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Ab initio calculations reveal a universal scaling law on how the electronic structure of boron nitride �BN�
nanoribbons and nanotubes is modified by a transverse electric field. Due to the structural symmetry difference,
the energy gap of zigzag BN ribbons can be reduced or increased by the electric field depending on the sign of
the field, while that of the armchair ones is always reduced. However, the linear giant Stark effect coefficients
of zigzag and armchair BN nanoribbons, as well as those of BN nanotubes, are found to obey a unified scaling
law where the coefficient increases linearly with the ribbon width or the tube diameter with a slope of 1.0. The
mechanism of the scaling law is identified using a general model, which may be applicable to other semicon-
ducting nanostructures.
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A key factor underlying nanoscience and nanotechnology
is the ability to tune the novel properties of nanostructures in
a controlled way. To modify the electric properties of nano-
structures, gate voltages or electric fields are usually utilized
in nanoelectronic devices. For one-dimensional nanostruc-
tures, when a transverse electric field is applied, the energy
gap will be changed and gap opening and closure may be
induced under high fields. This effect, named the giant Stark
effect, has been theoretically studied on carbon nanotubes
�CNTs�,1–6 boron nitride nanotubes �BNNTs�,3,7 and BN na-
noribbons �BNNRs� �Refs. 8–10� and has been experimen-
tally observed by optical spectra11 and scanning tunneling
microscopy12 measurements. The electric field may also
couple with magnetic properties of nanostructures.9,13 Re-
cently, Son et al.13 showed that the high in-plane transverse
electric field would induce half metallicity in zigzag
graphene nanoribbons �GNRs�, which may have many po-
tential applications in spintronics. Moreover, the graphene
nanoribbons were predicted to exhibit diverse transport be-
havior under bias voltage �electric field� or gate voltages
such as doping-induced spin-anisotropic scattering,14 switch-
ing as valley filter and valley valve,15 and unique mirror-
symmetry dependency.16

The performance of nanostructures usually depends on
the size of the systems in a delicate way. Some elegant scal-
ing laws have been revealed. Perhaps the most famous is the
dependence of the electronic structure of CNTs on their
chirality and diameter:17 all armchair CNTs are metallic,
while �n ,0� zigzag CNTs are metallic if n /3 is an integer and
semiconducting otherwise. When the finite length is consid-
ered, the energy gap Eg of armchair CNTs decreases with the
tube length in a well-defined oscillation with the period of
3a /2, where a is the lattice constant,18 together with a long
periodic oscillation.19 In armchair GNRs, the semiconducting
characteristic is mainly determined by quantum confinement
and can be approximately described20 by Eg�1 /w where w
is the width or by more accurate analytic scaling rules in-
cluding the effect of the edges.21 For the giant Stark effect,
great efforts1–12 have been made to investigate how the elec-
tronic structures are modulated by the electric field and many
characteristics have been elucidated, e.g., the gap modulation
increases with tube diameter and the effect is more dramatic

in BNNTs than in CNTs due to a reduced screening of the
electric field. However, a systematic comparative study on
the giant Stark effect of various nanostructures to reveal a
possible general scaling law is still lacking.

In this work, using ab initio calculations and model analy-
sis, we investigate the giant Stark effect in BN nanoribbons
and nanotubes under a transverse electric field and explore
the common scaling behaviors in these nanostructures. It is
shown that the symmetry of systems has fundamental influ-
ence on the effect of electric fields. For symmetric cases such
as nanotubes and armchair BNNRs �ABNNRs�, the electric
field will mix the nearby states in the valence band and those
in the conduction band separately, which always leads to a
reduction in the energy gap. For asymmetric cases such as
zigzag BNNRs �ZBNNRs�, however, a transverse polariza-
tion spontaneously exists so that the state mixing is not nec-
essary for the Stark effect and the electric field could either
decrease or increase the energy gap depending on its direc-
tion. Interestingly, no matter whether the systems are sym-
metric or asymmetric, their linear Stark effect coefficients all
increase with the width, scaling into a universal straight line
with a predicted slope of 1.0.

The systems investigated here include BNNTs and BN-
NRs. The emphasis was put on BNNRs because BNNRs may
be symmetric or asymmetric while responding to the electric
field, and also because the fully passivated BNNRs are wide
gap semiconductors independent of their widths and chirali-
ties and thus it would be desirable to tune their energy gap.
In experiments, single-layer h-BN has been successfully fab-
ricated on the surfaces of metals.22–24 BNNRs are expected
to be produced by cutting single-layer h-BN but may have
very different properties due to the quantum confinement ef-
fect and the appearance of the edge states originated from
their specific structures. When the edges are partially passi-
vated, zigzag BNNRs may exhibit half metallicity,25 which
makes them good candidates for spintronic applications.

Our calculations were performed using the density-
functional theory method, within the local-density approxi-
mation for exchange-correlation, and norm-conserving
pseudopotentials.26 We carried out the calculations employ-
ing the SIESTA code.27 Integration over the one-dimensional
Brillouin zone has been carried out by using the Monkhorst-
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Pack scheme and 21 k points were used in our calculations.
The effect of electric field on an infinite system is generally
a tough problem,28 but the effect of a transverse electric field
on nanoribbons/nanotubes is easy to deal with since the field
is applied along the finite dimension of the system, which is
modeled in our calculation by a sawtooth potential in a su-
percell geometry along the direction perpendicular to the
nanoribbon/nanotube axis �for nanoribbons, the field is in the
plane of the sheet�. All geometries were optimized until the
forces on the atoms were less than 0.04 eV /Å. A similar
scheme is employed for BNNTs.

We start the discussion on BNNRs. In accordance with
the previous convention,20,25 here the BNNRs are labeled by
the number of B-N chains along the ribbons, which defines
the width of the ribbon. The ZBNNR with n B-N chains is
thus named as n-ZBNNR, while the ABNNR is named
n-ABNNR. The outmost atoms of BNNRs are H passivated.

The calculated properties of the 15-ZBNNR, whose width
is about 33.18 Å, are shown in Fig. 1. As found in previous
calculations,29 this material is a wide-gap semiconductor �see
Fig. 1�a�� with a calculated Kohn-Sham band gap of 3.82 eV.
The conduction-band bottom �band � in Fig. 1�a�� consists of
�-like orbitals localized at the B edge of ZBNNR with the
major component on boron atoms as shown in Fig. 1�d�,
while the valence-band top �band � in Fig. 1�a�� localizes at
the N edge with �-like orbitals on the nitrogen instead of
boron atoms �Fig. 1�e��. Accordingly, the conducting elec-
trons and holes in this system are localized separately at the
boron and nitrogen edges, which may give rise to interesting

transport and thermoelectric properties. The symmetry
breaking of edges and the local residence of the valence band
at the N edge give rise to a spontaneous transverse electric
polarization, which will lead to a linear giant Stark effect
�see below�.

When a transverse electric field is applied to the system,
the boron �nitrogen� atoms move along �against� the direc-
tion of the applied field slightly. This is consistent with the
charge transfer from the boron atoms to the nitrogen atoms.
The energy bands’ structure of 15-ZBNNR with 0.02 V /Å
electric field, which is opposite to the x direction, is plotted
in Fig. 1�b�. The energy of band � decreases slightly while
that of band � increases, consequently the energy gap nar-
rows. The band gap is plotted as a function of the applied
electric field in Fig. 1�c�. A positive field broadens the gap
while a negative field narrows the gap. This is a linear giant
Stark effect. It is different from the effect in nanotubes1–7,11,12

where the electric field is only able to reduce the energy gap.
Within the field range we investigated in Fig. 1�c�, the field
dependence of the energy gap is well described by a linear
law

Eg�E� = Eg,0 + eSLE , �1�

where e is the electron charge, E is the applied transverse
electric-field strength, and SL is a linear coefficient of the
giant Stark effect, which is used to measure the ability of the
electric field to modify the energy gap. For the 15-ZBNNR,
SL=22.3 Å. When the electric field is much larger, a nonlin-
ear effect will appear and the energy gap may be even
closed, which has been analyzed by Zhang and Guo8

recently.
To further explore the role of symmetry in the giant Stark

effect, we examined the ABNNR �20-ABNNR with a width
of 25.84 Å� and presented the results in Fig. 2. As in the
zigzag case, both the lowest conduction band �band �� and
highest valence band �band �� are �-like. However, the
charge density of the two bands spreads across the ribbon
plane �Figs. 2�d� and 2�e�� but not separate as in the zigzag
case. As a result, the electric field has a different effect in
ABNNRs �Fig. 2�c��. The curve of the energy gap vs the
transverse electric field E is symmetric with respect to E=0,
i.e., the positive field has the same effect as the negative one.
The gap varies quadratically for small electric fields and has
a zero slope at E=0, so it is a nonlinear giant Stark effect.
For larger fields, the curve becomes linear and can be
described by

Eg�E� = Eg,0 − eSL�E� , �2�

with the coefficient SL=15.3 Å. The perturbation of the field
causes mixing among states within the conduction and va-
lence subband complexes, and the resulting � minimum and
� maximum states move in opposite directions and locate
locally at two edges, respectively �Figs. 2�f� and 2�g��. These
features are similar to what was observed in BNNTs.7 The
nonlinear effect under much stronger fields has been investi-
gated recently,8 which is beyond the interest of this work.

The giant Stark effect discussed above can be understood
with a simplified physical model �Fig. 3�. For ZBNNRs, the
charge density of the conduction-band minimum state and

FIG. 1. �Color online� Electronic structure of 15-ZBNNR. �a�
The energy bands without any electric field. The Fermi level is set
to zero. �b� The energy bands with a transverse electric field E,
which is opposite to the x direction. �c� The band gap as a function
of the transverse electric-field strength. �d� The partial charge den-
sity of the bottom of the lowest conduction band �band ��. �e� The
partial charge density of the top of the highest valence band �band
��. The isovalue is 0.0067 e /Å3.
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the valence-band maximum state is located at the ribbon
edges �Figs. 1�d� and 1�e��. Since the potential of the trans-
verse electric field is eEx, the change in the energy gap in-
duced by the electric field can be approximated as

�Eg = eE�x�c − eE�x�v, �3�

where �x�c and �x�v are the centers of the conduction-band
minimum state and the valence-band maximum state, respec-
tively. So the energy gap linearly depends on the applied
electric field and the giant Stark effect coefficient is given as
�see Fig. 3�

SL =
1

e

dEg

dE
= �x�c − �x�v = d , �4�

where d is the distance between the centers of the
conduction-band minimum state and the valence-band maxi-
mum state. For ABNNRs, the electric field induces the mix-
ing among subband states and the wave function of the re-
sulting conduction-band minimum state moves along the
direction of the electric field while that of the valence-band
maximum moves against the field direction �Figs. 2�f� and
2�g��. Both states get localized at the edges under strong
fields and then the analysis in ZBNNRs is applicable here

FIG. 4. �Color online� The linear coefficient of giant Stark effect
�SL� as a function of �a� the ribbon width or tube diameter and �b�
the distance between the centers of the conduction-band minimum
and the valence-band maximum wave functions. Data points for
BNNRs are represented by blue �dark gray� solid symbols while
those for BNNTs are represented by orange �light gray� open sym-
bols. The data extracted from Khoo et al. �Ref. 7� are also inserted
in �a� as open diamonds.

FIG. 2. �Color online� Electronic structure of 20-ABNNR. �a�
The energy bands under zero electric field. �b� The energy bands
with a transverse electric field of 0.02 eV /Å along the x direction.
�c� The band gap as a function of the transverse electric field. �d�,
�e� The partial charge density of the bottom of the lowest conduc-
tion band �band �� and the top of the highest valence band �band ��
under zero electric field. �f�, �g� The partial charge density of the
bottom of band � and the top of band � under the electric field of
0.02 eV /Å. The isovalue is 0.0067 e /Å3.

FIG. 3. �Color online� Schematic of the model to explain the
giant Stark effect. The left �orange/light gray� wave and the right
�blue/dark gray� wave represent the wave functions of the valence-
band top and the conduction-band bottom, respectively. The ribbon
width is w while the distance between the centers of the wave
functions and the edges is �, so the distance between the centers of
two wave functions is d=w−2�.
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which also gives SL=d. The obtained SL values in Fig. 1 and
Fig. 2 are smaller than the width of the ribbons, which is
consistent with the picture of the model.

According to this model, there exists a scaling law for the
giant Stark effect when the width is large enough. Denote �
as the distance between the valence �conduction� wave-
function center and the ribbon edge and then we have d=w
−2�, where w is the ribbon width �Fig. 3�. Thus, the giant
Stark effect coefficient is expressed as

SL = w − 2� . �5�

For large w, the valence-band maximum state at one edge is
hardly affected by the opposite edge, and so is the
conduction-band minimum. So � is a constant independent of
w for large w. Consequently, SL is expected to obey a linear
scaling law on w, whose slope is predicted to be 1.0 and the
intercept at w=0 will give information about �. To test this
scenario, we depicted the SL data of various ZBNNRs and
ABNNRs in Fig. 4�a� as a function of w together with our
calculated results of zigzag and armchair BN nanotubes and
also data extracted from Fig. 3 of Khoo et al.7 Although
ZBNNRs and ABNNRs have quite different responses to the
transverse electric field, their SL�w plots overlap into one
group, which separates well from those of nanotubes. Two
groups of data �nanoribbons and nanotubes� can be sepa-
rately fitted using Eq. �5� with high accuracy �solid lines in
Fig. 4�a��. The fitted � value for nanoribbons, 6.0 Å, is
larger than that for nanotubes, 2.8 Å, which can be ex-
plained from the fact that the induced conduction-band mini-
mum and the valence-band maximum states extend along the
tube wall which is perpendicular to the electric field �refer to
Fig. 2 of Khoo et al.7� and thus the centers are closer to the
edges than those in nanoribbons. To verify whether � is the

origin of the difference between the nanoribbon curve and
the nanotube curve, we calculated the wave functions’ center
positions of the valence-band maximum and the conduction-
band minimum and their distance d. The dependence of SL

on d for both nanoribbons and nanotubes is drawn in Fig.
4�b�. It clearly demonstrates that the data of nanoribbons and
those of nanotubes merge into a unified curve, which is well
described by a straight line with a slope of 1.0 �solid line in
Fig. 4�b��. Compared to the SL�w curves, the intercept of
the SL�d curve is closer to zero. Nevertheless, the intercept
is not equal to zero, which slightly deviates from the predic-
tion of the model �Eq. �4��. A further detailed analysis indi-
cates that the discrepancy is mainly contributed by the
screening effect of the induced polarization under electric
field �data not shown�.

In summary, we have studied the giant Stark effect in BN
nanoribbons and nanotubes using ab initio calculations. As
affected by a transverse electric field, the ABNNRs and
ZBNNRs have quite different behaviors because of their dif-
ferent symmetries. A physical model was presented to under-
stand the influence of electric field on the band gap, and the
giant Stark coefficients of both BN nanoribbons and nano-
tubes were found to obey a universal scaling law where the
coefficient depends linearly on the ribbon width or the tube
diameters with a predicted slope of 1.0. The mechanism un-
derlying the scaling law in these systems is general, so we
expect the application of this mechanism to other semicon-
ductors.
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