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We present a microscopic model for a line junction formed by counter or copropagating single mode
quantum Hall edges corresponding to different filling factors. The ends of the line junction can be described by
two possible current splitting matrices which are dictated by the conditions of both lack of dissipation and the
existence of a linear relation between the bosonic fields. Tunneling between the two edges of the line junction
then leads to a microscopic understanding of a phenomenological description of line junctions introduced some
time ago. The effect of density-density interactions between the two edges is considered, and renormalization-
group ideas are used to study how the tunneling parameter changes with the length scale. This leads to a
power-law variation of the conductance of the line junction with the temperature. Depending on the strength of
the interactions the line junction can exhibit two quite different behaviors. Our results can be tested in bent
quantum Hall systems fabricated recently.
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I. INTRODUCTION

The recent fabrication of quantum Hall �QH� systems
which have a sharp bend of 90° provides a new arena for
testing theories of quantum Hall edge states.1,2 By applying
an appropriately tilted magnetic field, one can create a situ-
ation in which the two faces of the bent system are both in
QH states but they have different filling fractions �1 and �2;
this is because the filling fractions are governed by the com-
ponents of the magnetic field perpendicular to the faces. If
the magnetic field is sufficiently tilted, the two perpendicular
components can even have opposite signs. Depending on
whether �1 and �2 have the same sign or opposite signs, the
edge states on the two sides of the line which separates the
two QH states �called a line junction� propagate in opposite
directions or in the same direction; these are called counter
or copropagating edge states, respectively. Note that in a QH
system, currents flow only along the edges because all states
in the bulk are localized.

In a fractional QH system in which the two sides have the
same filling fraction, the properties of a line junction �LJ�
have been studied extensively;3–11 they are known to provide
a realization of a one-dimensional system of spinless inter-
acting electrons with a tunable Luttinger parameter.12–14 A LJ
in such a system can be formed by creating a narrow barrier
which divides a QH liquid such that there are chiral edge
states flowing on the two sides of the barrier.15–19 In general
the edges interact with each other through a short-range
�screened Coulomb� repulsion. A LJ is therefore similar to a
nonchiral quantum wire; however, the physical separation
between the two edges of the effective nonchiral wire can be
controlled by a gate voltage which allows for a greater de-
gree of control over the strength of the interaction between
the edges.

It is known that a LJ can be disordered, so that the tun-
neling amplitude across the LJ can be taken to be a random
variable. The disorder can drive a localization-delocalization
transition;5 the scaling dimension of the tunneling operator
and therefore the occurrence of the transition generally de-
pends on the strength of the density-density interaction.

Novel metallic and insulating states have been observed
for a LJ in a bent QH system in which the filling fraction is
the same on the two sides.2 The results of Ref. 5 have been
used to understand these states. It would clearly be interest-
ing to extend this analysis to the case in which the two sides
of the LJ have different filling fractions for which experi-
mental results are expected to be available in the near future.
�A system in which one side is an electron-gas reservoir, so
that �1=1, and the other side is a fractional QH state with
�2�1 has been studied in Ref. 20. A similar system has been
studied in the context of QH edge reconstruction21�.

In this paper, we develop a microscopic model for a LJ
between two QH states with different filling fractions; our
model will combine ideas from several earlier papers. For
reasons discussed below, we will work in the regime where
the thermal decoherence length LT is much smaller than both
the length L of the LJ and the scattering mean free path Lm.
We consider simple quantum Hall states on the two sides of
the LJ so that the each edge consists of only one chiral mode;
this will happen if the filling fractions on the two sides �1 ,�2
are given by the inverses of odd integers such as 1 ,3 ,5 ,¯.
In Sec. II, we discuss the idea of a current splitting matrix S
for a system with two incoming and two outgoing edges. On
general grounds, such a matrix is described by a single pa-
rameter t called the scattering coefficient; this parameter was
phenomenologically introduced in Refs. 22 and 23. The main
aim of our work will be to provide a microscopic model for
the origin of the parameter t, and then to understand how t
varies with the length scale or the temperature. The micro-
scopic model will be developed in two stages. First, in Sec.
III, we introduce a current splitting matrix S at each end of
the LJ �described by the points x=0 and x=L�. We show that
the requirement that the current splitting matrix should not
lead to any dissipation at the ends of the LJ yields only two
possibilities for the matrix S; the forms of S depend on the
values of �1 ,�2. It turns out, interestingly, that exactly the
same two possibilities for S arise if we demand that the
bosonic fields describing the chiral edge modes should be
related to each other in a linear way. Next, in Sec. IV, we
introduce the possibility of tunneling from a point on one
edge of the LJ to the corresponding point on the other edge;
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this is described by a tunneling conductance per unit length
� which can depend on the location of the tunneling point x.
�We assume that the electrons equilibrate after tunneling; this
requires a mechanism for power dissipation in the LJ�. For
LT�Lm, a kinetic equation description24 of tunneling leads to
a combined current splitting matrix SLJ for the LJ as a whole
which depends on �, L and the S matrices at the two ends of
the LJ. We then turn to the temperature dependence of SLJ in
Sec. V. We consider density-density interactions between the
two edges of the LJ and allow for tunneling with a random
strength between the edges. We then use renormalization-
group �RG� ideas to study how � varies with the
temperature.5 In a certain regime �LT�Lm�L�, the variation
turns out to be given by a power law, where the power de-
pends on the strength of the interaction between the two
edges. Finally, the conductance of the LJ can be related to
the matrix SLJ. This combination of ideas thus gives a com-
plete microscopic understanding of the conductance of the
LJ, including its dependence on the temperature and length.
In Sec. VI, we discuss how our results can be experimentally
tested in QH systems with two different filling fractions. We
summarize our results and discuss possible extensions of our
work in Sec. VII.

II. CURRENT SPLITTING MATRIX

The main aim of our work will be to develop a model for
the current splitting matrix for a system with a line junction.
To see what this matrix means, consider the systems shown
in Fig. 1. In both the systems, the currents �voltages� in the
two incoming edges are denoted as I1 �V1� and I2 �V2�, while
the currents �voltages� in the two outgoing edges are denoted
as I3 �V3� and I4 �V4�. Here 1 and 3 denote the edges of a QH
system with filling fraction �1, while 2 and 4 denote the
edges of a system with filling fraction �2. In the linear-
response regime and assuming equilibration of the electrons,
the currents and voltages on a QH edge are related as

Ii =
e2

h
�iVi. �1�

We expect that the outgoing currents should be related to
the incoming ones by a real matrix denoted as SLJ,

�I3

I4
� = SLJ�I1

I2
� . �2�

This relation must be consistent with two general conditions:

�i� current conservation, which implies that each column
of S should add up to 1, and

�ii� if the incoming voltages V1 and V2 are equal to each
other, the outgoing voltages V3 and V4 should be equal to the
same quantity.

Combined with Eq. �1�, these two conditions allow a gen-
eral current splitting matrix of the form

SLJ =�1 −
2t�2

�1 + �2

2t�1

�1 + �2

2t�2

�1 + �2
1 −

2t�1

�1 + �2

� , �3�

where the real parameter t is called the scattering
coefficient;22,23 t=0 represents minimum tunneling and t=1
maximum tunneling between the two QH fluids.

Next, we consider the power dissipated by the system.
This is given by the difference of the incoming and outgoing
power, namely,

P =
1

2
�I1V1 + I2V2 − I3V3 − I4V4� =

e2

2h
��1V1

2 + �2V2
2 − �1V3

2

− �2V4
2� =

e2

h

2�1�2

�1 + �2
t�1 − t��V1 − V2�2. �4�

The condition that P�0 requires that 0� t�1; no power is
dissipated if t=0 or 1. For any value of �1 ,�2 and a given
voltage difference V1−V2, the maximum power is dissipated
when t=1 /2. Curiously, we note that det�SLJ�=1−2t, and
vanishes at t=1 /2. The reason for power dissipation in our
model will be discussed in Sec. IV.

Using Eq. �1�, we can rewrite Eqs. �2� and �3� as

V3 − V1 =
2t�2

�1 + �2
�V2 − V1� ,

V4 − V2 =
2t�1

�1 + �2
�V1 − V2� . �5�

If �1��2 and t lies in the range ��1+�2� / �2 max��1 ,�2��
� t�1, we see that V3 or V4 can be higher than max�V1 ,V2�
or lower than min�V1 ,V2�. The system can therefore act as a
dc step-up transformer.22,23

III. END OF A LINE JUNCTION

In this section, we will consider a current splitting matrix
for each end of the LJ. The reason the ends of the LJ �the
points x=0 and L in Fig. 1� have to be treated in a special
way is that the edges of two different quantum Hall systems
are coming together there to form the line junction. We there-
fore need to impose some boundary conditions at those
points. Since we will use the technique of bosonization, we
will impose certain linear relations between the bosonic
fields as discussed below.

Each end of the LJ is a point where four edges meet, two
of them incoming and two outgoing. One incoming and one
outgoing edge is associated with a filling fraction �1 and the
other incoming and outgoing edge is associated with filling
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I4, V4
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FIG. 1. �Color online� Schematic of a line junction with �a�
counter propagating and �b� copropagating modes.
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fraction �2 as shown in Fig. 2. For simple filling fractions �i
given by the inverse of an odd integer, each edge is associ-
ated with a single chiral boson as follows. Taking the coor-
dinate on an edge to go from x=0 to x=� �−�� for an out-
going �incoming� edge, respectively, the Lagrangian is given
by

L = �
i=1

2 � 1

4	�i
	

0

�

dx�x
iO�− �t − vi�x�
iO

+
1

4	�i
	

−�

0

dx�x
iI�− �t − vi�x�
iI
 , �6�

where i labels the wire, vi denotes the velocity, and the out-
going �incoming� fields are denoted as 
iI �
iO�, respec-
tively.

If �i is the filling fraction associated with edge i, the
quasielectron and electron annihilation operators are given
by �i,qe��ie

i
i and �i,el�
ie
i
i/�i, respectively, where �i and


i are the Klein factors for quasielectrons and electrons, re-
spectively. The density fields canonically conjugate to 
iO/I
are given by �iO/I= �1 /2	��x
iO/I, so that

��iO/I�x�,� jO/I�y�
 = − i�ij
�i

2	
�x��x − y� �7�

for points x ,y both lying on outgoing �incoming� edges la-
beled i , j. On the outgoing �incoming� edge i, the outgoing
�incoming� current is given by jiO/I=−�1 /2	��t
iO/I. Hence
current conservation implies that �i=1

2 �
iO−
iI�x=0=0. This
implies that the fields must be related at x=0 as

�
1O


2O
� = S�
1I


2I
� , �8�

where the current splitting matrix S is real and each of its
columns add up to 1.

Let us now decompose the fields at time t=0 as


iO = 	
0

� dk

k
�biOke

ikx + biOk
† e−ikx� ,

and


iI = 	
0

� dk

k
�biIke

ikx + biIk
† e−ikx� , �9�

where the bosonic creation and annihilation operators must
satisfy the commutation relations

�biOk,bjOk�
† 
 = �biIk,bjIk�

† 
 = �ij�ik��k − k�� �10�

in order to satisfy Eq. �7�. If we now demand that the com-
mutation relation in Eq. �10� must be consistent with the
relation in Eq. �8�, we see that the matrix S must satisfy

S��1 0

0 �2
�ST = ��1 0

0 �2
� . �11�

Using the condition of current conservation, namely, that the
columns of S should add up to 1, we find that Eq. �11� im-
plies that S can only take two possible values, namely,

S0 = �1 0

0 1
� ,

and

S1 =
1

�1 + �2
��1 − �2 2�1

2�2 �2 − �1
� . �12�

Note that both these matrices satisfy S2= I. For the special
case of �1=�2, the second matrix reduces to

S1 = �0 1

1 0
�.

The power dissipated at the point x=0 is given by the
difference of the incoming power �1 /2��I1IV1I+ I2IV2I� and
the outgoing power �1 /2��I1OV1O+ I2OV2O�. Using Eq. �1�,
we find that the condition that no power is dissipated at x
=0 is equivalent, in terms of the bosonic fields, to the rela-
tion �i=1

2 �
iI
2 /�i−
iO

2 /�i�=0. This implies that

ST�1/�1 0

0 1/�2
� S = �1/�1 0

0 1/�2
� . �13�

This is the same condition as Eq. �11� since S2= I, and we
therefore obtain the same solutions as in Eq. �12�. We thus
see that the conditions of zero power dissipation and a linear
relation between the bosonic fields at the point x=0 are
equivalent to each other; both of them imply that the variable
t appearing in the current splitting matrix �Eq. �3�
 at the
point x=0 must be equal to 0 or 1.

The reason that the conditions of zero power dissipation
and the existence of a linear relation between the bosonic
fields at x=0 are equivalent to each other is that both of these
are consistent with a hermitian Hamiltonian and unitary evo-
lution for the bosonic fields. In contrast to this, the discus-
sion in Sec. IV will involve tunneling of electrons from one
edge to another everywhere on the line junction away from
the end points; the tunneling will be assumed to be followed
by equilibration of the edge modes, and therefore some
power must be dissipated. Hence we do not expect a current
splitting matrix satisfying Eq. �11� to appear at any point in
the line junction away from the ends.

ν2ν1

S

I1I, V1I I2O, V2O

I2I, V2II1O, V1O

FIG. 2. �Color online� A meeting point of two incoming and two
outgoing edges corresponding to two different QH filling fractions.
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In Sec. IV, we will consider a LJ with either counter or
copropagating edges as shown in Fig. 1. We will assume that
each end of the LJ �i.e., the points at x=0 and L� is associ-
ated with one of the matrices S0 or S1 given in Eq. �12�; there
are therefore four different possibilities for the two ends
taken together. Whether one should introduce the matrix S0
or S1 at each end of the LJ depends on the physical situation
at that end. If there is a large potential barrier there which
widely separates the QE fluids with filling fractions �1 and �2
�and therefore minimizes the possibility of tunneling�, or
equivalently, if the edges meet at the end with sharp bound-
aries, we should choose the matrix S0. On the other hand, if
the edges meet at a point with adiabatic �smooth� boundaries
�with the two quantum Hall fluids having a greater degree of
contact which allows for larger tunneling�, then the matrix S1
should be chosen.23

IV. KINETIC EQUATION APPROACH

We now study what happens inside the LJ away from the
ends. We will do this using a simple kinetic equation
approach.24 We assume that we are in a steady state and there
is local equilibrium at each point x of the LJ. In a steady
state, the density �i�x� is independent of time at each point x;
here i=1,2 denotes the edges on the two sides of the LJ. By
the equation of continuity, the currents on the two edges
J1�x� and J2�x� can change with x only if there is a current
flow from one edge to the other. If there is a tunneling con-
ductance per unit length given by ��x�, the current flow from
one edge to the other is given by ��x� multiplied by the
potential difference between the two edges at the point x.
Assuming local equilibrium, the potential at any point of a
QH edge is related to the current as V�x�= �h /�e2�J�x�. We
thus obtain a differential equation for the currents J1�x� and
J2�x�. To solve this equation, it will be convenient to sepa-
rately discuss the cases of LJs with counter and copropagat-
ing modes shown in Figs. 1�a� and 1�b�, respectively.

Before proceeding further, we note that the tunneling be-
tween the edges lying on the two sides of the line junction
leads to power dissipation. This is because the two points
between which the electrons are tunneling are at different
potentials. We are implicitly assuming that the electrons
equilibrate after tunneling; this requires a dissipative mecha-
nism within the line junction. Detailed discussions of equili-
bration in quantum Hall systems have been presented in
Refs. 24 and 25.

A. Counter propagating modes

In the situation shown in Fig. 1�a�, we find that the cur-
rents Ji�x� satisfy the equations

�xJ1 = �xJ2 =
�h

e2 � J2

�2
−

J1

�1
� . �14�

Note that J1�x�−J2�x� is constant along the LJ as one expects
by current conservation. If we assume that � is independent
of x, we can solve the above equations to obtain

�J1�x�
J2�x� 
 =

1

�2 − �1
� � �2e−x/lc − �1 �1�1 − e−x/lc�

− �2�1 − e−x/lc� �2 − �1e−x/lc 

��J1�0�

J2�0� 
 ,

where

1

lc
=

�h

e2 � 1

�1
−

1

�2
� . �15�

If � varies with x, the term x / lc appearing in the exponentials
in Eq. �15� has to be replaced by h

e2 � 1
�1

− 1
�2

��0
xdx���x��.

Now Ji�0� and Ji�L� are related to the incoming and out-
going currents Ii by the current splitting matrices at the ends
of the LJ at x=0 and L. Namely,

�J1�0�
I4


 = S�0�� I1

J2�0� 
 ,

and

� I3

J2�L� 
 = S�L��J1�L�
I2


 . �16�

Using Eqs. �15� and �16�, the outgoing currents can be ex-
pressed in terms of the incoming currents as

�I3

I4
� = SLJ�I1

I2
� ,

where

SLJ =�1 −
2t�2

�1 + �2

2t�1

�1 + �2

2t�2

�1 + �2
1 −

2t�1

�1 + �2

� , �17�

and t is now the scattering coefficient of the LJ as a whole.
For the four different choices of S�0� and S�L� in terms of

the two possible current splitting matrices S0 and S1 in Eq.
�12�, we find that the scattering coefficient t is given by the
expressions in Table I. We see that depending on the choice
of the matrices at the ends of the LJ, t lies in one of the two
ranges �0, ��1+�2� / �2 max��1 ,�2�
� and ���1
+�2� / �2 max��1 ,�2�
 ,1�. Note that we need to have the non-
trivial current splitting matrix S1 at one of the ends of the LJ
in order to have t lie in the range ���1
+�2� / �2 max��1 ,�2�
 ,1� where the system can act as a
step-up transformer.

TABLE I. The scattering coefficient t for the four possible
choices of S matrices at the ends of the LJ, for �1��2.

S�0� S�L� t t�L / lc→0� t�L / lc→��

S0 S0
�1+�2

2
1−e−L/lc

�2−�1e−L/lc
0 �1+�2

2 max��1,�2�
S0 S1

�1+�2

2
1+e−L/lc

�2+�1e−L/lc
1 �1+�2

2 max��1,�2�
S1 S0

�1+�2

2
1+e−L/lc

�2+�1e−L/lc
1 �1+�2

2 max��1,�2�
S1 S1

�1+�2

2
1−e−L/lc

�2−�1e−L/lc
0 �1+�2

2 max��1,�2�
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For the special case �1=�2=�, we have to do a separate
analysis of Eq. �14� since 1 / lc=0. Using the same procedure
as described above, we find that the scattering coefficient is
given by Table II.

We can relate the scattering coefficient t to the two-
terminal conductance of the LJ as follows. Following Fig.
1�a�, let us consider a situation in which V2=0 and therefore
I2=0. Equation �17� then implies that the current along the
LJ, I1− I4= I3, is related to the potential difference across the
LJ, V1−V2, as

GLJ �
I1 − I4

V1 − V2
=

e2

h
�1�1 −

2t�2

�1 + �2
� . �18�

Thus a measurement of the conductance of the LJ, GLJ, gives
the value of t. For the special case �1=�2=�, this reduces to
the expression GLJ= ��e2 /h� / �1+�Lh / ��e2�
, where we have
used the first line of Table II; this agrees with the expression
for the two-terminal conductance given in Ref. 5.

B. Copropagating modes

We can repeat the above analysis for the case in which the
two edges of the LJ propagate in the same direction as shown
in Fig. 2�b�. We now find that the currents satisfy the equa-
tions

�xJ1 = − �xJ2 =
�h

e2 � J2

�2
−

J1

�1
� . �19�

Note that J1�x�+J2�x� is constant along the edge. If we as-
sume the tunneling conductance � to be independent of x, we
obtain

�J1�x�
J2�x� 
 =

1

�2 + �1
� � �2e−x/lc + �1 �1�1 − e−x/lc�

�2�1 − e−x/lc� �2 + �1e−x/lc 
�J1�0�
J2�0� 
 ,

where

1

lc
=

�h

e2 � 1

�1
+

1

�2
� . �20�

As before, Ji�0� and Ji�L� are related to the incoming and
outgoing currents Ii by the current splitting matrices at x=0
and L. We then find that the outgoing currents are again
related to the incoming currents as in Eq. �17�, where the
scattering coefficient is given in Table III. The table remains
valid for the special case �1=�2.

The results given above are illustrated in Fig. 3 for the
case �1=1 and �2=1 /3. We have shown the dependence of

the scattering coefficient t of the LJ on the dimensionless
length L�h /e2 for two different choices of the current split-
ting matrices at the ends of the LJ, for the cases of counter
and copropagating edges. For the counter propagating case,
t begins at 0 �or 1� for L→0 and ends at ��1
+�2� / �2 max��1 ,�2�
=2 /3 for L→�. For the copropagating
case, t begins at 0 �or 1� for L→0 and ends at 1/2 for L
→�. In this picture, we have ignored the temperature depen-
dence of �. In Sec. VI, we will see how renormalization-
group ideas can be used to study the temperature dependence
of � and therefore of t.

V. DISORDER AND RENORMALIZATION GROUP

In this section, we will study the tunneling conductance
��x� in more detail.5 This arises from a tunneling amplitude
��x� appearing in a Hamiltonian density

Htun = ��x��1
†�x��2�x� + h . c . , �21�

where �i�x� denotes the electron annihilation operator at
point x on edge i of the LJ. The tunneling conductance � is
then proportional to the tunneling probability ���2. It is be-
lieved that the presence of impurities near the LJ makes ��x�
a random complex variable; let us assume it to be a Gaussian
variable with a variance W. The quantity W satisfies an RG

TABLE III. The scattering coefficient t for the four possible
choices of S matrices at the ends of the LJ.

S�0� S�L� t t�L / lc→0� t�L / lc→��

S0 S0
1−e−L/lc

2
0 1

2

S0 S1
1+e−L/lc

2
1 1

2

S1 S0
1+e−L/lc

2
1 1

2

S1 S1
1−e−L/lc

2
0 1

2

TABLE II. The scattering coefficient t for the four possible
choices of S matrices at the ends of the LJ, for �1=�2=�.

S�0� S�L� t t�L→0� t�L→��

S0 S0
�Lh/��e2�

1+�Lh/��e2�
0 1

S0 S1 1 1 1

S1 S0 1 1 1

S1 S1 1 1 1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Lσh /e2

t

counter−propagating, S
0
−S

0
counter−propagating, S

0
−S

1
co−propagating, S

0
−S

0
co−propagating, S

0
−S

1

1/2

2/3

FIG. 3. �Color online� Scattering coefficient vs the dimension-
less length of the line junction for two choices of the current split-
ting matrices at the ends x=0 and L, for the cases of counter �blue
lines� and copropagating �red lines� edges, with �1=1 and �2=1 /3.
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equation; to lowest order �i.e., for small ��, this equation is
given by26,27

dW

d ln l
= �3 − 2dt�W , �22�

where l denotes the length scale, and dt is the scaling dimen-
sion of the tunneling operator �1

†�2 appearing in Eq. �21�.
�We will calculate dt below for both counter and copropagat-
ing cases�. There is also an RG equation for the strength of
the interaction between the electrons, but we can ignore that
if W is small.

Let us first assume that the phase decoherence length LT
=�v / �kBT� �the length beyond which electrons lose phase
coherence due to thermal smearing� is much smaller than the
scattering mean free path Lm of the LJ. Successive back-
scattering events then become incoherent and quantum inter-
ference effects of disorder are absent. One can then show
that � scales with the temperature T as T2dt−2.5 �We note that
� is inversely proportional to the conductivity along the LJ
studied in Ref. 5�. It therefore seems that �L→0 as T→0 if
dt�1. However, it turns out that this is true only if dt
�3 /2, i.e., if W is an irrelevant variable according to Eq.
�22�. If dt�3 /2 �called the metallic phase�, one can simul-
taneously have L�LT �this is necessary to justify cutting off
the RG flow at LT rather than at L�, and �L→0, i.e., LT
�1 and LT2dt−2→0, for some range of temperatures. Within
this range, one can obtain the scattering coefficient t in
Tables I–III by taking L / lc��Lh /e2→0. If dt�3 /2 �W is a
relevant variable�, we have L /LT�LT�1 and T2dt−3→�;
hence �L�LT2dt−2→� �we call this the insulating phase�.
We can then obtain t in Tables I–III by taking L / lc� →�.
We thus see that depending on whether dt�3 /2 or �3 /2, the
parameter t tends to quite different values as the temperature
is decreased.

The above analysis breaks down if one goes to very low
temperatures where LT�L or Lm. In that case, the RG flow
of W has to be cut off at the length scale L or Lm, rather than
LT; hence � and therefore the scattering coefficient t become
independent of the temperature T.

In Fig. 4, we illustrate the temperature dependence of the
scattering coefficient t for two choices of the current splitting
matrices at the ends of the LJ, with dt=0.8 and 2, for �1=1
and �2=1 /3. We have taken the conductance � to scale as
T2dt−2 �specifically, L�h /e2=T2dt−2, where T is in dimension-
less units�, and then substituted that to obtain t from the first
two rows of Tables I and III for counter and copropagating
edges, respectively. For dt�0.8 �Fig. 4�a�
, we see that t
approaches 2/3 �1/2� as T→0 for the counter �copropagat-
ing� cases, respectively, for any choice of the current split-
ting matrices at the ends of the LJ. For dt=2 �Fig. 4�b�
, t
approaches 0 �1� as T→0 depending on the choices of cur-
rent splitting matrices at the ends of the LJ, regardless of
whether the edges are counter or copropagating. As men-
tioned above, these pictures become invalid when we go to
very low temperatures where LT is not much smaller than L
or Lm.

We will now compute the scaling dimension dt of the
operator �1

†�2 using bosonization. It is again convenient to
discuss this for the cases of LJs with counter and copropa-
gating modes separately.

A. Counter propagating modes

For the LJ shown in Fig. 2�a�, the mode on one edge goes
from x=0 to x=L, while the mode on the other edge goes in
the opposite direction; let us call the corresponding bosonic
fields 
1 and 
2, respectively. In the absence of density-
density interactions between these modes, the Lagrangian is
given by

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

T

t

counter−propagating, S
0
−S

0
counter−propagating, S

0
−S

1
co−propagating, S

0
−S

0
co−propagating, S

0
−S

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1
(a) dt = 0.8

(b) d

T

t

t = 2

FIG. 4. �Color online� Scattering coefficient
vs the dimensionless temperature for two choices
of the current splitting matrices at the ends of the
line junction, for the cases of counter �blue lines�
and copropagating edges �red lines�, with �a� dt

=0.8 and �b� dt=2, for �1=1 and �2=1 /3.
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L =
1

4	�1
	

0

L

dx�x
1�− �t − v1�x�
1

+
1

4	�2
	

0

L

dx�x
2��t − v2�x�
2, �23�

where vi denotes the velocity of mode i. The bosonic fields
can be expanded at time t=0 as


1 = 	
0

� dk

k
�b1eikx + b1

†e−ikx� ,

and


2 = 	
0

� dk

k
�b2e−ikx + b2

†eikx� , �24�

where the creation and annihilation operators satisfy the
commutation relations

�bik,bjk�
† 
 = �ij�ik��k − k�� . �25�

The electron annihilation operator on edge i is given by

ie

i
i/�i, 
i being the electron Klein factor. The tunneling
operator between the edges, �1

†�2, is therefore given by

1

†
2ei�
2/�2−
1/�1�. �Since the edges belong to different QH
systems, quasiparticles with fractional charge cannot tunnel
between the two edges as that would change the charge of
each QH system by a fractional amount�.

We will again assume that LT�Lm�L; therefore, two
points on the LJ which are separated by a distance much
larger than LT are not related to each other in a phase-
coherent way. In particular, at all points deep inside the LJ,
i.e., separated from the ends of the LJ at x=0 and L by a
distance much larger than LT, the bosonic fields carry no
information about the current splitting matrices S appearing
at the ends. We can therefore assume that 
1�x� and 
2�x�
are independent fields at all points x except points very close
to the edges. For the same reason, we can replace the limits
of the integration in Eq. �23� by −� and � since only fields
lying within a distance of about LT from a given point x will
contribute to tunneling at that point. We can now read off the
scaling dimension of the tunneling operator from the La-
grangian in Eq. �23�; we find that dt= �1 /2��1 /�1+1 /�2�. For
instance, for a LJ lying between QH systems with �1 ,�2
equal to 1 and 1/3, dt=2 which means that the disorder pa-
rameter W is irrelevant.

We will now consider the effect of a short-range density-
density interaction between the two edges on the scaling di-
mension dt. The densities for the two modes are given by
�1= �1 /2	��x
1 and �2=−�1 /2	��x
2, respectively. Hence a
repulsive interaction will correspond to a term in the La-
grangian of the form

Lint =
�

4	��1�2
	

0

L

dx�x
1�x
2, �26�

where � is a positive number with the dimensions of veloc-
ity. The Hamiltonian corresponding to Eqs. �23� and �26� is
then given by

H = 	
0

�

dk�v1

�1
b1k

† b1k +
v2

�2
b2k

† b2k −
�

2��1�2

�b2k
† b1k

† + b1kb2k�
 .

�27�

This can be diagonalized by a Bogoliubov transformation.
We then obtain new bosonic fields 
̃1 and 
̃2 which have the
velocities

ṽ1 =
1

2
���v1 + v2�2 − �2 + v1 − v2
 ,

and

ṽ2 =
1

2
���v1 + v2�2 − �2 + v2 − v1
 . �28�

The requirement of stability, ṽ1 , ṽ2�0, means that we must
have 4v1v2��2. Finally, we can obtain the scaling dimen-
sion of the tunneling operator ei�
2/�2−
1/�1� after rewriting 
i

in terms of the new fields 
̃i. We discover that

dt =
1

4K��1 + K2�� 1

�1
+

1

�2
� −

2�1 − K2�
��1�2


 ,

where

K =�v1 + v2 − �

v1 + v2 + �
. �29�

For the special case �1=�2=�, Eq. �29� gives dt=K /�,5

while for K=1, we get dt=1 / �2�1�+1 / �2�2�. It is interesting
to note that for a given value of �1 and �2, dt has a nonmono-
tonic dependence on K. When K is reduced from 1 by turn-
ing on a weak repulsive interaction �i.e., � is small and posi-
tive�, dt starts decreasing; however, dt reaches a minimum at
K= ���1−��2� / ���1+��2�, beyond which it starts increasing
as K decreases further.

B. Copropagating modes

For the LJ shown in Fig. 2�b�, the modes on both edges go
from x=0 to x=L. Hence both modes have a Lagrangian and
an expansion similar to that of the field 
1 given in Eqs. �23�
and �24�. In the presence of density-density interactions, the
Hamiltonian is given by

H = 	
0

�

dk�v1

�1
b1k

† b1k +
v2

�2
b2k

† b2k −
�

2��1�2

�b2k
† b1k + b1k

† b2k�
 .

�30�

This can be diagonalized by a simple rotation. The new
bosonic fields have the velocities

ṽ1 =
1

2
�v1 + v2 + ��v1 − v2�2 + �2
 ,

and
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ṽ2 =
1

2
�v1 + v2 − ��v1 − v2�2 + �2
 . �31�

Once again stability, i.e., ṽ2�0, requires that 4v1v2��2. Fi-
nally, the scaling dimension of the tunneling operator
ei�
2/�2−
1/�1� is found to be given by

dt =
1

2�1
+

1

2�2
, �32�

independent of the strength of the interaction �.

VI. EXPERIMENTAL IMPLICATIONS

Our results can be experimentally tested in bent QH sys-
tems such as the ones studied in Refs. 1 and 2. A gate voltage
can be used to control the distance between the two edges of
the LJ. Making the gate voltage less repulsive for electrons is
expected to reduce the distance between the edges; this
should increase both the strength of the density-density in-
teractions as well as the tunneling conductance.5 In this way,
one may be able to vary the scaling dimension dt across the
value 3/2.

For the case of counter propagating edges with �1��2,
we have discussed in Sec. IV A how t can be obtained from
a two-terminal conductance measurement. Our first observa-
tion is that the value of t always lies in one of two mutually
exclusive ranges, �0, ��1+�2� / �2 max��1 ,�2�
� or ���1
+�2� / �2 max��1 ,�2�
 ,1�; this can be seen in Table I. Next,
we saw in Sec. V that for dt�3 /2, t will approach either 0 or
1, depending on which of the two ranges t happens to lie in,
as the temperature is lowered �provided that LT�L�. On the
other hand, if dt�3 /2, t will approach the value ��1
+�2� / �2 max��1 ,�2�
 from below or above, depending on
which of the two ranges t lies in, as the temperature is low-
ered. Finally, the rate at which the various asymptotic values
of t is approached depends on the value of dt; this value is
determined by �1, �2 and the interaction strength � which can
be controlled by the gate voltage.

For the case of copropagating edges with any values of �1
and �2, the value of t always lies in one of two mutually
exclusive ranges, �0,1/2
 or �1/2,1
; this can be seen in Table
III. For dt�3 /2, t will approach either 0 or 1, depending on
which of the two ranges t happens to lie in, as the tempera-
ture is lowered. If dt�3 /2, t will approach the value 1/2
from below or above as the temperature is lowered. Unlike
the case of counter propagating edges, the rate at which the
various asymptotic values of t are approached now depends
on only �1 and �2, and not on the interaction strength or the
gate voltage.

In the presence of interactions and disorder, Lm scales
with temperature as T2−2dt and LT�T−1.5 Thus throughout
the metallic phase �dt�3 /2�, Lm�LT as T→0. We note
again that this is the regime of validity of our analysis.

VII. DISCUSSION

In this work we have developed a model for studying
transport along a QH line junction with either counter and

copropagating modes, in the case of QH states for which
each edge has a single chiral mode. Each end of the line
junction is described by a current splitting matrix whose
form is severely restricted by the requirement that the
bosonic fields at those points should be linearly related to
each other. We then consider the effect of tunneling across all
points of the line junction and obtain expressions for the
current splitting matrix SLJ of the line junction in terms of the
filling fractions, the tunneling conductance and the length of
the line junction. Next, the tunneling conductance is taken to
be a random variable; its temperature dependence is obtained
using renormalization-group ideas. The scaling dimension of
the tunneling operator is found to depend on the strength of
the interaction between the two edges of the line junction in
the counter propagating case, but not in the copropagating
case. Depending on the scaling dimension, the system can
exhibit two different behaviors as the temperature is de-
creased. For a line junction with counter propagating modes,
one can change the behavior by applying a gate voltage
placed above the line junction since such a voltage can
change the effective width of the line junction and therefore
the strength of the interactions. Our model provides a theo-
retical framework for analyzing experimental studies of the
transport properties of line junctions in QH systems; we have
discussed some experimental implications of our results.

It would be useful to extend the analysis presented in this
paper to the regime of very low temperature where LT�L
and Lm. There are two problems which need to be addressed
in order to do this. First, the kinetic equation approach used
in Sec. III needs to be modified in this regime since that
approach implicitly assumes that the phase decoherence
length is much smaller than the scattering mean free path of
the LJ. Second, the bosonic fields on the two edges of the LJ
are not independent of each other at low temperatures if the
current splitting matrices at the ends of the LJ are taken to be
of the form S1, since such a matrix mixes the bosonic fields
on all the incoming and outgoing edges if �1��2.

It would also be interesting to extend our analysis to the
case of QH systems with more complicated filling fractions
whose edges are described by multiple modes, some of
which may propagate in opposite directions.24,28–30

Finally, we would like to mention studies of a QH system
with a point-contact interface separating two different filling
fractions,31 and a QH system with an extended constriction
with the same filling fraction on the two sides.32 It may be
possible to extend our analysis to these systems as well.

After this work was submitted for publication, a paper has
appeared which considers a system with several line junc-
tions, each of which separates quantum Hall fluids with dif-
ferent filling fractions.33 Their result for the conductance of a
single-line junction agrees with ours.
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