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Impact of strain waves traveling across a quantum dot on the optical response of the dot:

Distinction between strain waves of different origin
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The influence of strain waves traveling across a semiconductor quantum dot on the optical spectra of the
lowest quantum dot transition is analyzed. Pure dephasing interactions between electronic and phononic de-
grees of freedom in quantum dot systems are considered, which represent the most important type of electron-
phonon interaction in strongly confined quantum dots. For the case of excitation by ultrafast laser pulses, a
generating function formalism provides analytical results, which are exact within the framework of the model.
Two situations are compared: (i) a phonon wave packet is generated by the optical excitation of a single-
quantum dot near a surface, which after reflection at the surface reenters the quantum dot and (ii) a phonon
wave packet is generated by the excitation of a nearby second dot and then travels across the quantum dot.
Although the displacement fields passing the dot are almost identical in these two situations, we find that the
real time responses as well as the corresponding spectra exhibit qualitative differences and thus allow for a

discrimination of phonon wave packets from different origins.
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I. INTRODUCTION

Optically excited quantum dots (QDs) in the strong con-
finement limit with electronic levels coupled to phonons
have been widely investigated.'”” At low temperatures and
small dot sizes the dynamics of those systems are governed
by non-Markovian processes, which are often referred to as
pure dephasing. The pure dephasing coupling of the elec-
tronic degrees of freedom to phonons is known to be respon-
sible for a number of characteristic dynamic features. For
example, the excitation of a QD with ultrashort optical
pulses is accompanied by the creation of an acoustic-phonon
occupation that remains within the QD, i.e., the formation of
a stable acoustic polaron and a phonon wave packet that
propagates into the surrounding of the QD with a temporal
envelope in the picosecond regime.® While the polaron for-
mation is in principle a reversible process, the creation of an
outgoing phonon wave entangles the dot with its environ-
ment and thus leads to an irreversible dynamics.” This is
reflected by a loss of electronic coherence, which can be
monitored by following the time evolution of the optical po-
larization of the QD.!® The polarization dephases as long as
the outgoing strain wave has a spatial overlap with the QD.
Indeed, for a QD embedded in a bulk material, the polariza-
tion reaches a plateau once the phonon wave has left the dot.

Experimentally, the optical generation and detection of
ultrafast strain waves has attracted much attention for many
years.!!'"!® In particular, a strong impact of picosecond
phonon wave packets traveling across nanostructured semi-
conductors on the optical response of these structures has
been observed in corresponding experiments performed on
quantum wells.!” Acoustic phonons emitted by photoexcited
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carriers in QDs have been measured by bolometric
detection.'®!” In principle also QDs cannot only be used for
the generation of ultrashort phonon wave packets but also for
their optical detection when these wave packets travel across
the dot. This can be realized in different ways. One possibil-
ity is to place a dot near a surface. Then, the phonon wave
that is emitted from the dot after a short-pulse laser excita-
tion is reflected at the surface and thus can subsequently
re-enter the QD. This situation has been previously analyzed
and it has been found that the reentrance of the phonon wave
in the QD has a pronounced effect on the polarization of the
QD, which should be optically detectable.”’ Another possi-
bility is to consider two nearby dots. In this case a simulta-
neous excitation of both dots will result in strain waves
emerging from each of the dots. When the strain wave gen-
erated by one of the dots reaches the other dot, a correspond-
ing effect on the optical polarization should be expected. In
Fig. 1 both situations are sketched. Obviously, when the two
dots in the second scenario are separated by twice the dis-
tance of the dot from the surface, then the two setups are
connected, such as in electrostatics, where a charge in front
of a conducting wall is related to its corresponding mirror
charge construction. Thus, the lattice displacements in the
left half space of Fig. 1 should be very similar. It is therefore
tempting to expect that also the corresponding changes of the
QD polarizations that are observed when the phonon wave
travels across the dot should be similar. In this paper we will
show, however, that the real time responses, as well as the
corresponding spectra, are qualitatively different and thus al-
low for a discrimination of phonon wave packets originating
either from the same dot or from another source.

©2008 The American Physical Society
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FIG. 1. (Color online) Schematic of the strain waves generated
by a QD near a surface (upper part) and two-QDs (lower part).

II. THEORY

We consider QDs in the strong confinement limit modeled
by an electronic two-level system coupled to phonons and to
an external laser field. The standard carrier acoustic-phonon
coupling Hamiltonian?® is used and we concentrate on pure
dephasing processes, which do not change the occupation of
the electronic states as described by the independent boson
model.”!?? In recent experiments, pure dephasing has been
revealed to be the dominant dephasing mechanism on short-
time scales for optically excited QDs in the strong confine-
ment limit.”* For many typical QD systems, the deformation-
potential coupling provides the largest contribution to pure
dephasing.>?* We shall therefore concentrate on this mecha-
nism. Furthermore, it was noted previously?* that the contri-
bution to pure dephasing resulting from couplings to higher
excited states can be neglected under realistic conditions,
even in dots which are larger than those studied here. This, as
well as the convincing agreement of corresponding model
studies with experiments,?® justifies a restriction to only the
lowest QD sublevels. If we assume excitations with circu-
larly polarized light and a sufficiently small exchange split-
ting between the two bright dot excitons with lowest energy,
then biexcitonic effects become irrelevant and the electronic
system of the QD can be modeled as an effective two-level
system.!%? The interaction with the classical light field is
treated by the usual dipole coupling. We consider pulses that
are shorter than the timescale of carrier-phonon interactions
(for typical QDs shorter than about one hundred femtosec-
onds), which thus can well be modeled by & functions. For
this case exact analytical solutions have been derived by us-
ing a generating function approach both for an electronic
two-level system® and for an electronic four-level system in-
cluding biexcitons.?> We will not repeat the general deriva-
tions but specify the two models that shall be considered
here and indicate for each situation where the general tech-
nique and its application are described in detail.

A. Single-QD in a half space

We consider a single two-level QD in a half space at a
distance d from the surface as sketched in the upper part of
Fig. 1. The coordinates are taken such that the surface is in
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the xy plane and the dot is on the z axis located at z=—d. The
electronic eigenstates are the ground states of the unexcited
dot |0) and the exciton state | ). For such a two-level system,
the polarization after a &-like pulse with a pulse area f and a
phase ¢ reads®

NE IO o
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—iQ =10)]
e~ 1
3 (1)

P(r) =0O(r)
with
E()=-2, ¥ *[(1 +2n)(1 - cos wgt) +i sin wgt], (2)
13

where £ denotes the phonon mode index, wg is the frequency
of a phonon in the mode &, ng is the equilibrium phonon
occupation at a given temperature 7, and £= (8¢~ gg)/ wg is
a dimensionless coupling strength with géh being the cou-
plings to electrons or holes, respectively. The polaron shifted
gap energy is given by O=0-3,0,]v,* with £ being the
bare exciton energy. Finally, M denotes the dipole matrix
element.

The calculation of the carrier-phonon couplings g?h re-
quires the knowledge of the electron/hole wave functions of
the QD (Refs. 2 and 8) as well as the phonon modes of the
structures.?’ For simplicity we assume Gaussian electron and
hole wave functions valid for harmonic confinement poten-
tials. The dots are modeled as ellipsoids with the shorter
extension in the z direction. The phonon mode index ¢ refers
to the complete set of half-space phonon modes**2¢ compris-
ing three different types of modes: bulklike modes, which
represent oscillations that are undamped throughout the
sample; surface modes with amplitudes that decay exponen-
tially in the direction of the confinement; and mixed modes,
which are composed of bulklike and surface components.
Furthermore, the boundary conditions for a stress-free sur-
face lead to a mixing of longitudinal and transverse oscilla-
tions.

B. Two-QDs in an infinite medium

The half-space results will be compared to a system with
two strongly confined QDs at a distance 2d in an infinite
medium as sketched in the lower part of Fig. 1. The dots are
taken to be on the z axis, QD « is located at z=—d, and QD
B at z=d. In such an infinite medium the phonon modes are
simply given by plane waves and, since we restrict ourselves
to deformation-potential interaction, only longitudinal-
acoustic phonons have to be considered. Thus the mode in-
dex ¢ can be identified with the phonon wave vector . Each
QD is again modeled as a two-level system. The separation
between the dots is supposed to be large enough to make
tunneling effects negligible and we also neglect a possible
Forster-type coupling via interband dipole moments. Such
couplings would give rise to delocalized exciton states and,
as a consequence, to real phonon-assisted transitions be-
tween these states.?’28 In contrast, in our case, excitons lo-
calized in one of the dots remain the electronic eigenstates
and after the optical excitation the dots interact only via the
propagating phonon wave packets, which makes the system
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similar to the case of the single-QD in a half space. The
electronic eigenbasis for this system consists of the four
states |0),|a),|B),|B), where |0) is the ground state, |@) (|3))
describes an exciton in dot a (B), and |B) denotes the two-
exciton state, where both excitons are present. The corre-
sponding energies are €=0, €,, €, and €z=¢€,+€z—Agh,
where Ay is the biexciton shift accounting for electrostatic
Coulomb interactions. This shift strongly depends on the dot
geometry, on the sizes of the dots, and on other material
parameters as well as on external static electric fields.?
Thus, both situations, with or without a sizable value of Ag,
may be realized. If not explicitly stated, we have assumed a
vanishing biexciton shift in the calculations discussed below.
The coupling of the exciton states to the phonons is de-
scribed by the dimensionless coupling strengths g and )/g;
the coupling strength of the biexciton state is then given by
V= Vi+ ¥

The optical response of this two-dot system after ultrafast
laser excitation can be obtained again by using the generat-
ing function approach. The solution is facilitated by noting
that the present two-dot system can be formally mapped onto
the four-level single-dot system with excitonic and biexci-
tonic excitations that has been treated in Ref. 25.%° The two
single-exciton states |a),|B) (that in the present system rep-
resent excitons in two spatially separated dots) formally cor-
respond to the two single-exciton eigenstates of the four-
level single-dot system, while the states with zero or two
excitons |[0) and |B) can be mapped onto the ground and
biexciton state. Thus, with a proper reinterpretation of the
states and of the corresponding matrix elements we can im-
mediately transfer the results for the four-level single-dot
system to the present two-level two-dot system.

The QDs are excited by J-like laser pulses with pulse
areas f, (fg) and phases ¢, (¢p) corresponding to the exci-
tation of dot a (B). Applying the results of Ref. 25 to our
present situation yields the following expression for the po-
larization of QD a:

. * l(P .
iM_e'?e sin f,,

ol pE0)| cos2 /s
2 2

P,(1)=0(1)

+ sin2 ]_;éei[ABHcI)(t)]] i (3)

where M, is the dipole matrix element of dot a, E(¢) is the
function defined in Eq. (2) with 7y, being replaced by ¢, and
®(7) is given by

(1) == i 2 [(H Y™ = 1) = (VA = 1)].
¢
(4)

Except for the constant factor cosz(fﬁ/ 2), the first part is
equal to a single two-level QD [see Eq. (1)]. The second part
involves the biexcitonic shift Az as well as an additional
time-dependent phase @ that stems from the coupling of the
dots via the phonons, as can be seen from the explicit ap-
pearance of the coupling matrix element of QD B.

PHYSICAL REVIEW B 78, 085316 (2008)

In order to make the two-dot system as comparable as
possible to the half-space problem with the single dot, for
our calculations, we have assumed identical dots «a and B,
which agree in size and shape with the QD in the half-space
case. This means that for the energies and dipole matrix el-
ements, we have ),,={ ;=) and M,=Mz=M,. The phonon
coupling matrix elements are related by

Ve= TN, o= Y, (5)

with ¢, being the z component of the phonon wave vector
and ¥ is the coupling matrix element of one of the QDs if it
were located at the origin of the coordinate system. In this
case the time-dependent phase of Eq. (4) reads

(1) = - 22 |7 [sin(wgt + 2dg.) - sin(2dq,)].  (6)
3

Finally, for identical dots excited simultaneously by the same
pulse, one has f,=fz and ¢,=¢g.

Of course, in realistic structures it is more common that
the dots exhibit some variation in their sizes and/or geom-
etries and thus also in their exciton energies and phonon
couplings. We have performed the calculations also for dots
of different shapes and sizes and found, in all cases, the same
qualitative features that will be discussed below. In order to
emphasize the fact that the two-dot results are fundamentally
different from the half-space results and that these differ-
ences are not only due to some practically hard-to-avoid
asymmetries in the dot shapes, we shall concentrate on the
case of identical dots in this paper. However, we want to
stress that the qualitative behavior for the two-dot system
does not change when realistic variations of the dot shapes
are taken into account.

III. RESULTS
A. Polarization dynamics

The aim of this paper is to identify the differences in the
optical response of QDs caused by strain waves of different
origins traveling across the dots. All our calculations are
done for ellipsoidal QDs with lateral and vertical sizes of
L,,=3 nm and L,=1.5 nm, respectively, the values refer-
ring to the full width at half maximum of the electron charge
distribution.?!' For the single-QD in a half space, we consider
the excitation by a single ultrashort laser pulse with pulse
area f=7, which results in the strongest polarization signal.
In order to analyze a situation most similar to the single-QD
case, we consider two-QDs of the same size, which are ex-
cited simultaneously by a single pulse with f,=fz= 5. Figure
2(a) shows the results for the modulus squared of the optical
polarization of dot a in a two-QD structure for different
distances 2d=10 and 20 nm. We obtain a shape familiar from
studies of single-QD excitations,>32%3 consisting of an initial
decay, which then recovers toward a constant long-time pla-
teau value. The initial decay reflects the information loss due
to the outgoing phonon wave packet, which propagates into
the surrounding material with the longitudinal sound velocity
c¢;- The long-time value reflects the unbroadened zero-phonon
line. With a distance 2d between the dots, the wave packet
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FIG. 2. (Color online) (a) Optical polarization of QD « in a
model with two-QDs separated by a distance 2d. (b) Optical polar-
ization of a single-QD at a distance d from a surface. For compari-

son, the result for a single-QD in an infinite bulk system is also
included. All calculations were made for a temperature 7=1 K.

generated by dot 8 reaches dot « at time r=2d/c,, i.e., for
2d=10 nm at r=2 ps. As seen from Fig. 2(a), the passing
strain wave has almost no impact on the modulus of the QD
polarization. The general shape of the curve can hardly be
distinguished from the corresponding single-QD result in an
infinite crystal. The inset is a zoom into the region =2 ps,
which reveals that a very small dip is actually present. It is
interesting to notice that this small dip results from the inter-
ference between the first and the second part in Eq. (3), i.e.,
between the polarizations of QD a when either QD S is
unexcited (first part) or QD S is excited (second part). If the
two contributions can be measured separately, which is the
case for a sufficiently large biexciton shift Ay, the modulus
of each of the two polarizations exactly agrees with the case
of a single-QD in an infinite medium as has been found
previously in Ref. 34.

These findings are especially surprising when being com-
pared to the corresponding half-space results. Figure 2(b)
shows the optical polarization for a QD located at a distance
d from a surface for two values of d as discussed previously
in Ref. 20. For comparison the solid line shows the behavior
of a QD in an infinite crystal without re-entering strain
waves. We observe a pronounced dip that occurs roughly at a
time r=2d/c; and thus corresponds to the time needed by the
reflected wave to return to the dot. In addition, a slow decay
is seen that begins at r=d/c;, which has been discussed pre-
viously in Ref. 20.

One might think that the differences found here between
the two-QD and the half-space results are caused by the re-
maining differences in the displacement fields. Indeed, the
displacement fields are similar but not identical because of
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FIG. 3. (Color online) Optical polarization induced by an ul-
trashort laser pulse at 7=1 K for a single-QD with distance d
=10 nm from the surface, which is either coupled to phonon modes
corresponding to a stress-free surface or to cos-phonon modes.

the stress-free boundary condition, which is the realistic
boundary condition for a free surface. As noted before, this
results in two major differences between half-space and
bulk-phonon modes: the occurrence of exponentially decay-
ing surface modes and the mixing between longitudinal and
transverse oscillations. The displacement field of the half-
space configuration can be made identical to the displace-
ment in the two-QD model if the boundary conditions in the
half-space geometry are modified, such that, they reproduce
the symmetries of the two-QD model. Because of the mirror
symmetry of this latter model with respect to the z=0 plane,
the z component of the displacement field has to vanish in
that plane. Together with the condition that there is no mode
conversion, i.e., that the displacement field is purely longitu-
dinal, this defines a set of phonon modes for an artificial
half-space problem. Because of the longitudinal character,
the displacement field u(r,?) can be derived from a potential
function W(r,) according to®

u(r,t) = - grad W(r,1). (7)

The function W(r,?) has to satisfy the wave equation and the
mirror symmetry with respect to z=0. These conditions are
fulfilled for

W(r,t) = N cos(g,z)e' @+ =can, (8)

where N is a normalization constant and q2=q§+q§+q§. It
is easy to verify that the displacement field, resulting from
a short-pulse excitation of a QD coupled to these cos-phonon
modes, is indeed in the half space of the QD identical to
the corresponding result in the two-QD model. Figure 3
compares the modulus of the optical polarization obtained
for a QD in the half space, with distance d=10 nm, by using
the two different types of phonon modes. We notice two
qualitative differences. First, it is seen that the structure re-
sulting from the reflected wave packet has the opposite sign
when comparing cos modes with the modes corresponding
to the stress-free boundary. This reflects the fact that the
relative volume change, which enters the deformation-
potential interaction, exhibits a phase jump upon reflection in
the case of a stress-free boundary while no phase jump is
present in the case of cos modes. Second, there is no addi-
tional decay in the calculations with cos modes. As demon-
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strated previously,?’ the additional decay is caused by the
excitation of exponentially decaying surface phonons, which
are not present in the calculations based on cos modes. How-
ever, it turns out that the occurrence of the additional decay
and the phase jump are the only features that are due to the
differences in the phonon mode structure. In particular, even
though the displacement field in the cos-mode calculation is
identical to the displacement field in the two-QD model, in
the first case we find a pronounced structure in the time-
dependent polarization amplitude, while in the second case
there is practically no effect visible in [P(z)| that would indi-
cate that the strain wave is traveling across the QD.

Further insight into the differences of the real time re-
sponses of the two-QD system and the QD with a surface can
be obtained by analyzing the frequency shifts of the exci-
tonic line during the passage of the wave packets. These
instantaneous energy shifts are proportional to the time de-
rivative of the phases of the polarizations P() and P, in Egs.
(1) and (3). For quantum well structures under the influence
of strain waves, such time-dependent shifts have recently
been measured in Ref. 17.

Figure 4(a) shows the time derivative of the phase of the
optical polarization for the two-QD system for two different
dot distances. Clearly, the excitonic line is shifted twice. The
first change describes the polaron formation, which takes
place within one picosecond after the optical excitation. Af-
ter the completion of the polaron formation, the polaron
shifted exciton line is observed. The second phase shift oc-
curs roughly when the strain wave generated by QD S trav-
els across QD «. The amplitudes of the shifts are decaying
with increasing dot distances due to the decrease of the pho-
non amplitude for larger distances. The phase shift obtained
for a single-QD in a half space coupled to cos-phonon modes
is practically identical to the two-QD result as seen from Fig.
4(b). However, when the surface is modeled by stress-free
boundary conditions [Fig. 4(c)], the phase shift produced by
the reflected strain wave traveling across the QD has the
opposite sign and exhibits a slight asymmetry. This change
of sign is due to the phase jump of the volume change upon
reflection at a stress-free boundary, while the slight asymme-
try is again a signature of the surface phonons. It turns out
that, in contrast to the polarization amplitude |[P(z), the in-
stantaneous energy shift of the exciton line is a direct mea-
sure for the relative volume change,”® which implies that
identical displacement fields yield identical energy shifts no
matter whether the displacement results from reflection or
from the excitation of another QD.

B. QD spectra

The qualitatively different impacts of strain waves of dif-
ferent origin on the optical response of a QD can also be
monitored in the frequency domain. To this end we have
calculated QD spectra, which have been obtained as the
imaginary part of the Fourier transform of Eq. (1) for the half
space and Eq. (3) for the two-QD model, respectively. Since
we do not include a further decay mechanism, e.g., radiative
decay, the long-time value of the polarization is nonzero,
leading to unbroadened zero-phonon lines (ZPLs), which are
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FIG. 4. (Color online) Time derivative of the phase of the opti-
cal polarization induced by an ultrashort laser pulse (a) of dot « in
a two-QD system for two different dot distances 2d; (b) of a
single-QD 1in a half space for two distances d from the surface with
cos-phonon modes; and (c) same as (b) but with phonon modes
corresponding to a stress-free surface.

superimposed on a phonon-induced background.!>!%33 For
numerical calculations of the spectra, we have eliminated the
ZPLs by subtracting the longtime value of the polarization
for each transition and we plot only the remaining back-
ground spectra.!®3 The zero of the energy axis in Figs.
5(a)-5(f) denotes the position of the ZPL. Figure 5 compares
the background spectra for a two-QD model [Figs. 5(a) and
5(b)] with a QD in a half space using either cos-phonon
modes [Figs. 5(c) and 5(d)] or phonon modes corresponding
to a stress-free surface [Figs. 5(e) and 5(f)]. In all cases, the
strain waves that travel across the dot lead to pronounced
oscillations superimposed on the background spectra. The
amplitudes of these oscillations depend on the distance of the
QD from the surface or from the second QD and decrease
with increasing distance. The frequency difference Aw be-
tween two maxima of the spectral oscillations corresponds to
the time the wave packet requires to travel from the QD to
the surface and back again or, in the two-dot case, from the
second to the first dot. For the QD near a stress-free surface,
this has been previously noted in Ref. 20. For all systems
studied the background spectra are strongly asymmetric,
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FIG. 5. (Color online) Optical spectra (imaginary part of the
Fourier transform of the optical polarization): (a) and (b) for a
two-QD model with different dot distances 2d; (c¢) and (d) for a
single-QD in a half space located at different distances d from the
surface calculated with cos-phonon modes; (e) and (f) same as (c)
and (d) but for phonon modes corresponding to a stress-free sur-
face. All curves are calculated for a temperature 7=1 K.

which is typical for low temperatures.!?1933 Comparing the
spectra obtained with the different boundary conditions in
the half-space geometry, we notice that the spectral oscilla-
tions have an opposite phase. The positions of the maxima in
the spectra obtained with the cos modes coincide with the
positions of the minima in the case of the stress-free surface
boundary condition as indicated by the thin vertical dashed
lines in Fig. 5. This opposite phase is a direct consequence of
the opposite sign of the frequency shift seen in Fig. 4. There
we have found that the frequency shift in the two-QD model
agrees with the half-space result using cos modes. Accord-
ingly, we now also find that the background spectra in the
two-QD case have their maxima at the same positions as the
spectra in the half-space case with cos-phonon modes.

However, there is a striking qualitative difference between
the two-QD curves and the spectra for a QD in half space,
either using cos-phonon modes or the modes corresponding
to the stress-free surface; the frequency domain signals in the
two-QD case show negative values for frequencies below the
polaron shifted exciton line, i.e., for negative energies in Fig.
5. In addition the spectral oscillations for positive energies
are less pronounced than for negative energies and also much
weaker than for a QD near a surface. Therefore, as for the
time-domain signals the impact of a strain wave on the spec-
tra also depends strongly and qualitatively on the fact
whether the strain wave originated in the same or in another
QD. This holds even when the corresponding lattice dis-
placements are identical.

It is possible to trace back the physical origin of the dif-
ferences in the above considered spectra to the fact that the
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phonon wave packets affect the optical response of the dots
via different quantum-mechanical subspaces. In order to see
this more clearly, we first note that the optical polarization of
QD « in the two-QD case consists of two terms that are
weighted according to the pulse area fjz describing the exci-
tation of QD B [cf. Eq. (3)]. In the first term the ground state
is connected to an exciton in QD «, i.e., this is a ground
state-to-exciton transition (GET). The second term can be
interpreted as an exciton-to-biexciton transition (EBT) be-
cause it is only present if there is an exciton in QD . Indeed,
the probability for the creation of an exciton in QD g is
given by sin*(f;/2), while cos*(f/2) is the probability that
this dot remains in its ground state. At this point it is impor-
tant to realize that the carrier-phonon coupling is nonzero in
a given dot only when carriers are present. This implies for
the two-QD model that in a subspace, where only one of the
two excitons is excited, only the dot that contains the exciton
is coupled to the phonon modes. Thus, a strain wave gener-
ated by the excitation of dot B can affect the polarization of
dot « only in the electronic subspace where both dots are
excited. In other words in the two-QD model the strain wave
from dot 8 can modify only the EBT part of dot a while the
GET is unaffected. The EBT part of the polarization is by its
nature a nonlinear signal, which is at least of third order in
the driving laser field. Thus, the passage of the strain wave
through QD « only affects its nonlinear response. In contrast,
when a QD is located near a surface the strain wave gener-
ated by the optical excitation of the dot interacts after the
reflection at the surface with the dot, which is still excited.
Being a two-level model, there is only a GET, which is
modified when the reflected wave passes the dot. From Eq.
(1) it can be seen that for any excitation strength, the polar-
ization of the QD in a half space is proportional to the linear
polarization with a pulse-area dependent prefactor. Thus, the
corresponding spectra are proportional to the linear absorp-
tion spectrum, which forbids negative values when the sys-
tem is initially in a thermal state. For the EBT polarization,
on the other hand, as a nonlinear signal there is no such
restriction to positive values in the frequency domain be-
cause it cannot be interpreted as an absorption spectrum.
The fact that strain waves in the two-QD system affect
only the EBT and not the GET can be visualized when con-
sidering two-QDs, where the electrostatic interactions lead to
a sizable value of the biexcitonic shift #A. In this case the
GET and EBT signals are spectrally separated. When A is
larger than the total width of a typical background spectrum
then the spectra resulting from GET and EBT can be ana-
lyzed separately. Figure 6 shows results for the two-QD sys-
tem with distances of 10 and 20 nm, where we have assumed
that A, is large enough such that both spectra are com-
pletely separated. The energy is again measured with respect
to the ZPL of the corresponding transition. As can be seen
from Figs. 6(a)-6(d), for the present parameters this requires
a value for AAy of at least about 10 meV. The right panel
[Figs. 6(b) and 6(d)] shows the spectra corresponding to the
GET signal and the left panel [Figs. 6(a) and 6(c)] shows
those corresponding to the EBT signal. As expected, the
GET spectra are not affected by the passage of the strain
waves. Therefore, they are independent of the distance and
have the same shape as the linear absorption spectrum of a
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FIG. 6. (Color online) Optical spectra corresponding to the GET
(right panel) and EBT (left panel) polarization for a two-QD model
with different dot distances 2d at T=1 K. The biexcitonic shift 2ZAp
has been assumed to be large enough to completely separate GET
and EBT spectra.

single two-level QD in an infinite crystal. In contrast, the
EBT spectra exhibit strong spectral oscillations leading to
negative values below the EBT resonance.

It is worth noting that when the carrier-phonon coupling is
treated on the mean-field level then obviously identical dis-
placement fields yield identical impacts on the optical tran-
sitions; since on this level of the theory, the coupling only
depends on the displacement field and not on higher phonon
correlations or carrier-phonon entanglements. The mean-field
theory is often invoked when nonthermal phonons are ex-
cited in such a way that nonzero lattice displacements occur.
Nonzero expectation values of the lattice displacement re-

quire nonzero phonon amplitudes (l;§>, where lgg is an anni-
hilation operator for a phonon in mode &. Thus the state of
the phonon system needs to exhibit at least a partial coher-
ence. For the limiting case of a phonon field in an exact
coherent state, the mean-field factorization of the carrier-
phonon coupling would be exact. The fully coherent state is
also the quantum-mechanical state of the phonon field that
comes closest to the model of a classical sound wave, which
is another rationalization of the mean-field approximation.
However, for the two-QD model it has previously been
shown? that the nonthermal phonons, that are generated by
an ultrafast optical excitation, can only be in a fully coherent
state when the electronic system ends up either in the biex-
citon or in the ground state and not in any superposition
state. But in these cases the optical polarization must vanish.
Consequently, in all cases where the resulting optical polar-
ization is nonzero the phonon system is not in a fully coher-
ent state. Thus, it can be concluded that the different impacts
of strain waves on the optical properties of a two-QD system
and a QD in a half space also reflect the different carrier-
phonon correlations that occur in these systems. Neglecting
these correlations by invoking the mean-field approximation
would result in the prediction that the optical responses
should be the same once the displacement fields become
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identical. This is, however, in clear contrast to our above
findings.

Finally, let us comment on possible experiments to mea-
sure the influence of traveling-wave packets. For the
single-QD system, the influence is already present in the lin-
ear response. Thus the oscillations in the spectra should be
visible in single-dot absorption as well as in single-dot lumi-
nescence spectra, if the QD is sufficiently close to the sur-
face. Because of the long exciton lifetime the phonon back-
ground at low temperatures is rather weak, however, in
particular in luminescence experiments it has clearly been
observed.! Alternatively, by using four-wave-mixing (FWM)
experiments, the time domain can be probed directly and the
initial decay of the signal caused by the phonon interaction
has been quantitatively described by the pure dephasing
model.?® The dip in the linear polarization seen in Fig. 2(b)
will be present in the time-resolved FWM signal of a
single-QD and even in the time-integrated FWM signal of a
QD ensemble if all QDs have the same distance from the
surface. This condition will typically be fulfilled for QDs
grown on a wetting layer. For the two-QD system the situa-
tion is more challenging because here only nonlinear signals
are affected by the wave packet. Nevertheless, with the in-
creasing sensitivity of single-QD spectroscopy features, such
as the spectral oscillations in the EBT spectra (see Fig. 6),
might become detectable. In FWM signals, essentially no
signatures are expected for positive delay times neither in the
time-resolved signal from a single pair of QDs nor in the
time-integrated signal from an ensemble of QD pairs with
fixed dot distance because of the absence of a signature in
the modulus of the polarization [Fig. 2(b)]. Thus, in a FWM
experiment the different behavior of the two cases, despite
the fact that the strain fields traveling across the dots are
essentially the same, should be clearly evident. In the
two-QD case it has been found that the coherence between
the ground state and the biexciton state, which is not opti-
cally active and therefore has not been discussed here, is
affected by the passage of the wave packet.>* It is known that
such a biexcitonic coherence gives rise to a FWM signal at
negative delay times. Therefore the time-resolved FWM sig-
nal from a single pair of QDs at negative delay times should
display signatures of the wave packet traveling from one dot
to the other, while from the single-QD in a half space, being
essentially a two-level system, no FWM signal will be emit-
ted for negative delay times.

IV. CONCLUSIONS

In this paper we have considered strain waves of different
origins that propagate across a QD. We have analyzed the
influence of these strain waves on the optical response of the
QD and compared two situations: (i) a single-QD in a half
space generating, by an optical excitation, a strain wave that
after reflection at the surface re-enters the dot; and (ii) a
two-QD model where a strain wave generated by a nearby
QD travels across the dot. Surprisingly, the impacts of the
strain waves on the optical polarization are qualitatively dif-
ferent for these two models even when the corresponding
displacement fields are identical in the half space of the QD.
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While the amplitude of the polarization in the two-dot model
is hardly affected, the strain wave in the half-space model
leaves a distinct trace in the dynamics of |P(z)|. The impact
on the phase of the polarization, on the other hand, is similar
in both cases. These qualitatively different signatures, in the
polarization dynamics, turned out to be independent of the
detailed boundary conditions for the phonons at the surface
of the half space. Both types of phonon modes, either those
obeying the common stress-free surface boundary conditions
or cos-phonon modes that yield the same displacement field
as in the two-QD case, give rise to qualitatively the same
behavior. Furthermore, it was demonstrated that the corre-
sponding spectra are noticeably influenced by the passage of
the phonon wave packets for both systems and both show
strong spectral oscillations. However, also in the frequency
domain, the results clearly differ for these systems. In par-
ticular the spectra for the two-QD model may exhibit nega-
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tive values, which are excluded in the half-space case. The
physical origin of these differences could be traced back to
the fact that the phonons traveling across the dot affect the
corresponding optical response via different quantum-
mechanical subspaces, namely, reflected phonon wave pack-
ets couple to the single-exciton subspace while wave packets
generated by a second dot enter only via their influence on
the two-exciton manifold. Hence, the optical response in
principle allows one to distinguish whether stress waves are
originated from the same or another dot.
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