t�
K� 4E/t

F�E/t�	 , 0 � E � t ,

1
�4E/t

K�F�E/t�
4E/t 	 , t � E � 3t ,�

�21�

where F�x� is given by

F�x� = �1 + x�2 −
�x2 − 1�2

4
, �22�

and K�m� is defined as

K�m� = �
0

1

dx��1 − x2��1 − mx2��−1/2. �23�

In Fig. 2 we give a plot of Eq. �19� over a large energy
range including the visible part of the spectrum
�E� �1.0,3.1� eV�.

It is useful to derive from Eq. �19� an asymptotic expan-
sion for R	xx���. For that, we expand the density of states
around E=0 and obtain

��E� 

2E

�3�t2
+

2E3

3�3�t4
+

10E5

27�3�t6
. �24�

Using Eq. �24� in Eq. �19� we obtain for the optical conduc-
tivity the approximate result
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FIG. 2. �Color online� The optical conductivity as function of
frequency for two values of the chemical potential, �=0 and 0.2 eV,
and two temperatures, T=10 and 300 K. The bottom panels are a
zoom in, close to zero frequency, which allow depicting the fre-
quency region where differences in the chemical potential and in
temperature are most important. We have used t=2.7 eV.
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R	xx��� = 	0�1

2
+

1

72

�
��2

t2 �
��tanh


� + 2�

4kBT
+ tanh


� − 2�

4kBT
	 . �25�

In the case of �=0 this expression is the same as in Kuz-
menko et al.36 and in Falkovsky and Pershoguba29 if in both
cases the �
� / t�2 term is neglected.

C. Correction to R�xx(�) introduced by Eq. (16)

We now want to make the effect of the term given by Eq.
�16�, which was neglected in Eq. �19�, quantitative. To that
end we expand the function ��k� up to third order in mo-
mentum. The expansion is

��k� 

3a

2
�ky − ikx� +

1

2
�3a

2
	2

�kx
2 + ky

2/3 + 2ikxky�

+
1

6
�3a

2
	3

�ikx
3 − ky

3/3 − 3kx
2ky + iky

2kx� . �26�

The angular integral in Eq. �16� leads to

�
0

2�

d���R��k��2 − �I��k��2� =
�

24
�3ak

2
	4

, �27�

where we still assume ���k��=3ak /2. Within this approxima-
tion the contribution to the conductivity coming from Eq.
�16� has the form

R	xx
u ��� = 	0

1

4 ! 24�
�

t
	2�tanh


� + 2�

4kBT
+ tanh


� − 2�

4kBT
	 .

�28�

Due to the prefactor, this contribution has only a small effect
and shows that the current operator basically conserves the
circular symmetry found close to the K points. In Fig. 3 we
present 	��� /	0 as a function of the frequency, considering
several values of t, in the optical range and also discuss the
numerical value of the term given in Eq. �28�.

D. Imaginary part of the conductivity

Neglecting the term proportional to Eq. �15�, the imagi-
nary part of the conductivity is given by

I	xx��� =
1


�

4

�
	0�� −

2

9
�3/t2	 −

	0

�
log

�
� + 2��
�
� − 2��

−
	0

36�
�
�

t
	2

log
�
� + 2��
�
� − 2��

, �29�

where we have included all the terms that diverge at 
�
=2� and the contribution from the cubic term in frequency
in the density of states. The contribution of the last term of
f���k�� in Eq. �13� is given by

I	xx
u ��� = −

	0

18�

1

4 ! 24�
�

t
	2

log
�
� + 2��
�
� − 2��

. �30�

If we neglect the terms in �3 and �2 we obtain the same
expressions as those derived by Falkovsky and Pershoguba.29

We note that these terms are also obtained from the polariz-
ability in the limit q→0 since the Fermi velocity is not k
dependent.12

E. Drude weight and the Hall coefficient

The Drude weight �or charge stiffness� defined by Eq. �9�
can be computed in different limits. In the case �=0 we are
interested in its temperature dependence. For zero tempera-
ture the exact relation

�
k

���k�� =
1

8�
k

f���k��
���k��

�31�

assures that D=0 when �=0. In general, the Drude weight
has the following form:

D�T,�� = t	0
4�2

3�3

1

Nc
�

k
����k�� −

1

8

f���k��
���k�� �

��tanh
t���k�� + �

2kBT
+ tanh

t���k�� − �

2kBT
� . �32�

In the case of finite �, the temperature dependence of
D�T ,�� is negligible. In the Dirac-cone approximation we
obtain

D�0,�� = 4�	0��1 −
1

9
��

t
	2� . �33�

On the other hand, at zero chemical potential, the tempera-
ture dependence of the charge stiffness is given by

D�T,0� = 8� ln 2	0kBT − 4���3�	0
�kBT�3

t2 , �34�

where ��x� is the Riemann zeta function.
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ω (eV)

1
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t=2.9 eV
t=3.1 eV

1 1.5 2 2.5 3 3.5
ω (eV)

0

0.002

0.004

0.006

0.008

σu /σ
0

FIG. 3. �Color online� Left: 	��� /	0 as a function of the fre-
quency, including both Eq. �19� and the correction to R	xx

u given by
Eq. �28�, for several values of t. Right: The correction to R	xx

u

given by Eq. �28� for several values of t. It is clear that the contri-
bution from this term has no bare effect on the results given by Eq.
�19�. The calculations are for zero chemical potential and for room
temperature �there is no visible effect on 	��� /	0 in the visible
range of the spectrum when compared to a zero-temperature
calculation�.
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Zotos et al.45,46 have shown a very general relation be-
tween the Drude weight and the Hall coefficient. This rela-
tion is

RH = −
1

eD

�D

�n
. �35�

Equation �35� does not take into account the possibility of
valley degeneracy and therefore it has to be multiplied by 2
when we apply it to graphene. In the case of a finite chemical
potential, we have the following relations between the Fermi
wave vector kF and the chemical potential: n=kF

2 /� and �
=2takF /3. Applying Eq. �35� to graphene we obtain

RH = −
2

e

n−1/2/2 − 3a2�n/8
�n − a2n3/2/4


 −
1

en
. �36�

IV. EFFECT OF t� ON THE CONDUCTIVITY
OF GRAPHENE

In this section we want to discuss the effect of t� on the
conductivity of graphene. One important question is what
value of t� is in graphene. Deacon et al.39 proposed that the
dispersion for graphene, obtained from a tight-binding ap-
proach with nonorthogonal basis functions, is of the form

E = �
t���k��

1 � s0���k��
�37�

with ���k��
 3
2ka and with a, the carbon-carbon distance. On

the other hand the dispersion of graphene including t� has the
form

E = � t
3

2
ka − t��9

4
�ka�2 − 3� . �38�

To relate t� and s0 we expand Eq. �37� as

E 
 � t���k���1 � s0���k��� = � t
3

2
ka + s0t

9

4
�ka�2,

�39�

which leads to t� / t=−s0 with s0=0.13.
For computing the conductivity of graphene we need to

know the Green’s function with t�. These can be written in
matrix form as

G0�k,i�n� = �
�=+,−

1/2
i�n − �t���k��/
 + 2t�����k��2 − 3�/


�� 1 − ���k�/���k��
− ���k��/���k�� 1

	 , �40�

where G0�k , i�n� stands for

G0�k,i�n� = �GAA�k,i�n� GAB�k,i�n�
GBA�k,i�n� GBB�k,i�n�

	 . �41�

From Eq. �40� we see that only the poles are modified with
the coherence factors having the same form as in the case
with t�=0. The current operator jx

P= jx,t
P + jx,t�

P , as derived from

the tight-binding Hamiltonian is written in momentum space
as

jx,t
P =

tiea

2

�
	

�
k

����k� − 3�a	,k
† b	,k − ����k� − 3�b	,k

† a	,k� ,

�42�

and

jx,t�
P =

3t�iea

2

�
	

�
k

���k� − ���k���a	,k
† a	,k + b	,k

† b	,k� .

�43�

The operators jx,t
P and jx,t�

P are the current operators associated
with the hopping amplitudes t and t�, respectively. The
current-current correlation function is now a sum of three
different terms: one where we have two jx,t

P operators, an-
other one where we have a jx,t

P and a jx,t�
P , and a third one with

two jx,t�
P . This last term vanishes exactly, since it would cor-

respond to the current-current correlation function of a trian-
gular lattice. Also the crossed term vanishes exactly, which
can be understood by performing a local gauge transforma-
tion to the fermionic operators of one sublattice only.
The first term leads to a contribution of the same form
as in Eq. �19� but with the numerators of the two tanh
replaced by E+=
�+2t���
��2 / �4t2�−3�+2� and E−=
�
−2t���
��2 / �4t2�−3�−2�, respectively.

As a consequence of the effect of t� in the conductivity, a
graphene only enters in the band structure E� in the Fermi
functions. In Fig. 4 we plot the real part of the optical con-
ductivity for two different values of �: one with the Fermi
energy in the conduction band and the other with the Fermi
energy in the valence band. There is a small effect near twice
the absolute value of the chemical potential due to the break-
ing of particle-hole symmetry introduced by t�. For optical
frequencies, the effect of t� is negligible.

0.1 0.15 0.2 0.25
ω (eV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

σ/
σ 0

µ=0.1 eV, T=45 K
µ=-0.1 eV, T=45 K

FIG. 4. �Color online� Real part of the conductivity for two
values of the chemical potential at the temperature of 45 K. The
parameters used are t=3.1 eV and t�=−0.13t. Only the energy
range of �� �0.1,0.3� eV is shown because only here the
chemical-potential difference has any noticeable effect.

OPTICAL CONDUCTIVITY OF GRAPHENE IN THE… PHYSICAL REVIEW B 78, 085432 �2008�

085432-5



V. ELECTROMAGNETIC SCATTERING PROBLEM

Here we derive the reflectivity and the transmissivity of
light between two media, characterized by electrical permit-
tivities �i�0 with i=1,2, separated by a graphene flake. The
scattering geometry is represented in Fig. 5, i.e., we assume
the field to propagate in the direction k= �kx ,0 ,kz�.

In the following, we assume the field to be given by E
= �Ex ,0 ,Ez� �p polarization�. The case of s polarization is
addressed in Appendix B.

The electromagnetic boundary conditions then are47

�D2 − D1� · n = � , �44�

n � �E2 − E1� = 0, �45�

where � is the surface charge density, in our case the
graphene charge density. If we represent the intensity of the
incident, reflected, and transmitted electric field as Ei, Er,
and Et, respectively, the boundary conditions can be written
as

�Ei − Er�cos �1 = Et cos �2, �46�

− �2�0Et sin �2 + �1�0�Ei + Er�sin �1 = � , �47�

where �0 is the vacuum permittivity, �1 and �2 are the relative
permittivity of the two media, and �1 and �2 are the incident
and refracted angle, respectively. Now the continuity equa-
tion in momentum space reads

���� = jx���kx/� , �48�

and Ohm’s law is written as

jx��� = 	���Ex = 	���Et cos �2. �49�

Combining Eqs. �46�–�49�, we arrive at the following result,
valid for normal incidence, for the transmissivity T:

T =��2

�1

4��1�0�2

����1�2 + �1��0 + ��1	���/c�2
. �50�

If we now consider both media to be vacuum and that the
graphene is at half filling �	���
	0�, we obtain

T =
1

�1 + ��/2�2 
 1 − �� , �51�

where �=e2 / �4��0c
� is the fine-structure constant. The re-
flectivity is also controlled by the fine-structure constant �.
For normal incidence it reads

R =
���1�2�0 + ��1	���/c − �1�0�2

���1�2�0 + ��1	���/c + �1�0�2
, �52�

and if both media are vacuum we obtain

R =
�2�2

4
T . �53�

In Fig. 6, the transmission and reflection coefficients for nor-
mal incident as functions of the frequency for temperature
T=10 K are shown where the first medium is vacuum ��1
=1� and the second medium is either vacuum ��2=1� or a
SiO2 substrate ��2=��=2, �� being the high-frequency di-
electric constant of SiO2�. The left-hand side shows the data
for zero doping and the right-hand side for finite doping �
=0.2 eV. In Appendix B, we present the formulas for arbi-
trary angle of incidence.

It is interesting to compare the result for graphene with
that for bilayer graphene. For the bilayer, the transmissivity
is given by19

T = 1 – 2��f2���

with f2��� given by

f2��� =

� + 2t�

2�
� + t��
+

��
� − t��
�
�/t��2 +

�
� − 2t����
� − 2t��
2�
� − t��

,

�54�

and t� is the hopping amplitude between the graphene
planes. For frequencies much larger than t�, which is the
case in an experiment done in the visible region of the spec-
trum, one obtains
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x

y

graphene

E

E

E

n

FIG. 5. �Color online� Geometry of p polarized light scattering
between two media with graphene separating them. The electrical
permittivities of the two media are �i�0, with i=1,2.
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FIG. 6. �Color online� The transmissivity and reflectivity for
normal incident as functions of the frequency for T=10 K where
the first medium is vacuum ��1=1� and the second medium is either
vacuum ��2=1� or a SiO2 substrate ��2=��=2�. Left: At zero
chemical potential. Right: At finite chemical potential �=0.2 eV.
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f2��� 
 1 −
t�
2

�
��2 
 1, �55�

which leads to T
1–2��. Again, as in graphene, the trans-
missivity is controlled by the fine-structure constant. It is
interesting to note that for 
�� t� we also obtain the same
result for T.

The appearance of the fine-structure constant � in the two
cases is connected to the spinorial structure of the electronic
wave function. In other words, the reduction in the transmis-
sivity through a clean system is caused by a universal current
induced by interband transitions.

VI. CONCLUSIONS

We have presented a detailed study of the optical proper-
ties of graphene based on the general noninteracting tight-
binding model. Special emphasis was placed on going be-
yond the usual Dirac-cone approximation, i.e., we included
the cubic term in the density of states. The conductivity was
thus consistently calculated to the order of �
� / t�2 for arbi-
trary chemical potential and temperature.

We also assessed the effect of the next-nearest-neighbor
coupling t� on the optical properties. We find that the addi-
tional terms to the current operator do not contribute to the
conductivity and that modifications only enter through the
modified energy dispersion.

Using the full conductivity of clean graphene, we deter-
mine the transmissivity and reflectivity of light that is scat-
tered from two media with different permittivity and
graphene at the interface. Our results are important for opti-
cal experiments in the visible frequency range.44 For ex-
ample, the apparent disagreement between the presented
theory for graphene and experiments by Dawlaty et al.42 at
visible frequencies indicates that the interlayer interaction in
epitaxial-SiC graphene is significant and cannot be ne-
glected.
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APPENDIX A: EQ. (16) UP TO FIRST ORDER
IN MOMENTUM

The function ��k� is given close to the Dirac point by

��k� 

3a

2
�ky − ikx� . �A1�

This leads to the following result:

T��� =
�R��k��2 − �I��k��2

���k��2
= − cos�2�� . �A2�

It is now easy to see that

�
0

2�

d�T���g����k��� = 0, �A3�

where we have used the result ���k��=3ak /2, valid near the
Dirac point.

APPENDIX B: TRANSMISSIVITY AND REFLECTIVITY
FOR ARBITRARY INCIDENCE

Here we present the general formula for the transmissivity
and reflectivity of light being scattered at a plane surface
between two media of different dielectric properties and a
graphene sheet at the interface.

For p polarization, the reflection and transmission ampli-
tudes are obtained from the boundary conditions of Eqs. �46�
and �47� and read

r =
M − 1

M + 1
, t =��1

�2

2K

M + 1
�B1�

with M =K+� cos �1, where �1 denotes the incident angle
and

K =
�2

�1

kz
i

kz
t , � =

	���
��1�0c

. �B2�

Above, kz
i =��1�� /c�2−kx

2 �kz
t =��2�� /c�2−kx

2� denotes the
perpendicular component of the incident �transmitted� wave
vector relative to the interface, kx the parallel �conserved�
component, and �1 ��2� is the dielectric constant of the first
�second� medium �see Fig. 5�. For s polarization, r and t are
independent of the angle of incident and, in the Dirac-cone
approximation, yield the same result as for p polarization in
the case of normal incident ��1=0�.

Generally, the reflection and the transmission coefficients
are given by R= �r�2 and T= �t�2kz

t /kz
i , respectively. For a

simple �nonconducting� interface, this leads to the conserva-
tion law T+R=1. Notice that there is no such conservation in
the present case due to absorption within the graphene sheet.

For a suspended graphene sheet with �1=�2=1 at the
Dirac point �	���
	0�, the reflection and transmission co-
efficients for p polarization read

R =
��̃ cos �1�2

�1 + �̃ cos �1�2 , T =
1

�1 + �̃ cos �1�2 , �B3�

with �̃=�� /2 and �=e2 / �4��0c
� the fine-structure con-
stant.
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