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We present a unified theory of the phonon dispersions and elastic properties of graphene, graphite, and
graphene multilayer systems. Starting from a fifth-nearest-neighbor force-constant model derived from full
in-plane phonon dispersions of graphite �Mohr et al., Phys. Rev. B 76, 035439 �2007��, we use Born’s
long-wave method to calculate the tension and bending coefficients of graphene. Extending the model by
interplanar interactions, we study the phonon dispersions and the elastic constants of graphite, and the phonon
spectra of graphene multilayers. We find that the inner displacement terms due to sublattice shifts between
inequivalent C atoms are quantitatively important in determining the elastomechanical properties of graphene
and of graphite. The overall agreement between theory and experiment is very satisfactory. We investigate the
evolution from graphene to graphite by studying the increase in the �B2g1

�N� rigid plane optical

mode as a function of the number of layers N. At N=10 the graphite value �B2g1
�127 cm−1 is attained within

a few percent.
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I. INTRODUCTION

Graphite, the stable form of solid carbon under ambient
conditions, has a broad range of applications in industry. It is
also the basic material for the synthesis of different nano-
scopic materials such as fullerenes and carbon nanotubes.1,2

The physical properties and the chemical flexibility are a
direct consequence of the layer structure of graphite. Carbon
atoms within a plane are strongly bonded by sp2 hybridiza-
tions and form a hexagonal �honeycomb� network called
graphene. The three-dimensional �3D� graphite is obtained
by a stacking of the two-dimensional �2D� graphene layers in
an . . .����. . . sequence. The interaction between layers is
ascribed to weak van der Waals forces. Due to the large
difference between intralayer and interlayer forces between
C atoms, the physical properties of graphite are very aniso-
tropic. A direct signature of this anisotropy is manifest in the
lattice dynamics measured by inelastic neutron scattering
�INS� �Refs. 3 and 4�: vibrational modes that correspond to
relative atomic displacements in the same basal plane have
high frequencies whereas modes in which the basal planes
move as rigid units have low frequencies. In addition to the
early INS work, we mention related experimental work on
elastic constants and optical phonons,5–7 and theoretical work
on lattice dynamics.8–11 A comprehensive review on the
physics of graphite until 1981 is found in the book by
Kelly.12 In the last decades advances have been made due to
the use of experimental methods13 and of progress in first-
principles calculations.14,15

Due to the crystallographic structure of graphite, a 2D
model of the lattice, i.e., graphene, as used in early
work,16–18 has proven to be an adequate approximation for
the explanation of electrical and magnetic properties.19 More
recently the electronic band structure and the lattice dynam-
ics of graphene have been used as basis concepts for the
understanding of the electronic and vibrational properties of
single-wall carbon nanotubes.2,20,21 Indeed a single-wall
nanotube is obtained by rolling up a graphene sheet into a

hollow cylinder. Hence graphene has been an extremely use-
ful theoretical paradigm. On the other hand the isolation of a
single graphene sheet as materialization of a 2D crystal had
eluded experiment, in agreement with a fundamental theo-
rem about the absence of crystalline order in two
dimensions.22 The experimental discovery of graphene and
other free-standing 2D atomic crystals23,24 came as a great
surprise; since then 2D crystals have become a topic of in-
tense experimental and theoretical research in condensed-
matter physics and materials science.

While in the years following the discovery of graphene,
the unusual electronic properties of graphene were at the
center of interest;25 the thermoelastic and lattice-dynamical
properties are getting increasing attention. These studies are
essential for the understanding of the stability of graphene as
a truly 2D crystal.26,27

The purpose of the present paper is to give a unified the-
oretical description of the lattice dynamics, and the elastic
stretching and bending of graphene, of the phonons and elas-
tic constants of graphite, and of the phonons of multilayer
graphene systems. Our theoretical study is complementary to
recent experimental inelastic x-ray scattering �IXS� work on
the elasticity28 and the full in-plane phonon dispersion of
graphite.29,30

II. ELEMENTS OF LATTICE DYNAMICS

We recall some basic concepts of lattice dynamics of a
nonprimitive non-ionic 3D crystal.31,32 Later on we will con-
sider the cases of 2D and multilayer crystals.

The crystal consists of N unit cells with each cell contain-
ing s atoms. The positions of the unit cells are fixed by the
lattice vectors,

X� �n�� = n1a�1 + n2a�2 + n3a�3. �1�

Here a� l, with l=1,2 ,3, are three noncoplanar basis vectors
while the triplet of integers n� = �n1 ,n2 ,n3� labels the unit
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cells. The equilibrium positions of the atoms are given by

X� �n��� = X� �n�� + r��. �2�

Here r��, where �=1,2 , . . . ,s, specifies the location of the �th
atom in the unit cells. We write ui�n��� for the ith Cartesian
component �i=x ,y ,z� of the instantaneous displacement vec-
tor of the atom �n��� away from its equilibrium position.

The crystal potential energy � is a function of the instan-

taneous positions R� �n���=X� �n���+u��n��� of the atoms. The
harmonic part of the potential then reads

V�2� =
1

2�
n��

�
n����

�
ij

�ij�n��;n�����ui�n���uj�n����� . �3�

The coupling parameters �ij�n�� ;n����� are the second de-
rivatives of the potential energy with respect to the displace-
ments, taken at the equilibrium positions.

The kinetic energy of the crystal is given by

T = �
n� ,�

�
i

pi�n���2

M�

, �4�

where pi�n��� are the components of the atomic momentum
conjugate to ui�n� ,�� and where M� is the mass of the �th
atom. The displacements are function of time; the crystal
dynamics is described by a system of 3sN coupled equations
of motion

M�üi�n��� = − �
n����j

�ij�n��;n�����uj�n����� . �5�

Under the assumption that the crystal is extended in all
three directions: a�1, a�2, and a�3, the Born-von Karman peri-
odic boundary conditions apply and one introduces Fourier
transforms in space. In addition one chooses a periodic time
dependence with frequency � and writes

ui�n��� =
1

�M�N
�

q�
ui

��q��eiq� ·X� �n���−i�t. �6�

Here q� is a wave vector in the 3D Brillouin zone. The equa-
tion of motion reads

�2ui
��q�� = �

��j

Dij
����q��uj

���q�� , �7�

where Dij
��� are the elements of the dynamical matrix D�q��:

Dij
����q�� =

1

�M�M��
�
n��

�ij�n��;n�����eiq� ·�X� �n�����−X� �n����. �8�

The 3s�3s dynamical matrix is Hermitian. The eigenvalues
�optical and acoustic phonon branches� are obtained by solv-
ing the secular equation

�1�2 − D�q��� = 0. �9�

Knowledge of the dynamical matrix D�q�� allows one to
derive expressions of the macroscopic elastic constants in
terms of the interatomic coupling parameters by using Born’s
long-wave method.32 One starts from the series expansion in
powers of small q�:

Dij
����q�� = Dij

����0� + i�
k

Dij,k
����1�qk +

1

2�
kl

Dij,kl
����2�qkql + . . . .

�10�

In the long-wavelength limit, the acoustic dynamical matrix
has elements

D̂ij�q�� =
1

�
�
kl

��ij,kl� + �ik, jl��qkql. �11�

Here �= 1
vc

��M� is the mass density of the crystal with vc as
the volume of the primitive unit cell. The quantities �ij ,kl�
and �ik , jl� are given by

�ij,kl� =
1

2vc
�
���

�M�M��1/2Dij,kl
����2�, �12�

and

�ik, jl� = −
1

vc
�
���

�
hp

	hp
���	�

��

�M���
1/2Dhi,k

����1�

�	�

��

�M���1/2Dpj,l
�����1�
 , �13�

with

	hp
��� = �




w�
���h�w�
����p�
�


2 , �14�

where �
 and w�
� being the optical eigenfrequencies and

eigenvectors of the singular matrix D�q� =0��. The quantities
�ij ,kl� account for the elastic energy due to relative shifts
between different sublattices; they are also referred to as in-
ner displacement terms. These internal strain contributions,
which are necessary to compensate the external forces in the
interior of the system,33 are different from zero if the atomic
equilibrium positions are not centers of symmetry, as is the
case for graphite and graphene. In Secs. IV and V we will
see that the inner displacements are quantitatively important
in determining the numerical values of the tension coeffi-
cients of graphene and for the elastic constants of graphite.
Provided that the Huang conditions are satisfied, the elastic
constants are given by32

Cij,kl = �ik, jl� + �jk,il� − �ij,kl� + �ij,kl� . �15�

In principle, the knowledge of the crystal potential � allows
the calculation of the dynamical matrix. A particular simple
case is the central-force potential where � is a sum of two-
atom potentials that depend only on the separation between
the atoms. The harmonic potential then reads

V�2� =
1

4�
n��

�
n����

��
ij

�ij�n��;n�����ui�n��;n�����uj�n��;n����� ,

�16�

with u��n�� ;n�����=u��n���−u��n�����. The prime at the summa-
tion sign excludes �n���= �n�����. The atomic force constants
�ij�n�� ;n����� are the second derivatives of the pair potential
with respect to the atomic separations, taken at the equilib-
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rium positions. The force constants �ij�n�� ;n����� are related
to the coupling parameters �ij�n�� ;n����� by

�ij�n��;n��� = �
n����

��ij�n��;n����� , �17a�

�ij�n��;n����� = − �ij�n��;n�����,�n��� � �n����� . �17b�

In practice the situation is more complicated as a conse-
quence of the covalent interatomic interactions within
graphene layers. Hence the lattice dynamics of graphite is
often described in terms of force constants, which are deter-
mined from the experimental phonon spectrum.4,8,9,11 On the
other hand some macroscopic properties such as the cohesive
energy of graphite are related to the interplane van der Waals
forces and have been treated in terms of Lennard-Jones �LJ�
potentials.34 In the following we will use force-constant pa-
rameters for the intraplane30 and for the nearest-neighbor
out-of-plane atom-atom interactions; further-neighbor out-of-
plane interactions are described by a LJ potential.35

III. PHONONS IN GRAPHENE AND GRAPHITE

We now study the particular cases of graphite �3D� and
graphene �2D�. We recall that the graphite crystal has a 180°
screw axis perpendicular to the graphene basal planes. We
use a Cartesian system of axes �X ,Y ,Z� such that the screw
axis is along the Z direction and perpendicular to the �X ,Y�
basal planes. Each graphene plane has a 2D hexagonal crys-
tal structure and contains two inequivalent C atoms, called A
and B, per unit cell �see Fig. 1�. We label the graphene unit
cells by a pair of indices �n1 ,n2�=n�� while a�1 and a�2 are
in-plane basis lattice vectors with length a=�3aCC, where
aCC=1.42 Å is the length of a C-C bond. The equilibrium
position of the �th atom in the n��th unit cell then reads

X� �n���� = X� �n��� + r��, � = A,B . �18�

Here r�A= �0,0� and r�B= �a /�3,0� in Cartesian coordinates

while X� �n���=n1a�1+n2a�2.
Similar graphene layers in graphite are stacked with cor-

responding A and B atoms above each other with a distance

c=6.70 Å apart along the Z direction. We call these layers,
labeled by an index nz=1,2 , . . . ,Nz, the � planes. Halfway
between these layers are graphene sheets called �planes. Be-
cause of the 180° rotation, the B� atoms in the � planes do
not lie in line with the B atoms. We label the unit cells of
graphite by indices n� = �n�� ,nz���n1 ,n2 ,nz� with correspond-
ing lattice vectors

X� �n��,nz� = n1a�1 + n2a�2 + nzc� . �19�

Each unit cell contains four atoms. The equilibrium position
of the �th atom in the cell is given by

X� �n��,nz,�� = X� �n��,nz� + r��, �20�

where r�A= �0,0 ,0�, r�B= �a /�3,0 ,0�, r�A�= �0,0 ,c /2�, and
r�B�= �−a /�3,0 ,c /2�, for �= A , B , A�, or B�, respectively
�Fig. 1�. Since in the following we will only consider C
atoms with average mass M =12.02�1.66�10−24 g, we
will drop the index � on the mass.

The 3D Brillouin zone of graphite is shown in Fig. 2. The
2D Brillouin zone of graphene corresponds to the plane
through the points 	, K, and M.

A. Graphene

The formalism of the last section is readily applied to the
case of graphene. We assume that the 2D crystal is suffi-
ciently extended such that periodic boundary conditions ap-
ply in two directions. We denote the force constants by
f ij�n��� ;n��� ��� and write F�q��� for the 6�6 dynamical ma-
trix where q�� is a vector of the 2D Brillouin zone. Equation
�8� becomes

Fij
����q��� =

1

M
�
n���

Fij�n���;n��� ���eiq��·�X� �n��� ���−X� �n�����.

�21�

The coupling parameters Fij are related to the force constants
f ij by relations similar to Eqs. �17a� and �17b�. Notice that
although the equilibrium positions of the A and B atoms are
in a plane �X ,Y�, we allow for 3D displacements ui�n����,

FIG. 1. Two neighboring layers, � and �, of graphite.
FIG. 2. �Color online� Brillouin zone of graphite.
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where i=x ,y ,z. The dynamical matrix is conveniently writ-
ten in terms of 3�3 submatrices F����q���:

F�q��� = 	FAA�q��� FAB�q���
FBA�q��� FBB�q���


 , �22�

where the elements

Fij
AA�q��� =

1

M	 �
n��� ��

�f ij�n��A;n��� ���

− �
n���

f ij�n��A;n��� A�eiq��·�X� �n��� A�−X� �n��A��

�23a�

are real while

Fij
AB�q��� = −

1

M
�
n���

f ij�n��A;n��� B�eiq��·�X� �n��� B�−X� �n��A��

�23b�

are complex. One has the properties

FBB�q��� = FAA�q��� , �23c�

FBA�q��� = FAB�q����. �23d�

The force constants f ij are symmetric in i and j, hence

Fij
��� = Fji

���. �23e�

In Appendix A we give expressions of the matrix ele-

ments Fij
����q���, based on interatomic force constants up to

fifth neighbors. The inclusion of fifth neighbors takes into
account the long-range character of the intraplane valence
forces in a �semi�metal such as graphene,14,29 and improves
overall agreement with INS,4 IXS,30 and high-resolution
electron energy-loss spectroscopy36 measurements of the
phonon branches. Solution of the secular equation then leads
to the phonon branches ���q��, where �=1, . . . ,6. In Fig. 3
we show the results of our calculation with force constants
taken from Ref. 30; a comparison with experiments and ab

initio calculations4,14,29,37 is given in Ref. 30.

B. Graphite

In order to calculate the dynamical matrix of graphite, we
have to distinguish between intraplane forces f ij, described
by the previous force constant model, and interplane van der
Waals forces with force constants hij. We recall that the Bril-
louin zone is three dimensional. We write q�� for a vector
with components �q1 ,q2 ,0� and q� for �q1 ,q2 ,q3�. The dy-
namical matrix D�q�� of dimension 12�12 is written in terms
of 6�6 submatrices D�� ,D�� , . . .,

D�q�� = 	D���q��� D���q��
D���q�� D���q���


 . �24�

Here the superscripts � and � refer to the two types of
graphene planes. The submatrices are in turn expressed in
terms of 3�3 intraplane and interplane submatrices
F����q��� and H����q��, respectively:

D���q��� = 	2HAA + FAA�q��� FAB�q���
FBA�q��� 2HBB + FBB�q���


 ,

�25a�

D���q�� = 	HAA��q�� HAB��q��

HBA��q�� HBB��q��

 , �25b�

D���q��� = 	2HA�A� + FA�A��q��� FA�B��q���

FB�A��q�� 2HB�B� + FB�B��q���

 .

�25c�

In addition to the properties �Eqs. �23c�–�23e��, one has, as a
consequence of crystal structure,

FA�A��q��� = FB�B��q��� = FAA�q��� , �26a�

FA�B��q��� = FAB�q����. �26b�

The numerical values of the intraplane matrix elements are
the same as for the case of graphene �Appendix A�.

The interplane elements read

Hij
����q�� = −

1

M
�
n����

hij�n��;n�����eiq� ·�X� �n����−X� �n����. �27�

The matrices HAA=HA�A� and HBB=HB�B� are diagonal with
real elements

Hii
AA = −

1

2
�Hii

AA��q� = 0�� + Hii
AB��q� = 0��� , �28a�

Hii
BB = −

1

2
�Hii

BA��q� = 0�� + Hii
BB��q� = 0��� . �28b�

We quote the properties

HAA��q�� = HA�A�q�� , �29a�

FIG. 3. �Color online� Phonon-dispersion relations of graphene,
in agreement with Ref. 30.
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HBB��q�� = HB�B�q���, �29b�

HBA��q�� = HAB��q�� . �29c�

Finally, we have D���q��=D���q�� and D���q��=D���q���. The
presence of the q�-independent terms 2HAA and 2HBB �also
called self-interactions� in the expression of D���q��� ac-
counts for the fact that the neighboring � planes at z
= 
c /2 lead to an Einstein potential for the A and B atoms
of the given � plane. A similar role is played by 2HA�A� and
2HB�B� in D���q���.

We now turn to the computation of interactions between
layers. A straightforward way to obtain values of the inter-
plane force constants hij�n�� ;n����� is to start from an empiri-
cal LJ potential between C atoms in different planes:

V�r� =
B
r12 −

A
r6 , �30�

where r= �X� �n��−X� �n������ is the equilibrium interatomic dis-
tance. For graphene-graphene interactions, the values B
=24.1�103 eV Å12 and A=15.2 eV Å6 have been
suggested.35 We have calculated the force constants and the

corresponding elements Hij
����q�� in Appendix B. Subse-

quently we calculated the nine optical zone-center modes of

graphite by diagonalizing the dynamical matrix D�q� =0��. We
recall that the decomposition into irreducible representations
reads8,7 	=A2u+2B2g+E1u+2E2g. We obtained fair values of
seven of the optical mode eigenfrequencies; however the
value 19.88 cm−1 of the degenerate shear type rigid layer
mode frequency ��E2g1

� is small in comparison with the
value 42
1 cm−1 from Raman-scattering experiments.38 An
attempt to increase the value of the LJ attraction parameter A
leads to a concomitant strong decrease in the out-of-plane
rigid layer mode frequency ��B2g��130 cm−1 and hence is
not allowed; a decrease in the repulsion parameter B leads to

a similar failure. An analytical expression of ��E2g1
� is

readily obtained by hand:

��E2g1
� = �− �H11

AA��q� = 0�� + H11
BB��q� = 0�� + H11

AB��q� = 0��

+ H11
AB��q� = 0���
1/2. �31�

Using the force-constant parameters from Table V and Ap-
pendix B, we realize that the low numerical value of ��E2g1

�
is essentially due to the large negative value h11�0;1+�
=−114.47 dyn /cm of the nearest-neighbor A−A� force con-
stant. We conclude that the interplane nearest-neighbor LJ
potential is not sufficient to describe adequately the shear
forces between rigid graphene layers. This fact is not too
surprising since the overlap between � electron wave func-
tions belonging to neighboring A−A� atoms gives rise to a
relatively large tight-binding parameter �1 ��1��,17–19,39,40

which determines the width of � bands at the K point of the
Brillouin zone. We recall that the graphene-graphene LJ po-
tential of Ref. 35 was originally designed to account for in-
terlayer cohesive properties.34 These properties are essen-
tially governed by the interplanar force constant h33�0;1+�
=2040.41 dyn /cm between A and A� atoms �see Table V
and Appendix B�; therefore the LJ potential already accounts
well for the B2g out-of-plane vibrational mode �experimental
value 127 cm−1�. Replacing the LJ values of h11�0;1+� and
h33�0;1+� by the ad hoc values 400.00 and 1800.00 dyn/cm,
respectively, results in the eigenfrequencies ��E2g1

�
=42.98 cm−1 and ��B2g1

�=127.52 cm−1. Diagonalization of

the dynamical matrix D�q� =0�� then leads to the results shown
in Table I. The obtained zone-center optical eigenfrequencies
are reasonably close to the experimental values4,7,38 although
small differences remain for the highest frequency values.
For instance, the value 1577.54 cm−1 for the E2g2

mode dif-
fers from the experimental value 1582 cm−1 measured by
Raman scattering.38 However, this difference will not affect
our calculations of the elastic properties �Secs. IV and V�

TABLE I. Normalized optical eigenvectors w�
���i� and corresponding eigenfrequencies �
 for graphite in units of cm−1.

� w�1� w�2� w�3� w�4� w�5� w�6� w�7� w�8� w�9�

1
2 0 0 0 0 1

2 0 0 1
2

A 0 1
2 0 0 0 0 1

2 − 1
2 0

0 0 − 1
2

1
2

1
2 0 0 0 0

1
2 0 0 0 0 − 1

2 0 0 − 1
2

B 0 1
2 0 0 0 0 − 1

2
1
2 0

0 0 − 1
2 − 1

2 − 1
2 0 0 0 0

− 1
2 0 0 0 0 1

2 0 0 − 1
2

A� 0 − 1
2 0 0 0 0 1

2
1
2 0

0 0 1
2

1
2 − 1

2
1
2 0 0 0

− 1
2 0 0 0 0 − 1

2 0 0 1
2

B� 0 − 1
2 0 0 0 0 − 1

2 − 1
2 0

0 0 1
2 − 1

2
1
2 0 0 0 0

�
 43.00 43.00 127.52 880.78 881.72 1577.20 1577.20 1577.54 1577.54

	 E2g1
E2g1

B2g1
A2u B2g2

E1u E1u E2g2
E2g2
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since ��1�−2� ��9�−2 �see Eqs. �47� and �67a��.
The phonon spectrum of graphite �Fig. 4� is obtained by

numerically solving the secular equation with the dynamical
matrix D�q�� given by Eq. �24�. In the basal plane of the
Brillouin zone, the overall similarity of the graphite phonon
spectrum with the six phonon branches of graphene is strik-
ing. Only at low energy near the 	 point do the weak inter-
plane interactions cause a noticeable mode splitting. In par-
ticular the low-lying A2u acoustic mode �characterized by
atomic displacements normal to the plane� of the single layer
splits up into an acoustic A2u mode and an optical B2g mode
of graphite.4,7 In Sec. VI we will consider this optical mode
as the fingerprint of graphite when studying the evolution of
the phonon spectrum of graphene multilayer slabs as a func-
tion of the layer number N. In Figs. 3 and 4 the highest
optical phonon branches near the 	 and K points of the Bril-
louin zone are too flat in comparison with experimental
results,29,30 which show steeper slopes. The softening of the
E2g 	 point37 and the A1� K point modes29 is attributed to
strong electron-phonon coupling in sp2 bonded carbon.
These features have been identified and analyzed as Kohn
anomalies.41 In the following we study elastic properties
which do not depend on the slope of the highest optical
phonon branches.

IV. ELASTIC STRETCHING AND BENDING OF
GRAPHENE

We first derive the elastic strain properties of graphene
within the present lattice-dynamical model by applying
Born’s long-wave method to the 6�6 dynamical matrix
F�q���. In order to calculate the contributions �ij ,kl� and
�ik , jl� to the dynamical matrix and to the elastic constants,
we follow the steps summarized in Eqs. �10�–�15�. We recall
that neither A nor B atoms are centers of symmetry. The
series expansion �10� now reads

Fij
����q��� = Fij

����0� + i�
k

Fij,k
����1�qk +

1

2�
kl

Fij,kl
����2�qkql + . . . .

�32�

The indices i �j� with values 1, 2, and 3 label the displace-
ments in x, y, and z directions. The 2D wave vector q�� has
the components �qx ,qy� or equivalently �q1 ,q2�. The expan-

sion coefficients are obtained from the elements Fij
����q��� in

Appendix A. The quantities �ij ,kl� are then given by

�ij,kl�2D =
M

2v2D
�
���

Fij,kl
����2�, �33�

with v2D=a2�3 /2 being the area of the 2D unit cell. One
finds, in terms of the empirical force constants of Ref. 30
�see Table V in Appendix A�,

�11,11�2D =
1

4�3
��f i

�1� + 3fr
�1�� + 6�f i

�2� + 3fr
�2�� + 4�f i

�3� + 3fr
�3��

+ 14�f i
�4� + 3fr

�4�� + 18�f i
�5� + 3fr

�5��
 , �34�

with �22,22�2D= �11,11�2D. The quantities �11,22�2D
= �22,11�2D are obtained from �11,11�2D by interchange of
f i

�n� and fr
�n�. Furthermore one has

�12,12�2D = �21,21�2D =
1

4�3
��fr

�1� − f i
�1�� + 6�fr

�2� − f i
�2��

+ 4�fr
�3� − f i

�3�� + 14�fr
�4� − f i

�4�� + 18�fr
�5� − f i

�5��
 ,

�35�

while

�11,11�2D − �11,22�2D = 2�12,12�2D. �36�

We also quote �11,12�2D= �22,12�2D=0. Finally one has

�33,11�2D = �33,22�2D =
1
�3

�fo
�1� + 6fo

�2� + 4fo
�3� + 14fo

�4�

+ 18fo
�5�� , �37�

and, since q3=0, �11,33�2D= �22,33�2D= �13,13�2D=0.
The quantities �ik , jl� �Eq. �13��, due to inner displace-

ments, now read

�ik, jl�2D = − �M/v2D��
���

�
hp

�
����

	hp
���Fhi,k

����1�Fpj,l
�����1�,

�38�

with

	hp
��� = �


=1

3
w�
���h�w�
����p�

�

2 , �39�

where �
 and w�
� are the optical phonon eigenfrequencies

and eigenvectors of the dynamical matrix at q��=0� . We no-

tice that only coefficients Fij,k
����1� with ���� are nonzero.

This property, which is a consequence of the crystal struc-
ture, implies that the quantities �ik , jl�2D account for the A-B
sublattice shifts. Hermiticity of the dynamical matrix leads to

FIG. 4. �Color online� Phonon-dispersion relations of graphite
along A−	 and in the 	−K−M basal plane.

K. H. MICHEL AND B. VERBERCK PHYSICAL REVIEW B 78, 085424 �2008�

085424-6



Fij,k
AB�1� = − Fij,k

BA�1�. �40�

In addition, the 2D hexagonal crystal structure implies that
elements with i , j or k=3 are zero. Furthermore, F22,2

AB�1�

=F12,1
AB�1�=F21,1

AB�1�=F11,2
AB�1�=0, while F12,2

AB�1�=F21,2
AB�1�=F22,1

AB�1�=
−F11,1

AB�1��0. Explicitly we obtain

F11,1
AB�1� =

�3a

4M
�f ir

AB, �41�

where

�f ir
AB = �f i

�1� − fr
�1� − 2�f i

�3� − fr
�3�� + s�4��f i

�4� − fr
�4��
 , �42�

with s�4�=5 cos 2�1−�3 sin 2�1, where �1=arctan��3 /5�,
i.e., numerically s�4��2.86.

In order to calculate the optical phonon frequencies at the
	 point of the Brillouin zone, we introduce the three optical
displacements vectors w�1���i�=�1

2 �1,0 ,0 ,−1 ,0 ,0�,
w�2���i�=�1

2 �0,1 ,0 ,0 ,−1 ,0�, and w�3���i�=�1
2 �0,0 ,1 ,0 ,0 ,

−1�, and evaluate

�
���

�
ij

w�
���i�Fij
����0�w������j� = �


2�q� = 0���
�, �43�

obtaining

�1
2�0�� = �2

�2��0�� =
3

M
��f i

�1� + fr
�1�� + �f i

�3� + fr
�3�� + 2�f i

�4� + fr
�4��
 ,

�44a�

�3
2�0�� =

6

M
�fo

�1� + fo
�3� + 2fo

�4�� . �44b�

With the force constant values of Ref. 30, the optical phonon

energies at q��=0� are ��1�0��=��2�0��=195.5 meV and

��3�0��=108.6 meV, in agreement with Fig. 3. The elements
of the 6�6 matrix 	 are

	
�
AA = 	
�

BB =
1

2�

2�0��

�
�, �45a�

	
�
AB = 	
�

BA = − 	
�
AA. �45b�

Using Eqs. �40�, �45a�, and �45b�, we rewrite the inner dis-
placement term �Eq. �38�� as

�ik, jl�2D = −
4M

v2D
�

=1

2
1

2�

2�0��

F
i,k
AB�1�F
j,l

AB�1�. �46�

In particular we find

�11,11�2D = −
�3��f ir

AB�2

4�1
2�0��M

, �47�

with �22,22�2D= �12,12�2D= �11,11�2D=−�11,22�2D
=−�22,11�2D.

The elastic constants that characterize the rigidity of the
2D crystal against in-plane deformations are obtained by
means of Eq. �15�. They are in fact surface-tension coeffi-
cients. We write 	ij,kl instead of Cij,kl and �ij for cij. Using
Voigt’s notation, we find

�11 � 	11,11 = �11,11�2D + �11,11�2D, �48�

where �11,11�2D and �11,11�2D are given by Eqs. �34� and
�47�, respectively. Similarly we get

�12 � 	11,22 = 2�12,12�2D − �11,22�2D + �11,22�2D,

�49a�

�66 � 	12,12 = �11,22�2D + �12,12�2D. �49b�

One verifies by means of Eq. �36� that the relation �11−�12
=2�66, characteristic for a hexagonal crystal, is analytically
fulfilled. The longitudinal and transverse sound velocities for
in-plane displacements are given by cl=��11 /�2D and ct

=��66 /�2D, where �2D= 2M
v2D

=7.61�10−8 g /cm2 is the sur-
face mass density. With the values of the empirical force
constants of Ref. 30, we obtain the numerical results �all in
units of 104 dyn /cm�: �11,11�2D=47.28, �12,12�2D=12.45,
�11,22�2D=22.38, and �11,11�2D=−6.73.

The �3�3� acoustic dynamical matrix in the long-
wavelength limit is given by31

F̂ij�q��� =
1

�2D
�
kl

��ij,kl�2D + �ik, jl�2D
qkql. �50�

Explicitly one has

F̂11�q��� =
1

�2D
���11,11�2D + �11,11�2D�q1

2 + ��11,22�2D

+ �12,12�2D�q2
2
 , �51a�

where F̂22�q��� is obtained from F̂11�q��� by interchanging q1
and q2, where

F̂12�q��� = F̂21�q��� =
2

�2D
�12,12�2Dq1q2, �51b�

F̂33�q��� =
1

�2D
��33,11�2D�q1

2 + q2
2�
 , �51c�

F̂j3�q��� = F̂3j�q��� = 0, j = 1,2. �51d�

Numerical results of the present work, results from first-
principles density-functional calculations37 of a single graph-
ite layer, as well as results from full in-plane IXS on single-
crystalline graphite28 are summarized in Table II. We observe
that the inner displacement terms �ij ,kl�2D give quantita-
tively important contributions to the values of the tension
coefficients obtained by the present theory. From Eq. �51a�
of the acoustic dynamical matrix F̂11�q���, it follows that the
inner displacement terms are also comprised in the in-plane
longitudinal and transverse sound velocities cl
�V�LA�100��100�� and ct�V�LA�100��12̄0��, respectively.
Here the numbers within � � brackets refer to the propagation
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wave vector and the numbers within � � brackets refer to the
polarization of displacements. Our values of cl and ct are in
close agreement with V�LA� and V�TA�, respectively, of Ref.
28; hence we conclude that, in agreement with the interpre-
tation of the experimental results of phonon dispersions in
Ref. 30, V�LA� and V�TA� refer to phonons of a single
graphene sheet.

Within the present force-constant model,30 we obtain from
Eq. �37� that �33,11�2D=−0.0175�104 dyn /cm, which
means that �33,11�2D is numerically negligible in compari-
son with �11,22�2D, etc.. Strictly speaking, symmetry re-
quires that the elastic energy density of a thin plate should
not contain a second-order gradient term in the out-of-plane
displacements.42 Hence we conclude that �33,11�2D should
be identically zero. This can be achieved by a slight increase
in the force-constant model parameter fo

�5� �using a value of
0.112 eV /Å2 instead of 0.110 eV /Å2�. Such a change does
not affect, in any noticeable way, the phonon-dispersion re-
lations �Fig. 3�.

Within the present model, there is no coupling between
the in-plane and the out-of-plane acoustic displacements. The
elastic energy per unit surface is obtained from

U2D = lim
q��→0

1

2S
�
ij

s†�q���F̂ij�q���sj�q��� , �52�

where S=N2Dv2D with N2D as the number of unit cells in the
graphene plane. Here we have introduced the acoustic dis-
placements

si�q��� =
1
�2

�ui
A�q��� + ui

B�q���� , �53�

which account for center-of-mass displacements of the unit
cells. It is convenient to separate the elastic energy into a part
Ui due to in-plane displacements, i.e., s1 and s2 components,
and a term Uo due to out-of-plane displacements, i.e., s3:
U2D=Ui+Uo. Defining homogeneous strains for in-plane dis-
placements

�ij = lim
q��→0�

1

2�MN2D

�qisj�q��� + qjsi�q���� , �54�

we find from Eqs. �48�–�50�, �51a�, �52�, and �53� that

Ui =
1

2
��11��11

2 + �22
2 � + 2�12�11�22 + 2��11 − �12��12

2 � .

�55a�

The rigidity of graphene against in-plane deformations is
characterized by the two elastic constants �11 and �12. Using
�11−�12=2�66, we rewrite Ui as

Ui =
1

2
���11 − �66���11 + �22�2 + �66���11 − �22�2 + 4�12

2 �2D
 .

�55b�

We then identify �11−�66=B2D=24.89�104 dyn /cm, and
�66=�2D with the bulk modulus and the shear modulus, re-
spectively, while �12=
2D plays the role of Lamé coefficient.
We recall42 that for a 2D hexagonal solid B2D=
2D+�2D. We
notice that B2D and �2D are positive as is required by ther-
modynamic stability.43 Since the elastic properties of a 2D
hexagonal crystal are isotropic in the crystal plane,42 we use
the expressions of Young’s modulus and Poisson’s ratio for a
2D isotropic solid:44

Y2D =
4B2D�2D

B2D + �2D
, �56a�

�2D =
B2D − �2D

B2D + �2D
. �56b�

We obtain the values Y2D=38.46�104 dyn /cm and �2D
=0.228, respectively. We note that our value for B2D is much
larger than the value 0.4 eV Å−2 quoted in Ref. 27 and de-
rived from an effective many-body carbon potential.

In order to study the bending energy of the 2D crystal, we

expand the elements F33
����q��� of the dynamical matrix up to

fourth order in the wave-vector components. The contribu-
tion to the acoustic dynamical matrix is found to be

F̂33
�4��q��� = �a4�qx

2 + qy
2�2, �57�

where

� = −
1

192
�fo

�1� + 18fo
�2� + 16fo

�3� + 98fo
�4� + 162fo

�5�� . �58�

With the values of the force-constant parameters fo
�n� taken

from Ref. 30, we obtain �=0.256�104 dyn /cm. The nega-
tive value of the fourth-neighbors force constant fo

�4� gives
the main contribution to a positive value of �. Writing

TABLE II. Elastic stiffness �tension� coefficients �units of 104 dyn /cm� and sound velocities �units in
km/s� of graphene.

�11 �66 cl ct

Present theory 40.5 15.66 23.08 14.34

First principles results �Ref. 37� 38.5,a51.5b 19.5c 26.0 16.0

IXS in-plane �graphite� �Ref. 28� 37.37d 16.35d 22.16 14.66

aElastic stiffness of 63 eV/atom.
bFrom cl=26.
cFrom ct=16.
dDerived from cl=22.16 and ct=14.66.
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��q����s3�q��� for the Fourier components of the acoustic
out-of-plane displacements, we define the corresponding
elastic energy per unit cell

Ub =
1

2S
�
q��

�†�q���F̂33
�4��q�����q��� . �59�

In real space we obtain in the continuum limit

Ub =
�̃b

2Nc
� � dx1dx2���

2 ��x1,x2��2. �60�

Here we have considered the out-of-plane displacements � as
functions of the coordinates in the �x1 ,x2� plane and ��

2

= ��2 /�x1
2+�2 /�x2

2�. The right-hand side of Eq. �60� has the
form of a bending energy, and is familiar from the theory of
bending of thin plates42 and membranes.44 In the present case
the bending rigidity �̃b=2�a2 /�3 is determined by the
atomic force constants fo

�n� and the interatomic distances of
the graphene crystal. We obtain �̃b=1.79�10−12 erg=1.29
�104 Kelvin�1.12 eV, which is in agreement with the
value 1.1 eV obtained by atomistic Monte Carlo
simulations.27

Within the present harmonic lattice dynamics theory, there
is no coupling between in-plane and out-of-plane deforma-
tions. Hence a treatment of the anomalous elasticity effects
due to the coupling between stretching and bending, as oc-
curs in the theory of strongly bend plates42 and in polymer-
ized membranes,45 is beyond the scope of the present work.

V. ELASTIC CONSTANTS OF GRAPHITE

There are five different elastic constants for graphite, i.e.,
c11�C11,11, c12�C11,22, c13�C11,33, c33�C33,33, and c44
�C23,23. One also considers c66=C12,12, where, due to hex-
agonal symmetry, c11−c12=2c66. We start from Eq. �15� and
apply Born’s long-wave method �Sec. II� using the q� expan-
sion of the dynamical matrix D�q�� �Eq. �24��. We first calcu-
late the square brackets �ij ,kl�, defined by Eq. �12�. Separat-
ing in the sums over atoms � and �� intraplane and
interplane contributions, we write

�ij,kl� = �ij,kl��� + �ij,kl��� + 2�ij,kl���, �61�

where

�ij,kl��� =
M

2vc
�
�,��

Fij,kl
����2�, �,�� � �A,B
 , �62a�

�ij,kl��� =
M

2vc
�
�,��

Hij,kl
����2�, � � A,B, �� � �A�,B�
 ,

�62b�

where �A ,B
�� plane and �A� ,B�
�� plane. Here the

second-order coefficients Fij,kl
����2� and Hij,kl

����2� are obtained
from a series expansion of the 3�3 matrices F����q�� and
H��� in powers of q� �see Eq. �10��. One has �ij ,kl���

= �ij ,kl��� and �ij ,kl���= �ij ,kl���. Since vc=ca2�3 /2
=cv2D, we get

�ij,kl��� = �ij,kl��� =
1

c
�ij,kl�2D, �63�

where �ij ,kl�2D is the corresponding quantity that has been
calculated in Sec. IV for 2D graphene. Notice that �ij ,kl���

has the dimensions of dyn /cm2, i.e. of 3D elastic constants.
Hexagonal symmetry implies �11,22�= �22,11�, �11,33�
= �22,33�, and �33,22�= �33,11�. Numerical values of
�ij ,kl��� are quoted in Table III. We rewrite the interplane
term as

�ij,kl��� =
M

ca2�3
�Hij,kl

AA��2� + Hij,kl
BB��2� + 2Hij,kl

AB��2�� , �64�

where we have used Hij,kl
AB��2�=Hij,kl

BA��2�. The coefficients Hij,kl
����2�

are obtained as second-order terms from a q� expansion of the

matrix elements Hij
����q��; they are linear combinations of the

interplane force constants hij�n�� ;n����� given in Appendix B
and Table V. Numerical results of the quantities �ij ,kl��� are
quoted in Table III.

For the calculation of the contributions �ij ,kl� due to sub-
lattice shifts to the elastic constants, one starts from the defi-
nition �Eq. �13��, which now reads

�ik, jl� = −
M

vc
�
���

�
hp

�
����

	hp
���Dhi,k

����1�Dpj,l
�����1�. �65�

Separating the sums over � and �� atoms into intraplane
and interplane contributions, we write

�ik, jl� = 2�ik, jl��� + 2�ik, jl���, �66�

where we have used �ik , jl���= �ik , jl��� and �ik , jl���

= �ik , jl���. In the following it suffices to calculate �11,11�
since, by symmetry, �11,11�= �22,22�= �12,12�=−�11,22�
=−�22,11� while �13,13�= �33,33�= �11,33�=0.

Knowledge of the optical phonon eigenfrequencies and
eigenvectors from Table I allows us to construct the elements

	ij
��� by means of Eq. �14�. In particular we will need

	11
AA =

1

4
	 1

��1�2 +
1

��6�2 +
1

��9�2
 , �67a�

	11
AB =

1

4
	 1

��1�2 −
1

��6�2 −
1

��9�2
 , �67b�

TABLE III. Quantities �ij ,kl��� and �ij ,kl���; � stands for sum
�Eq. �61��. All results in units of 109 dyn /cm2.

�� �� �

�11,11� 7056 1.57 14 115

�11,22� 3341 0.47 6682

�12,12� 1858 0.56 3717

�22,33� 0 20.91 41.82

�33,22� 0 11.80 23.60

�13,13� 0 11.92 23.85

�33,33� 0 183.92 367.86
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	11
AA� =

1

4
	−

1

��1�2 +
1

��6�2 −
1

��9�2
 , �67c�

	11
AB� =

1

4
	−

1

��1�2 −
1

��6�2 +
1

��9�2
 . �67d�

The first-order expansion coefficients Dij,k
����1� are obtained

readily from D�q�� in terms of elements Fij,k
����1� and Hij,k

����1�.
We quote the 12�12 matrix in terms of 3�3 submatrices:

�Dij,k
����1�� = �

0 F..,k
AB�1� 0 H..,k

AB��1�

− F..,k
AB�1� 0 H..,k

AB��1� − H..,k
AB��1�

0 − H..,k
AB��1� 0 − F..,k

AB�1�

− H..,k
AB��1� H..,k

AB��1� F..,k
AB�1� 0

� ,

�68�

where k=1,2 with

F..,1
AB�1� = �F11,1

AB�1� 0 0

0 − F11,1
AB�1� 0

0 0 0
� , �69a�

F..,2
AB�1� = � 0 − F11,1

AB�1� 0

− F11,1
AB�1� 0 0

0 0 0
� . �69b�

The submatrices H..,k
AB��1� have the same structure as F..,k

AB�1�

with F11,1
AB�1� replaced everywhere by H11,1

AB��1�. The element

F11,1
AB�1� is given by Eq. �41� while H11,1

AB��1� is obtained by ex-

pansion of H11
AB��q�� �Eq. �B4a�� in powers of small q�:

H11,1
AB��1� =

2a
�3M

�h11�0;1+�� − h11�0;2+��� . �70�

Taking into account the structure of the 12�12 matrices 	
and D..,1

�1�, and carrying out the sums �� and ��, we find

�11,11��� = S��
FF + S��

HF + S��
HH, �71�

where

S��
FF = −

2M

vc
�F11,1

AB �2�	11
AA − 	11

AB� , �72a�

S��
HF = −

2M

vc
F11,1

AB H11,1
AB��	11

AA − 	11
AB� , �72b�

S��
HH = −

M

vc
�H11,1

AB��2	11
AA. �72c�

Numerical evaluation gives S��
FF=−100.4�1010 dyn /cm2,

S��
FH=−0.31�1010 dyn /cm2, and S��

HH=−1.6�107 dyn /cm2.
Similarly we calculate

�11,11��� = S��
FF + S��

HF + S��
HH, �73�

where

S��
FF = −

2M

vc
�F11,1

AB �2�	11
AB� − 	11

AA�� , �74a�

S��
HF = −

2M

vc
F11,1

AB H11,1
AB��	11

AB� − 	11
AA�� , �74b�

S��
HH = +

M

vc
�H11,1

AB��2	11
AA�, �74c�

and numerically S��
FF=2.2�108 dyn /cm2, S��

HF=−6.8
�105 dyn /cm2, and S��

HH=−1.6�107 dyn /cm2. Hence
�11,11��� is numerically negligible. Retaining only S��

FF and
S��

FH, we obtain �11,11�=2�S��
FF+S��

FH�=−200.2
�1010 dyn /cm2 for the inner displacement term.

The elastic constants of graphite are then given by

c11 = �11,11� + �11,11� , �75a�

c12 = 2�12,12� − �11,22� − �11,11� , �75b�

c66 = �11,22� + �11,11� , �75c�

c33 = �33,33� . �75d�

We notice that the Huang conditions are not satisfied for
�22,33�� �33,22� �see Table III�; however we assume

c44 = �22,33� , �76a�

c13 = 2�13,13� − �11,33� . �76b�

The bulk modulus is given by46

B =
c33�c11 + c12� − 2c13

2

�c11 + c12� + 2c33 − 4c13
. �77�

With the numerical values of the quantities �ij ,kl� taken
from Table III and �11,11�=−200.2�1010 dyn /cm2, we ob-
tain the values of the elastic constants and of the bulk modu-
lus quoted in Table IV. Note that the identity c11−c12=2c66 is
satisfied. The longitudinal and transverse sound velocities are
given by cl=�c11 /� and ct=�c66 /�, where �= 4M

vc
is the mass

density.
The agreement between the present theoretical values of

the elastic constants and various experimental values, in par-
ticular recent single-crystal IXS results,28 is remarkable. Our
values of c11 and c66 differ by less than 10% from the corre-
sponding single-crystal IXS values; we also draw attention to
the small value of c13 where we agree with IXS. Agreement
with earlier experimental results is hampered by the fact that
the basic material was pyrolytic graphite.4,5,12 Also the agree-
ment with several ab initio calculations15,49 is very satisfac-
tory. As in the case of graphene, we find that the inner dis-
placement terms give quantitative important contributions to
the elastic constants.

It is possible to establish approximate relations between
the elastic constants c11 and c66 of graphite, and the tension
coefficients �11 and �66, respectively, of graphene. We ob-
serve that the interplane terms �ij ,kl��� are small in compari-
son with the intraplane terms �ij ,kl��� contributing to c11 and
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c66. Hence we neglect the last term on the right-hand side of
Eq. �61� and, by means of Eq. �63�, we have approximately

�11,11� �
2

c
�11,11�2D, �78�

�11,22� �
2

c
�11,22�2D. �79�

We also notice that the last term on the right-hand side of Eq.
�67c� is negligible, hence �11,11��2�11,11���. In addition
we neglect S��

HF and S��
HH on the right-hand side of Eq. �71�.

We also notice that the optical mode frequency �1�0��
=1564 cm−1 in graphene is close to the optical modes �6�0��
and �9�0�� of graphite. Hence we obtain from Eqs. �66�, �71�,
�67a�, �67b�, and �47� the approximate relation

�11,11� �
2

c
�11,11�2D, �80a�

and similarly

�11,22� �
2

c
�11,22�2D. �80b�

From the definitions of the elastic constants �Eqs. �75a� and
�75c�� and of the corresponding tension coefficients �Eqs.
�48� and �49b��, we then obtain the approximate relations

c11 �
2

c
�11, �81a�

c66 �
2

c
�66. �81b�

Using the fact that �= 2
c �2D, we obtain the equality of the

sound velocities:

cl =�c11

�
���11

�2D
, �82a�

ct =�c66

�
���66

�2D
. �82b�

Indeed from the numerical values for cl and ct in Tables II
and IV, we see that the corresponding values for graphene
and graphite are close to the experimental values from
single-crystal in-plane IXS results.28

Finally a comment on turbostratic graphite is in order. The
elastic constants c11, c66, and c12 are essentially determined
by the intraplane force constants while the elastic constants
c13, c33, and c44 are determined solely by interplane forces
�see Table III�. Hence we expect that, in turbostratic graphite
�where adjacent basal planes are randomly rotated with re-
spect to one another50�, the values of the elastic constants c13,
c33, and c44 are more drastically changed �in comparison with
those of pyrolytic graphite� than c11, c12, and c66. This is
indeed the case.50,51

VI. GRAPHENE MULTILAYERS

Here we use the lattice-dynamical model of intraplane
covalent force constants and interplane van der Waals forces
�Sec. III� to investigate the phonon spectra of graphene mul-
tilayers, also called graphite slabs. The main aim of early
work on graphite slabs has been the study of surface
modes.52 Most recently phonon dispersions and vibrational
properties of monolayer, bilayer, and trilayer graphene have
been calculated by density-functional theory.53 Compared
with the monolayer, splittings of optical phonon branches at
the 	 and the K points were investigated; in addition there is
one �two� additional low-frequency mode ��90 cm−1� at 	
in bilayer �trilayer� graphene. Our calculations will confirm
the results of Ref. 53 and investigate the transition of
graphene layers to graphite as a function of the number N of
layers. Electron diffraction experiments54 have shown that
multilayer graphene has the same stacking as graphite. The
evolution of the electronic structure from a single graphene
layer to bulk graphite has been studied by a tight-binding

TABLE IV. Elastic constants of graphite �units of GPa=1010 dyn /cm2� and sound velocities �units in km/s�.

c11 c12 c66 c33 c44 c13 B cl ct

Present theory 1211.3 275.5 468.0 36.79 4.18 0.59 35.1 22.99 14.29

Experiment 1060�16�a 180�20�a 440�20�a 36.5�10�a 4.0�4�a 15�5�a

1440�20�b 460b 37.1�5�b 4.6�2�b

1109�16�c 139�36�c 485�10�c 38.7�7�c 5.0�3�c 0�3�c 36.4�11�c

5.05�35�d

33.8�30�e

Ab initio 1118f 235f 441.5f 29.5f 4.5f

c11+c12=1280 g 40.8g

aUltrasonics and static tests �Refs. 5 and 12�.
bInelastic neutron scattering �Ref. 4�.
cInelastic x rays �Ref. 28�.
dBrillouin scattering �Ref. 47�.
eX-ray diffraction �Ref. 48�.
fFrom LDA ab initio phonon dispersions �Ref. 49�.
gAb initio calculations �Ref. 15�.
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theory approach.40 Experimentally the change in the elec-
tronic bands at the K point in graphene layers is reflected in
the change of the second-order double-resonance Raman
spectrum.54 In the present paper we restrict ourselves to the
study of the phonon-dispersion laws in absence of electron-
phonon coupling.

We start with the consideration of the case N=2: two
graphene planes related by a screw diad axis �i.e., one �
plane and one � plane� and separated by a distance c /2. The
dynamical matrix of dimension 12�12 �i.e., 6N�6N� is
again written in terms of 6�6 submatrices D�� ,H�� , . . .,

D2�q��� = 	D���q��� H���q���

H���q��� D���q��� 
 . �83�

Here, D�� ,H�� , . . . are given by

D���q��� = 	HAA + FAA�q��� FAB�q���

FBA�q��� HBB + FBB�q��� 
 ,

�84a�

D���q��� = D���q����, �84b�

H���q��� = 	HAA��q��� HAB��q��

HBA��q��� HBB��q���

 , �84c�

HAA = − �HAA��q�� = 0�� + HAB��q�� = 0��� , �84d�

HBB = − �HBA��q�� = 0�� + HBB��q�� = 0��� . �84e�

The 3�3 matrices FAA�q��� and FAB�q��� refer to a single
graphene plane, and are given by Eqs. �23a� and �23b�, re-
spectively. The 3�3 matrices HAA��q��� ,HAB��q��� , . . . refer
to interplanar couplings, they are quoted explicitly in Appen-
dix C. Notice that these quantities depend on q�� since the
system is extended in the directions �100� and �010�. The
matrix D���q��� is different from the matrix D���q��� �Eq.
�25a�� in the graphite case since HAA��q��� and HAB��q���
differ from HAA��q�� and HAB��q��, respectively �see Appendi-
ces B and C�. The phonon spectrum of the two layer slab is
obtained by solving the secular problem for the dynamical
matrix D2�q��.

The formulation is readily extended to the problem with
N�3 layers by observing that the upper and lower boundary
layers interact only with one neighboring layer while each
layer in the bulk interacts with two neighboring layers at
distance Z= +c /2 and Z=−c /2. Here one obtains for three
layers a 18�18 dynamical matrix with the 6�6 submatrices
structure

D3�q��� = �D���q��� H���q��� 0

H���q��� ��q���� H���q���

0 H���q��� D���q���
� , �85�

with

��q��� = 	2HAA + FAA�q��� FAB�q���

FBA�q��� 2HBB + FBB�q��� 
 . �86�

The dynamical matrix of the N layer problem reads

DN�q��� = �
D���q��� H���q��� 0 0 . . . 0 0

H���q��� ��q���� H���q��� 0 . . . 0 0

0 H���q��� ��q��� H���q��� . . . 0 0

0 0 H���q��� ��q���� . . . 0 0

] ] ] ] � ] ]

0 0 0 0 . . . ��q������ H����q���

0 0 0 0 . . . H����q��� D���q���

� , �87�

where �=� and ��=� for N even, and �=� and ��=� for N
uneven.

Phonon-dispersion relations for slabs of N layers, ob-
tained by solving the secular equation with the dynamical
matrix DN�q���, are shown in Fig. 5. Again, as is the case for
graphite, the spectra at frequencies above 200 cm−1 exhibit
the six graphene bands. The splitting of the lowest acoustic
A2u mode band in the neighborhood of the 	 point leads to
the lowest acoustic mode �A2u� and to N−1 optical modes of
B2g1

symmetry, which extends the results on bilayer and
trilayer graphene.53 As a function of increasing N, the highest

of these optical modes that we denote by �B2g1

�N� tends to a

limit value at the zone center, which corresponds to the value
of the �127 cm−1 B2g1

mode of graphite at the 	 point. As is
shown in Fig. 6, where we have plotted �B2g1

�N� as a function of

N, the limit value �B2g1
is practically reached near N=15.

The situation is reminiscent of the evolution of the electronic
structure of graphene multilayers near the K point. There for
N=11 and more layers, the difference in band overlap with
graphite is smaller than 10%.40
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VII. CONCLUDING REMARKS

We have presented a unified theoretical treatment of the
lattice dynamics of graphene, graphite, and graphene multi-
layers within a harmonic phonon approach.

In constructing the dynamical matrix of graphene, we
start from the fifth-neighbor force constants derived from
empirical phonon-dispersion relations.30 Using Born’s long-
wave method for the evaluation of elastic constants, we have
calculated the tension coefficients �11=40.55�104 dyn /cm
and �12=9.24�104 dyn /cm, as well as the sound velocities
cl=23.08 km /s and ct=14.34 km /s, the Young’s modulus
Y2D=38.46�104 dyn /cm, and the Poisson ratio �2D
=0.228 of graphene. We have found that the inner displace-
ment terms due to relative shifts between A and B sublattices
are quantitatively important in determining the elastome-
chanical properties of graphene. We have calculated the
bending rigidity of graphene and obtain a value of �̃b
=1.12 eV.

We have extended the force-constant model to graphite by
taking into account ad hoc force-constant values for nearest-
neighbor interlayer A-A atom interactions and a Lennard-
Jones potential for A-B atom interactions. We have calcu-
lated the phonon-dispersion relations �Fig. 4�, the optical

phonons at the Brillouin-zone center �Table I�, and the elastic
constants of graphite. Here too �Sec. V� we find that the
inner displacement terms due to sublattice shifts within
single graphite planes are quantitatively important; on the
other hand, shifts of sublattices belonging to different planes
are negligible. The agreement between our theoretical values
of the elastic constants and sound velocities with recent ex-
perimental single-crystal IXS results28 is remarkable. We
have established �end of Sec. V� approximate relations be-
tween the elastic constants c11 and c66 of graphite, and the
tension coefficients �11 and �66, respectively, of graphene.
These relations explain why the longitudinal and transverse
sound velocities cl and ct of graphene have values close to
the corresponding quantities of graphite. Thereby a theoreti-
cal foundation is provided for the experimental strategy that
full in-plane IXS phonon dispersions on single crystals of
graphite30 are representative for graphene and relevant for
the understanding of the elastic properties of carbon
nanotubes.20

Finally we have solved the secular equation and calcu-
lated phonon-dispersion relations for the N graphene layers
system. The frequency �B2g1

�N� of the out-of-plane rigid layer

optical displacements increases with the number of layers N.

(a)

(b)

(c)

(d)

FIG. 5. �Color online� Phonon spectra for graphene multilayers.
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Starting from �B2g1

�2� �90 cm−1, we find that at N=10 the

graphite value �B2g1
=127 cm−1 is attained within a few per-

cent. However we recall that this mode is optically silent;7 in
bulk it can be measured by INS and IXS. The evolution of
this mode in layered structures might be accessible by high-
resolution helium atom scattering.55
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APPENDIX A

We calculate the elements of the 6�6 dynamical matrix
F�q��� of graphene by using empirical interatomic force pa-
rameters up to fifth-nearest neighbors as introduced in Ref.
30. These force parameters mimic the covalent bond forces
within the graphene plane. The parameters fr

�n�, f i
�n�, and fo

�n�

with n=1,2 , . . . ,5 refer to the radial �bond-stretching�, in-
plane, and out-of-plane tangential �bond-bending� directions
of the nth C-C neighbors, respectively. For the sake of com-
pleteness, we quote again the values in Table V. Starting
from a bond between atoms at �n���� and �n��� ��� where the
force constants are the diagonal elements of a 3�3 second-
rank tensor, the corresponding Cartesian components

f ij
�n��n��� ;n��� ��� are obtained by appropriate rotations about

the Z axis perpendicular to the graphene plane. The elements
of the dynamical matrix then follow from Eqs. �23a�–�23d�.
Here we quote the terms Fij

�n�����q��. The elements of the dy-
namical matrix are then obtained as

Fij
����q��� = �

n=1

5

Fij
�n�����q�� . �A1�

The first neighbors of a given A atom at �0,0� are three B
atoms at � 1

�3
,0�a, �− 1

2�3
, 


1
2 �a. We obtain

Fxx
�1�AA�q��� = Fyy

�1�AA =
3

2M
�fr

�1� + f i
�1�� , �A2a�

Fzz
�1�AA�q��� =

3

M
fo

�1�. �A2b�

All other elements of F�1�AA�q��� are zero. Furthermore

Fxx
�1�AB�q��� = −

1

M
� fr

�1�eiqxa/�3 +
1

2
�fr

�1�

+ 3f i
�1��cos�qya

2
�e−iqxa/2�3� , �A3�

where Fyy
�1�AB�q��� is obtained by interchanging fr with f i,

Fzz
�1�AB�q��� is obtained from Fxx

�1�AB�q��� by replacing both fr
�1�

and f i
�1� by fo

�1�,

Fxy
�1�AB�q��� =

i�3

2M
�fr

�1� − f i
�1��sin�qya

2
�e−iqxa/2�3. �A4�

All other elements of F�1�AB�q��� are zero.
The contributions due to second-neighbor A atoms located

at �0, 
1�a, 1
2 �
�3,1�a, and 1

2 �
�3,−1�a are

Fxx
�2�AA�q��� =

1

M
��f i

�2� + 3fr
�2��	sin2��3qx + qy�

a

4

+ sin2�− �3qx + qy�
a

4

 + 4f i

�2� sin2�qya

2
�� ,

�A5�

where Fyy
�2�AA�q��� is obtained by interchanging fr and f i,

Fzz
�2�AA�q��� is obtained by replacing both f i

�2� and fr
�2� by fo

�2�,

Fxy
�2�AA�q��� = −

�3

M
�f i

�2� − fr
�2��	sin2��3qx + qy�

a

4

− sin2�− �3qx + qy�
a

4

 . �A6�

All other terms of F�2�AA�q��� and all terms of F�2�AB�q��� are
zero.

The third-neighbor B atoms at �− 2
�3

,0�a and � 1
�3

, 
1�a
account for F�3�AA�q��� and F�3�AB�q���. The elements are ob-
tained from the first-neighbor elements by replacing fr

�1�, f i
�1�,

and fo
�1� by fr

�3�, f i
�3�, and fo

�3�, respectively, and by replacing a
in the phase factors by −2a.

The fourth-neighbor B atoms at � 5
2�3

, 

1
2 �a, �− 1

2�3
, 


3
2 �a,

and �− 2
�3

, 
1�a lead to the following results. The elements

FIG. 6. �Color online� Evolution of the optical eigenmode �B2g1

�N�

with increasing number of graphene layers.

TABLE V. Force-constant parameters of Ref. 30 in eV /Å2.

n fr
�n� f i

�n� fo
�n�

1 25.880 8.420 6.183

2 4.037 −3.044 −0.492

3 −3.016 3.948 0.516

4 0.564 0.129 −0.521

5 1.035 0.166 0.110
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of F�4�AA are obtained from those of F�1�AA by replacing fr
�1�,

f i
�1�, and fo

�1� by 2fr
�4�, 2f i

�4�, and 2fo
�4�, respectively. Further-

more

Fxx
�4�AB�q��� = −

2

M
��fr

�4� cos2 �1

+ f i
�4� sin2 �1�eiqx5a/2�3cos�qya

2
� + �fr

�4� cos2 �2

+ f i
�4� sin2 �2�e−iqxa/2�3cos�3qya

2
� + �fr

�4� cos2 �3

+ f i
�4� sin2 �3�e−iqx2a/�3 cos�qya�� , �A7�

where �1=arctan�
�3
5 �, �2= 2�

3 −�1, and �3= 2�
3 +�1. The ele-

ment Fyy
�4�AB�q��� is obtained by interchange of fr

�4� and f i
�4� in

Fxx
�4�AB�q��� while Fzz

�4�AB�q��� is obtained by replacing fr
�4� and

f i
�4� by fo

�4�. Furthermore

Fxy
�4�AB�q��� = −

i

M
�fr

�4� − f i
�4��	sin�2�1�eiqx5a/2�3 sin�qya

2
�

+ sin�2�2�e−iqxa/2�3 sin�3qya

2
�

+ sin�2�3�e−iqx2a/�3sin�qya�
 . �A8�

The elements of F�5�AA�q��� due to the fifth-neighbor at-
oms A at 1

2 ��3, 
3�a, 1
2 �−�3, 
3�a, and �
�3,0�a are ob-

tained from the second-neighbor elements of F�2�AA�q��� by
replacing f i

�2� by fr
�5�, fr

�2� by f i
�5�, and fo

�2� by fo
�5�, respectively.

In addition one has to interchange qx with qy and to replace a

by �3a. The coefficients Fij
����0�, Fij,k

����1�, and Fij,kl
����2� in Eq.

�32� are obtained from expansion of the elements Fij
����q���

�Eq. �A1�� in powers of the wave-vector components �qx ,qy�.

APPENDIX B

We calculate the interplane force constants hij�n�� ;n�����
by retaining only interactions between next neighbor
graphene planes. We start from an empirical Lennard-Jones
potential �Eq. �30��. The force constants hij are defined by

hij�n��;n����� =
�2V�r�

�xi�n��;n����� � xj�n��;n�����
, �B1�

taken at u��n�� ;n�����=0� . Each A atom at equilibrium
�0,0 ,0�=x��0�, taken as origin, interacts with two A� atoms at
�0,0 , 


c
2 � as nearest neighbors with six B� atoms at

�− a
�3

,0 , 

c
2 �, � a

2�3
, a

2 , 

c
2 �, and � a

2�3
,− a

2 , 

c
2 � as second

neighbors, and with twelve A� atoms at �

�3
2 a , 


a
2 , 


c
2 � and

�0, 
a , 

c
2 � as third neighbors �lattice-parameter values a

=2.46 Å and c=6.70 Å�. We label the first-neighbor A� at-
oms by �=1+ and 1− corresponding to the planes z= +c /2
and z=−c /2, respectively; similarly we label the second-
neighbor B� atoms by �=1+� ,2+� ,3+� and 1−,2− ,3−, respec-
tively, and the third-neighbor A� atoms by �=1+� , . . . ,6+� and
1−, . . . ,6−, respectively. The force constants read

hij�0;�� =
xi�0;��xj�0;��

r�
2 	V��r�� −

V��r��
r�


 + �ij
V��r��

r�

,

�B2�
where r�= �x��0;�����x����−x��0�� is the equilibrium distance.
Numerical values are quoted in Table VI. From Eq. �27� we
obtain, by using the symmetry of the crystal structure,

Hii
AA��q�� = −

2

M�hii�0;1+�

+ 2�2hii�0;1+��cos�qx
�3a

2
�cos�qya

2
�

+ hii�0;2+��cos�qya�
��cos�qzc

2
� ,

�B3a�

H12
AA��q�� =

8

M
h12�0;1+��sin�qx

�3a

2
�sin�qya

2
�cos�qzc

2
� ,

�B3b�

H13
AA��q�� =

8

M
h13�0;1+��sin�qx

�3a/2�cos�qya

2
�sin�qzc

2
� ,

�B3c�

H23
AA��q�� =

4

M
	2h23�0;1+��sin�qya

2
�cos�qx

�3a

2
�

+ h23�0;2+��sin�qya�
sin�qzc

2
� . �B3d�

TABLE VI. Interplanar force constants hij�0;�� with units in dyn/cm. Values in brackets are chosen ad
hoc—see Sec. III B.

� 1+ 1+� 2+� 1+� 2+�

h11�0;�� −114.47�400.00� 63.17 2.73 8.95 6.31

h22�0;�� −114.47�400.00� −17.41 43.02 7.19 9.83

h33�0;�� 2040.41�1800.00� 430.87 430.87 12.84 12.84

h12�0;�� 0 0 −34.89 1.52 0

h13�0;�� 0 −190.05 95.03 4.15 0

h23�0;�� 0 0 −164.59 2.40 4.79
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The labels � refer to the positions 1+= �0,0 ,c /2�, 1+�
= �a�3 /2,a /2,c /2�, and 2+�= �0,a ,c /2�. Furthermore,

Hii
AB��q�� = −

2

M
	hii�0;1+��e−iqxa/�3

+ 2hii�0;2+��cos�qy
a

2
�eiqxa/2�3
cos�qzc

2
� ,

�B4a�

H12
AB��q�� = −

4i

M
h12�0;2+��sin�qya

2
�eiqxa/2�3cos�qzc

2
� ,

�B4b�

H13
AB��q�� = −

2i

M
	h13�0;1+��e−iqxa/�3

+ 2h13�0;2+��eiqxa/2�3cos�qya

2
�
sin�qzc

2
� ,

�B4c�

H23
AB��q�� =

4

M
h23�0;2+��eiqxa/2�3sin�qya

2
�sin�qzc

2
� .

�B4d�

Here the labels refer to the positions 1+�= �− a
�3

,0 , c
2 � and 2+�

= � a
2�3

, a
2 , c

2 �.
In a similar way we calculate the interactions of a − 1

2
atom at �0,0,0� taken as origin with six B� atoms at
� a

�3
,0 , 


c
2 �, �− a

2�3
, a

2 , 

c
2 �, and �− a

2�3
,− a

2 , 

c
2 �. Symmetry of

the crystal entails that we can use the same force constants as
defined for the A-B� interactions. We obtain

HBB��q�� = HAB��q���. �B5�

The interaction of a B atom at �0,0,0� with six A� atoms at
�− a

�3
,0 , 


c
2 �, � a

2�3
, 


a
2 , 


c
2 � gives

HBA��q�� = HAB��q�� . �B6�

APPENDIX C

Here we give the interplanar coupling matrix elements
H����q��� for the graphite slab problem. We have, for the
interactions of an A atom in an � plane with one nearest-
neighbor A� atom and six third-neighbor A� atoms in the
neighboring � plane, the elements

Hii
AA��q��� = −

1

M
�hii�0;1+�

+ 2	2hii�0;1+��cos�qx
�3a

2
�cos�qya

2
�

+ hii�0;2+��cos�qya�
� , �C1a�

H12
AA��q��� =

4

M
h12�0;1+��sin�qx

�3a

2
�sin�qya

2
� ,

�C1b�

H13
AA��q��� = −

4i

M
h13�0;1+��sin�qx

�3a/2�cos�qya

2
� ,

�C1c�

and

H23
AA��q��� = −

2i

M
�2h23�0;1+��sin�qya

2
�cos�qx

�3a

2
�

+ h23�0;2+��sin�qya�� . �C1d�

The force constants are those quoted in Table VI in Ap-
pendix B. The interactions of an A atom with three second-
neighbor B� atoms are given by

Hii
AB��q��� = −

1

M
	hii�0;1+��e−

iqxa
�3

+ 2hii�0;2+��cos�qy
a

2
�e

iqxa

2�3 
 , �C2a�

H12
AB��q��� = −

2i

M
h12�0;2+��sin�qya

2
�e

iqxa

2�3 , �C2b�

H13
AB��q��� = −

1

M
	h13�0;1+��e−i

qxa
�3

+ 2h13�0;2+��ei
qxa

2�3 cos�qya

2
�
 , �C2c�

and

H23
AB��q��� = −

2i

M
h23�0;2+��ei

qxa

2�3 sin�qya

2
� . �C2d�

The interactions of a B atom with three nearest-neighbor B�
atoms are

Hii
BB��q��� = Hii

AB��q����, �C3a�

H12
BB��q��� = H12

AB��q����, �C3b�

H13
BB��q��� = − H12

AB��q����, �C3c�

and

H23
BB��q��� = − H23

AB��q����. �C3d�
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