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We apply an analytical approach for determining the near-field radiative heat transfer between a metallic
nanosphere and a planar semi-infinite medium with some given surface structure. This approach is based on a
perturbative expansion, and evaluated to first order in the surface profile. With the help of numerical results
obtained for some simple model geometries we discuss typical signatures that should be obtainable with a
near-field scanning thermal microscope operated in either constant-height or constant-distance mode.
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I. INTRODUCTION

Recent progress in the fabrication of a near-field scanning
thermal microscope �NSThM� enables one to measure the
radiative heat transfer between a cooled sample and a hot
probe directly in the near-field regime, i.e., for distances in
the nanometer range.1,2 Due to thermally excited evanescent
waves, in this regime one expects an energy transfer several
orders of magnitude greater than the black body value.3 For
estimating the heat current in such a device several theoret-
ical models are available, which describe the probe as a di-
electric sphere, and the sample as a semi-infinite dielectric
body with a flat surface.4–10 These models can now be tested
against the data provided by the NSThM.

In the literature, the near-field radiative heat transfer be-
tween a sphere and a structured surface has not been studied
so far, although such a geometry is of considerable practical
relevance and theoretical interest. Therefore, in the present
paper we analyze the near-field radiative heat transfer be-
tween a spherical probe and planar samples with surface
structures such as depicted in Fig. 1. In particular, we discuss
numerical results obtained for a planar surface structured by
an infinite bar and a square pad, respectively.

In this work, we use the general formulation of the near-
field radiative heat transfer between a probe described as a
spherical metallic nanoparticle within the dipole approxima-
tion and a second material as developed in Refs. 8–10, which
is based on Rytov’s fluctuational electrodynamics.11 This for-
mulation allows one to take the material’s properties of the
probe into account in terms of its electric and magnetic di-
pole moments, and the properties of the sample material,
which is assumed to be a semi-infinite body with a given
surface structure, through the local density of states12 above
that medium. Since the dipole moments of the probe or nano-
particle are known it remains to calculate the local density of
states �LDOS� above the sample material. This is done
within a perturbative approximation employing the Ewald-
Oseen extinction theorem, as described in detail in Ref. 13. It
should be mentioned that our work is closely related to Ref.
14, where the changes of linewidth and the line shift for a
molecule near a structured surface were calculated, since the
electric LDOS can in principle be read off from the Green’s
function calculated therein. However, in our work not only
the electric but also the magnetic fields are determined, since
it is known10,15 that for metallic nanoparticles these magnetic

fields can cause a heat transfer much greater than that due to
the electric fields, as a result of the induction of Foucault’s
currents.

This paper is organized as follows: In Sec. II we introduce
the dipole model for the radiative heat transfer between a
metallic nanoparticle and an arbitrary second material, and
outline the strategy of the following calculations. In order to
determine the electromagnetic LDOS, we deduce the appro-
priate dyadic Green’s functions in Sec. III by means of a
perturbative expansion due to Agarwal,13 which we terminate
after the first order. Within this approach, the LDOS itself is
calculated and numerically evaluated for different surface
profiles in Sec. IV, where we also deduce tentative criteria
justifying the restriction to the lowest-order contributions. In
Sec. V we then present some numerical results for the near-
field heat transfer between a metallic nanosphere and a struc-
tured surface, and predict signatures that should be observ-
able with a NSThM operated in either constant-height or
constant-distance mode.

II. HEAT TRANSFER BETWEEN A NANOPARTICLE AND
A SECOND MEDIUM

It has recently been shown8–10 that the near-field radiative
heat transfer between a metallic nanoparticle with radius R
and temperature TP and a dielectric material with tempera-
ture TS can be described within the dipole model for particle-
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FIG. 1. Sketch of a probe-sample configuration with a square
pad on a flat surface.
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sample distances a�R. In this model the electric polarizabil-
ity �P and the magnetic polarizability �P of the particle are
given by16

�P��,R� = 4�R3�P��� − 1

�P��� + 2
�1�

and

�P��,R� = −
R3

2 �1 − 3
ds�

2���
R2 + 3

ds����
R

cot� R

ds������
�2�

with the permittivity of the probe �P��� and ds����
ªc����P���−1�−1; as usual, c denotes the velocity of light
in vacuum. Assuming that the two bodies are in local thermal
equilibrium, the mean energy rate P flowing from the hot to
the cold body is given by the relation

P = �
0

	

d�	
��,TP� − 
��,TS�
2�	�p���,R�DE��,r�

+ �p���,R�DH��,r�
 . �3�

Here, the sign of the mean energy rate P is determined by the
difference of the Bose-Einstein functions 
�� ,T�
ª��	exp�����−1
−1 with the temperature �−1

ªkBT so
that the sign is positive for TPTS and negative otherwise.
The material’s properties of the nanoparticle are taken into
account in Eq. �3� by means of the imaginary part �as indi-
cated by the double prime� of the electric and magnetic po-
larizabilities, �p��� ,R� and �p��� ,R�, whereas the material’s
and geometrical properties of the second medium enter into
this expression via the electric and magnetic local density of
states DE�� ,r� and DH�� ,r� at the point r above this me-
dium, where the probe is located. Therefore, the thermal ra-
diative heat transfer between a nanoparticle and an arbitrary
second medium can be calculated if the electromagnetic lo-
cal density of states above that medium is known. We point
out that in the opposite limit a�R the dipole model dis-
cussed here is not valid, whereas the so called “proximity
approximation” should prove to be useful then.17

Now the local density of states can be calculated with the
help of the relations18

DE��,r� =
�

�c2�S����� d3r� Tr	GE�r,r��GE�r,r��†
 �4�

and

DH��,r� =
�

�c2

�S����
�2�0

2� d3r�

�Tr�� � GE�r,r��	� � GE�r,r��
†� , �5�

in the case of local equilibrium inside a heat-radiating local
medium surrounded by vacuum. Here �0 is the magnetic
permeability of the vacuum, and �S��� is the relative permit-
tivity of the material considered. These relations can in prin-
ciple be evaluated by determining the electric dyadic Green’s
function GE�r ,r�� with the source points r� inside the me-
dium and the observation point r outside the medium, imple-

menting the tensor product with its hermitian conjugate and
integrating over the volume of the medium. Since, here only
a local equilibrium inside the medium is assumed, one can
use these relations to investigate for example the heat trans-
fer between bodies kept at different temperatures.

Considering a medium surrounded by vacuum, the non-
equilibrium expressions in Eqs. �4� and �5� can be decom-
posed into an evanescent and a propagating part by trans-
forming the volume integral into a surface integral.17 This
evanescent part of the local density of states coincides with
the equilibrium expression, since the evanescent modes are
bound to the surface of the medium and are therefore not
relevant for preserving a global equilibrium situation. Thus,
the evanescent part of the local density of states above a
material surrounded by vacuum can also be calculated by
means of the equilibrium expressions17,18

DE��,r� =
�

�c2 Im Tr GR
E�r,r� �6�

and

DH��,r� =
�

�c2 Im Tr GR
H�r,r� , �7�

which state that the electric and magnetic local density of
states at the point r is given by the imaginary part of the
trace of the renormalized Green’s functions GR

E�r ,r� and
GR

H�r ,r�, where the renormalization procedure is defined as19

GR
E/H�r,r� = lim

r→r�
	GE/H�r,r�� − G0

E/H�r,r��
 �8�

with G0
E/H�r ,r�� denoting the Green’s function of the

vacuum. Since the Green’s function with the observation and
source point located above the medium consists of an inci-
dent and a reflected part, with the incident part coinciding
with G0

E/H�r ,r��, the renormalized dyadic Green’s function
coincides with the reflected Green’s function so that the in-
dex “R” can be understood as both “renormalized” and “re-
flected.”

Obviously, the relations in Eqs. �6� and �7� are much
easier to evaluate than the expressions in Eqs. �4� and �5�,
giving reliable results for such distances above the material,
at which the evanescent modes dominate the local density of
states. Since we are especially interested in the evanescent
regime, we focus on the equilibrium relations in order to
determine the radiative heat transfer between a nanoparticle
and a structured surface, keeping in mind that the results
hold in the evanescent regime only. Thus, it is necessary to
calculate the reflected electric and magnetic Green’s function
with observation points r and source points r� located out-
side the material of interest. For an electric source current je0
and a magnetic source current jm0 located at the point r�, the
reflected fields and reflected dyadic Green’s functions are
connected by the relations

ER��,r� = i��0GR
E�r,r��je0 �9�

and
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HR��,r� = i��0GR
H�r,r��jm0 �10�

Furthermore, in vacuum the electric and magnetic dyadic
Green’s functions are related by20

GR
H�r,r�� = −

1

k0
2 � � GR

E�r,r�� � �� �11�

with k0ª� /c.
In the following, we will therefore perturbatively evaluate

the reflected electric field generated by an electric current je0
located at the source point r� above a semi-infinite medium
with a structured surface, determine the electric dyadic
Green’s function by means of Eq. �9�, and from this result
deduce the magnetic dyadic Green’s function from Eq. �11�.
Finally, we calculate the local densities of states above the
structured surface with Eqs. �6� and �7�. These densities, in
their turn, then allow us to determine the near-field radiative
heat transfer between a metallic nanoparticle and a semi-
infinite medium with a structured surface.

III. GREEN’S FUNCTION ABOVE A STRUCTURED
SURFACE

In order to calculate the electromagnetic fields above a
structured surface, we assume that the surface profile is given
by an expression hf�x ,y�, where the dimensionless function
f�x ,y� varies between zero and unity, and h is the character-
istic scale of the profile variation, as sketched in Fig. 2.
Moreover, we assume that h be small compared to all other
relevant length scales of the problem so that we can apply a
perturbation expansion. This approach has been worked out
in great detail by Agarwal13 so that it suffices here to men-
tion only those elements that are indispensable to follow our
line of reasoning.

Within this approach the so-called Ewald-Oseen extinc-
tion theorem21,22 is employed, allowing us to restate the
boundary conditions of the electromagnetic fields in the
given geometry as integral equations. For the case of a non-
magnetic, isotropic, local, and linear material this theorem
states that for observation points r outside that material, i.e.,
r�V �see Fig. 2�, one has

E�r� = EI�r� + ER�r� = EI +
1

k0
2 � � � �

�
�V

dS��ET�r��
�g�r − r��

�n�
− g�r − r��

�ET�r��
�n�

� .

�12�

Here, the field E�r� outside the medium is simply the sum of
the incident field EI�r� and the reflected field ER�r�. The
latter is described by the surface integral in Eq. �12� so that
the reflected field ER�r� can be calculated by means of the
free Green’s function

g�r − r�� =
eik0r−r�

4�r − r�
�13�

and the transmitted field ET�r�. In addition, � /�n� symbol-
izes the normal derivative, taken in the direction of the unit
normal of the surface,

n� = −
ez + h���f�x�,y��

�1 + h2���f�x�,y��2
, �14�

with ���ª ��x� ,�y� ,0�t and ez the unit vector in z direction.
On the other hand, for observation points r within the

medium, i.e., r�V, the Ewald-Oseen theorem gives

0 = EI +
1

k0
2 � � � �

�
�V

dS��ET�r��
�g�r − r��

�n�
− g�r − r��

�ET�r��
�n�

� .

�15�

In fact, the surface integrals in Eqs. �12� and �15� have the
same structure, but one has to keep in mind that r�V in Eq.
�12�, whereas r�V in Eq. �15�, so that both integrals give
different results. By means of Eq. �15� the transmitted field
ET�r� can be computed if the incident field EI�r� is given so
that the sought-after reflected field ER�r� can then be deter-
mined with the surface integral in Eq. �12�.

Now the transmitted and reflected fields in Eqs. �12� and
�15� are expanded in a power series

ET/R�r� = �
n=0

	

ET/R
�n� hn. �16�

Furthermore, all quantities in the Ewald-Oseen extinction
theorem are expanded in a Taylor series with respect to the
small quantity hf�x ,y�, giving

ET�r�� = ET
�0��x�,y�,z� = 0�

− hf�x�,y��
�ET

�0�

�z�
�x�,y�,z� = 0� + O�h2� �17�

for the transmitted field and

FIG. 2. Sketch of an example structure, showing a particular
value of the surface profile hf�x ,y� at x=x0 and y=0.
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g�r − r�� = �g�r − r���
z�=0

− �hf�x�,y��
�

�z�
g�r − r���

z�=0

+ O�h2� �18�

for the Green’s function. The normal derivative times the
surface element dS� yields

dS�
�

�n�
= − dx�dy�	ez + ���hf�x�,y��
 · ��. �19�

Substituting these expressions into Eqs. �12� and �15� and
comparing coefficients yields constitutive equations for the
fields in different orders of h.

Next, it is useful to expand the fields in plane waves ac-
cording to

ET�r� =� d2�

�2��2ei��·x+kzz�ET��� ,

ER�r� =� d2�

�2��2ei��·x−kz0z�ER��� ,

EI�r� =� d2�

�2��2ei��·x+kz0z�EI��� , �20�

and to utilize the Weyl expansion

g�r − r�� =� d2�

�2��2

i

2kz0
ei	�·�x−x��+kz0z−z�
 �21�

for the Green’s function, having introduced the notation kz0
2

=k0
2−�2, kz

2=k0
2�r−�2, xª �x ,y�t, and �= �kx ,ky�t. It has to be

emphasized that the use of these expansions down to the
surface relies on the Rayleigh hypothesis, as discussed in
Ref. 21.

With the help of the plane-wave expansions the relations
for the Fourier components of the reflected fields in terms of
the incident field are easily calculated; for details we refer
again to the work by Agarwal.13 For the zeroth-order field
one obtains the expression

ER
�0���� = − � kz − kz0

kz + kz0
1 +

2kz0�kz − kz0�
k0

2�kz0�r + kz�
�� − kzkz0ez��EI��� ,

�22�

and for the first-order field

ER
�1���� = i��S − 1�� d2��

�2��2F�� − ���L���

�� 2kz0�

kz� + kz0�
1 +

2kz0�

k0
2�kz0� �S + kz��

K0� � K��EI���� ,

�23�

with K�ª ��� ,kz��
t, K0�ª ��� ,kz0� �t, and the dyadic operator

L��� ª
1

kz0�S − kz
	��2 + kzkz0��1 − ez � ez� − � � �

+ kzez � � + �r�
2ez � ez + �rkz0� � ez
 . �24�

Here � symbolizes the dyadic product of two vectors, and 1
the unit dyad. Of course, also higher orders can be calculated
within this approach,13 but the higher-order contributions be-
come increasingly cumbersome. Thus, this approach is par-
ticularly useful if meaningful results can already be obtained
to first order. Hence, we restrict ourselves here to these first-
order fields and try to give approximate criteria justifying
this termination of the series later on.

From Eq. �9� it is clear that the Fourier component of the
electric dyadic Green’s function for the reflected fields given
in Eqs. �22� and �23� can be read off if we consider the
incident electric fields EI generated by a delta-like source
current je0 located at r� and put the Fourier component of the
result into Eqs. �22� and �23�. According to Eq. �9�, this field
can be stated as

EI��,r� = i��0G0
E�r,r�� · je0, �25�

where here G0
E is the free dyadic Green’s function, which can

directly be obtained from the relation

G0
E�r,r�� = �1 +

� � �

k0
2 �g�r − r�� . �26�

Inserting the Weyl expansion from Eq. �21� for the Green’s
function g�r−r��, such that z��z, yields

G0
E�r,r�� =� d2�

�2��2

iei	�·�x−x��+kz0�z−z��


2kz0
	e� � e�

+ e��− kz0� � e��− kz0�
 . �27�

Here we have defined the unit vectors in vacuum for the
transverse electric �TE� and transverse magnetic �TM� modes
as

e� ª

1

�
�ky,− kx,0�t �28�

and

e��k� ª
1

�k0
�kxk,kyk,�2�t. �29�

Using this expression for the free Green’s function in Eq.
�25� allows us to identify the Fourier component of the inci-
dent field, which is

EI��� = − ��0
e−i��·x�+kz0z��

2kz0

�	e� � e� + e��− kz0� � e��− kz0�
 · je0. �30�

Now, it is a straightforward exercise to calculate the reflected
fields. Substituting Eq. �30� into Eq. �22� gives the zeroth-
order field
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ER
�0���� = − ��0

e−i��·x�−kz0z��

2kz0

�	r�e� � e� + r�e��kz0� � e��− kz0�
 · je0,

�31�

where we have introduced the usual Fresnel reflection coef-
ficients for the TE and TM modes, defined as

r� ª

kz0 − kz

kz0 + kz
�32�

and

r� ª
�Skz0 − kz

�Skz0 + kz
. �33�

The first-order field can be calculated by substituting Eq.
�30� in Eq. �23�, giving

ER
�1���� = − i��S − 1�� d2��

�2��2F�� − ���L����
��0

2kz0
e−i��·x�+kz0z��

�	t�� e�� � e�� + t��e���− kz�� � e��− kz��
 · je0, �34�

with the transmission coefficients for the TE and the TM
modes defined as

t� ª

2kz0

kz0 + kz
�35�

and

t� ª
2kz0

�Skz0 + kz
. �36�

Due to the definition of the vector e� for the TM modes in
Eq. �29� the TM-mode transmission coefficient defined here
does not coincide with the standard formulation of the trans-
mission coefficient. Finally, the reflected electric dyadic
Green’s function can be read off, giving the zeroth-order
expression

GR
E,0�r,r�� =� d2�

�2��2

iei	�·�x−x��−kz0�z+z��


2kz0

�	r�e� � e� + r�e��kz0� � e��− kz0�
 , �37�

and the first-order expression

GR
E,1�r,r�� = �1 − �S�� d2�

�2��2� d2��

�2��2F�� − ���L����

�
1

2kz0�
ei��·x−kz0z�e−i���·x+kz0� z�

�	t�� e�� � e�� + t��e���− kz�� � e��− kz��
 . �38�

Since the magnetic dyadic Green’s function is linked with
the electric one by means of Eq. �11�, we now have all in-
gredients to calculate the LDOS above a structured surface
up to first order.

IV. LOCAL DENSITY OF STATES ABOVE A STRUCTURED
SURFACE

The zeroth- and first-order Green’s functions in Eqs. �37�
and �38� can now be used to calculate the electric and mag-
netic local density of states

DE/H��,r� � D0
E/H��,r� + D1

E/H��,r�

ª

�

�c2 Im TrGR
E/H,0 + h

�

�c2 Im TrGR
E/H,1 �39�

by means of the equilibrium relations in Eqs. �6� and �7�. As
expected, and as a confirmation of the validity of the ap-
proach, to zeroth order we obtain the well-known
expressions12

D0
E��,a� =

�

4�2c2 Im�
0

	

dkx
kxe

−2�a

2�
�r� +

2kx
2 − k0

2

k0
2 r��

�40�

and

D0
H��,a� =

�

4�2c2 Im�
0

	

dkx
kxe

−2�a

2�
�r� +

2kx
2 − k0

2

k0
2 r��

�41�

for the LDOS at the distance a=−z above a semi-infinite
body, with �=�kx

2−k0
2. The first-order contributions are

D1
E��,a� = h Im�1 − �S

��
� d2�

4�2� d2��

4�2 F�� − ���ei��−���·xei�kz0+kz0� �a t��

2kz0�

t�

2kz0
�kzkz0���2 + kz�kz0� � + kz�kz0� ��2 + kzkz0�

− �� · ����kzkz� + �Skz0kz0� � + �S�2��2 + �� · ���2��
� h Im�1 − �S

��
� d2�

4�2� d2��

4�2 F�� − ���ei��−���·xIE��,���� �42�

and
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D1
H��,a� = h Im� �S − 1

��
� d2�

4�2� d2��

4�2 F�� − ���ei��−���·xei�kz0+kz0� �a t��

2kz0�

t�

2kz0
����2 + kz�kz0�

k0
2 �kz0kz0� − � · ��� + kz0kz����2 + kz0kz�

+ kz0� �kz − kz0�
�� � ���2

��2

��2 + kz0� kz�

k0
2 + kz��kz − kz0�

�� · ���2

��2 − �Sk0
2� · ����

� h Im� �S − 1

��
� d2�

4�2� d2��

4�2 F�� − ���ei��−���·xIH��,���� . �43�

From Eqs. �42� and �43� it can be seen that in first order the
electric and magnetic local density of states are given by an
integral of the Fourier transform

F�� − ��� =� dx� dyf�x,y�e−ix·��−��� �44�

of the profile f�x ,y�, multiplied by the exponential factor
exp	i��−��� ·x
 and the function IE�� ,��� or IH�� ,���, re-
spectively. Due to the factor exp	i�kz0+kz0� �a
, these two
functions are exponentially damped for � and �� with modu-
lus much greater than the inverse observation distance a−1 in
the near field, since in the evanescent regime kz0� i� and
kz0� � i��. Therefore, the smaller the observation distance the
more Fourier components contribute to the integral. Hence,
from the structure of the first-order integrals it can be ex-
pected that for distances smaller than the characteristic width
of the surface profile function, the electric and magnetic local
density of states resembles the surface profile.

This behavior is confirmed in Fig. 3, where the numerical

evaluation of the electric density of states from Eq. �39�
above a square pad with a height h=5 nm and width w
=15 nm on a plane surface is plotted. Here, we have used
the frequency �=1014 s−1 and the Drude permittivity �S of
gold. Obviously, at an observation distance of a=40 nm the
values of the local density of states resemble a two dimen-
sional bell-shaped function, whereas at an observation dis-
tance of a=5.5 nm, being much smaller than the width of
the square pad, the values of the local density mimic the
underlying structure, apart from softened edges.

In the following, we discuss the magnitude of the contri-
butions of the zeroth and first order of the electric and mag-
netic local density of states. For that purpose, we assume an
infinitely extended bar with a width w on a plane surface
modeled by the profile function

f�x,y� =
1

exp	d�x − w
2 �
 + 1

, �45�

assuming d=109 m−1 and w=30 nm. The height of the bar
�see Fig. 4� is chosen to be h=5 nm.

The numerical values of the local density of states at a
constant observation distance a=10 nm above the base
plane are shown in Fig. 5, using again the frequency �
=1014 s−1 and the Drude permittivity for gold. First, one
observes that the values of the magnetic LDOS are much
greater than the values of its electric counterpart, which is
typical for metals, whereas for polar dielectric bodies the
electric LDOS usually gives greater values than the magnetic
one. Second, at the given observation distance we find values
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for the first-order contribution to the electric LDOS, which
are of the same order of magnitude as the zeroth-order con-
tribution. On the other hand, the values of the first-order
magnetic LDOS are significantly smaller than the zeroth-
order values for all lateral positions. Third, the values of D1

E

and D1
H give an equally good image of the bar on the plane

surface, the width of the two bell-shaped curves being ap-
proximately the same. Therefore, in this case both first-order
contributions give qualitatively similar results.

In Fig. 6 we plot the ratio of the first- and zeroth-order
LDOS D1 /D0 for the same surface profile directly above the

bar, i.e., at x=0, for observation distances ranging from 6 to
100 nm. As expected, this ratio increases for decreasing ob-
servation distance, suggesting that for small distances higher-
order terms have to be considered. These higher-order terms
can in principle be calculated by an iterative scheme deduced
by Greffet.23 We suggest that it might be sufficient to con-
sider only D0 and D1 as long as the ratio D1 /D0 does not
exceed the ten percent level. This means that the numerical
results depicted in Figs. 5�a� and 5�b� refer to distances
where higher-order terms should be taken into account. Fur-
thermore, it is evident from Fig. 6 that for all distances the
ratio of the leading two contributions to the magnetic LDOS
gives much smaller values than the corresponding ratio for
the electric LDOS. Therefore, it can be concluded that the
approximation committed when considering only the zeroth-
and first-order terms holds for the magnetic part for much
smaller distances than for the electric part. This also means
that the underlying structure becomes important in the elec-
tric LDOS for much greater distances than in the magnetic
LDOS.

So far we have determined the LDOS at a constant height
above the base plane of the structured surface. A very com-
mon operation mode in near-field microscopy is the constant-
distance mode, where the separation between the tip and the
individual features of the sample is kept constant.2 In order
to calculate the LDOS relevant for this mode, we use the
observation distance a+hf�x ,y� instead of a=const. in Eq.
�39�. Figure 7 shows the LDOS obtained for this constant-
distance mode above the structured half space depicted in
Fig. 4.

In the constant-height mode 	see Fig. 5�a� and 5�b�
 the
first-order term D1 gives a rough image of the underlying
surface structure, while the zeroth-order term D0 is constant.
However, in the constant-distance mode �see Fig. 7� the
qualitative behavior of the two contributions is more com-
plex due to the variation of the observation distance. Here,
the zeroth-order term D0 coincides more or less with the
inverse of the underlying structure, and the first-order term
D1 gives relatively large values near the edge of the bar due
to the variation in observation distance. Therefore, at least
two regimes of observation distances can be distinguished:
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At large distances, where D1 /D0 is small, the LDOS is domi-
nated by the zeroth-order term, giving values which coincide
approximately with the inverse of the surface structure. At
distances where at least the first-order term has to be taken
into account, the variation in distance leads to a rather com-
plex pattern of the LDOS.

V. CONSEQUENCES FOR THE NEAR-FIELD SCANNING
THERMAL MICROSCOPE

Up to this point, only the LDOS at a frequency corre-
sponding to 300 K have been calculated. Before we discuss
some numerical results for the full near-field radiative heat
transfer between a metallic nanosphere and a structured sur-
face, we emphasize the restrictions of the model: First, due
to the dipole approximation this model is only valid for dis-
tances a significantly greater than the radius of the sphere R.
Second, for distances and sphere radii smaller than the mean
free path of the conduction electrons, nonlocal and quantum
mechanical effects become important and have to be imple-
mented. Third, due to the perturbative approach the results
apply under the condition that the height h of the profile is
the smallest length scale, i.e., h�min�a ,�th ,w� with the
width of the surface structure w and the thermal wavelength
�th���c. In particular this means that the perturbative ap-
proach is not valid for distances a�R; in this limit the
“proximity approximation” can be utilized.17 Nonetheless, it
is reasonable to explore the perturbative predictions in some
detail.

To this end, we evaluate the near-field radiative heat trans-
fer between a gold nanoparticle and a gold sample as given
by Eq. �3�, using the polarizabilities �1� and �2� of the sphere
with the Drude permittivities �P and �S for gold. As surface
profile we employ the infinitely extended bar from Eq. �45�
with parameters as in Fig. 4. In order to relate the results for
the energy flow P to the numerical results for the LDOS, we
evaluate Eq. �3� for a constant height, a=10 nm, and a con-
stant distance, a=10 nm+hf�x ,y�, where a nanoparticle ra-
dius of R=10 nm has been chosen. As shown in Fig. 8, in
both cases the near-field radiative heat transfer is dominated
by the magnetic contribution, this being a typical feature for
good metals such as gold �at the given distance�. Apart from
this the curves displayed in Fig. 8 reflect the corresponding
plots of the LDOS at a frequency near the thermal frequency
�th. This is a consequence of Eq. �3� since the main contri-
butions to the frequency integral stem from frequencies near
the thermal frequency as long as there are no resonances in
the thermally accessible frequency regime. We also imple-
mented the proximity approximation for the given geometry
numerically �with the same parameters as in Fig. 8�, obtain-
ing qualitatively similar results for the near-field radiative
heat transfer as those given by the dipole model.

Hence, the conclusions deduced in the last section for the
local density of states can be transferred to the near-field
radiative heat transfer between a sphere and a structured sur-
face, modeling a NSThM tip and a structured sample. Thus,
for example we conclude that the lateral resolution of a
NSThM increases for decreasing distances, as long as this
microscope can be described within the dipole model. The

lateral resolution is comparably good for the electric part PE
and the magnetic part PH, with the topology of the surface
profile being well resolvable for distances much smaller than
the width of the surface pattern. On the other hand, for non-
metallic materials, i.e., in a situation with PE� PH, the un-
derlying structure becomes important for much greater dis-
tances than for metallic materials, as can be concluded from
Fig. 6.

Furthermore, a NSThM gives very different images of the
underlying structure when either the constant-height or the
constant-distance mode is used. In particular, for distances
where D0�D1 the values for P should resemble the inverse
surface structure in constant-distance mode, whereas for dis-
tances where D1 becomes important, the measured signal can
be rather complex in that mode. On the other hand, in
constant-height mode the signal should approximately re-
semble the topology of the underlying structure at distances
where D1 becomes important. These are strong predictions
that are amenable to immediate verification in current
experiments,2 and may help to correctly interpret the various
types of signals obtainable with a NSThM.24
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