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We propose a quantum nondemolition method—a giant optical Faraday rotation near the resonant regime to
measure a single-electron spin in a quantum dot inside a microcavity where a negatively charged exciton
strongly couples to the cavity mode. Left-circularly and right-circularly polarized lights reflected from the
cavity obtain different phase shifts due to cavity quantum electrodynamics and the optical spin selection rule.
This yields giant and tunable Faraday rotation that can be easily detected experimentally. Based on this
spin-detection technique, a deterministic photon-spin entangling gate and a scalable scheme to create remote
spin entanglement via a single photon are proposed.
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I. INTRODUCTION

Photons and semiconductor quantum-dot �QD� spins hold
great promise in quantum information science, especially for
quantum communications, quantum information processing,
and quantum networks.1–6 Photons are ideal candidates to
transmit quantum information with little decoherence
whereas QD spins can be used to store and process quantum
information due to the long electron-spin coherence time
���s�,7 which is limited by the spin-relaxation time ��ms�.8
Therefore investigations of spin manipulation, spin detec-
tion, remote spin entanglement mediated by photons, and
quantum state transfer between photons and spins are of
great importance. Spin manipulation is well developed using
pulsed magnetic-resonance techniques whereas single spin
detection remains a challenging task. Quantum nondemoli-
tion �QND� measurement is highly desirable as it is a pow-
erful resource for scalable quantum information processing.
Recently, a method toward QND measurement9 of a single
spin in a QD has been reported by Berezovsky et al.10 and
Atatüre et al.11 In order to minimize the disturbance to the
electron spin, they use a probe beam off resonant with the
QD transitions and the measured Faraday/Kerr rotation sig-
nals are rather weak.

In this paper, we propose a QND method—a giant optical
Faraday rotation near the resonance regime to measure a
single-electron spin in a single QD inside a microcavity. The
different phase shifts for the left-circularly and right-
circularly polarized lights reflected from the QD-cavity sys-
tem yield giant Faraday rotation that can be easily detected
experimentally. This giant Faraday rotation induced by a
single-electron spin originates from the spin-dependent opti-
cal transitions of negatively charged exciton and the effect of
cavity quantum electrodynamics �cavity-QED�. Based on
this spin-detection technique, we propose a deterministic
photon-spin entangling gate and a scalable scheme to create
remote spin entanglement via a single photon.

II. GIANT FARADAY ROTATION

We consider a singly charged QD, e.g., a self-assembled
In�Ga�As QD or a GaAs interface QD inside an optical reso-

nant cavity. Figure 1�a� shows a micropillar cavity where the
two GaAs/Al�Ga�As distributed Bragg reflectors �DBR� and
the transverse index guiding provide the three-dimensional
confinement of light. The QD is located in the center of the
cavity to achieve maximal light-matter coupling. This kind
of structure as well as microdisks and photonic crystal nano-
cavities have been used to make single-photon sources,12,13

and to study various cavity-QED effects.14–16

If the QD is singly charged, i.e., an excess electron is
injected into the QD, optical excitation can create a nega-
tively charged exciton �X−� that consists of two electrons
bound to one hole.17 Due to Pauli’s exclusion principle, X−

shows spin-dependent optical transitions �see Fig. 1�b��.18 If
the excess electron lies in the spin state �+ 1

2 ���↑ �, only the
left-handed circularly polarized light �marked by �L� or L
light� can be resonantly absorbed to create X− in the state
�↑↓⇑� with the two electron spins antiparallel. If the excess
electron lies in the spin state �− 1

2 ���↓ �, only the right-
handed circularly polarized light �marked by �R� or R light�
can be resonantly absorbed and create a X− in the state
�↑↓⇓�. Here �⇑ � and �⇓ � represent heavy-hole spin states
�� 3

2 �. The spin-quantization axis is along the QD growth
direction, i.e., the normal direction of the cavity.

(b)
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FIG. 1. �a� A charged QD inside a micropillar microcavity with
circular cross section. The distributed Bragg mirrors and the index
guiding provide three-dimensional confinement of light. �b� Spin
selection rule for optical transitions of negatively charged exciton
X− in QD due to the Pauli’s exclusion principle �see text�.
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However, the above spin selection rule only holds for an
ideal QD that is symmetric in both the QD shape and the
strain field distribution so that there is no spin-level mixing
or splitting at zero magnetic field. A practical QD that is
generally asymmetric can be made symmetric by applying an
electric/magnetic field,19 thermal annealing,20 or tuning the
QD size.21 Due to this spin selection rule, the L and R lights
encounter different phase shifts after reflection from the
X−-cavity system as discussed below.

The Heisenberg equations of motions for the cavity field
operator â and X− dipole operator �− in the interaction pic-
ture, and the input-output relation are given by22

	
dâ

dt
= − 
i��c − �� +

�

2
+

�s

2
�â − g�− − ��âin + Ĥ

d�−

dt
= − 
i��X− − �� +

�

2
��− − g�zâ + Ĝ

âout = âin + ��â
 ,

�1�

where �, �c, and �X− are the frequencies of external field
�probe beam�, cavity mode, and X− transition, respectively. g
is the coupling strength between X− and the cavity mode.
� /2 is the X− dipole decay rate, � /2 is the cavity field decay
rate into the input/output modes, and �s /2 into the leaky
modes �side leakage�. The material background absorption

and losses in the back mirror can also be lumped in �s /2. Ĥ

and Ĝ are the noise operators needed to conserve the com-
mutation relations. âin and âout are the input and output field
operators. Here we consider the single-sided cavity with the
back mirror 100% reflective and the front mirror partially
reflective. However, note that the inclusion of �s will lead to
lower total reflectivities and the single-sided cavity hypoth-
esis can model a real device.

If X− stays in the ground state at most time, we can take
��z��−1 and �zâ=−â. In the steady state, the reflection co-
efficient for the QD-cavity system can be obtained,

r��� = 1 −
��i��X− − �� + �

2 �
�i��X− − �� + �

2 ��i��c − �� + �
2 + +

�s

2 � + g2
.

�2�

By taking g=0, we get the reflection coefficient for a cold
cavity with QD uncoupled to the cavity,

r0��� =
i��c − �� − �

2 +
�s

2

i��c − �� + �
2 +

�s

2

. �3�

If the main cavity decay rate outweighs the side leakage rate,
Eq. �3� yields near-unity reflectance �r0�����1 for the cold
cavity in the whole frequency range. The side leakage �and
unwanted absorption� can be made rather small by optimiz-
ing the etching process �or improving the sample growth�.23

In the following discussions, we neglect the side leakage first
but come back to it later.

The complex reflection coefficients indicate that the re-
flected light feels a phase shift, which is a function of fre-
quency detuning ��−�c� as presented in Fig. 2. For a cold

cavity, the phase shift is �� at �=�c and decreases to zero
with increasing frequency detuning �solid curve in Fig. 2�b��.
In the strong-coupling regime with g� �� ,��, the X− state
and cavity mode are mixed to form two new states, i.e., the
dressed states, which lead to the vacuum-Rabi splitting. This
state mixing results in a zero phase shift around �=�c and
two phase structures corresponding to the two dressed states
�dotted curve in Fig. 2�b��. The strongly coupled X−-cavity
system is called a hot cavity hereafter. In the following we
show that the different phase shifts induced by a cold cavity
and a hot cavity can result in a giant Faraday rotation depen-
dent on the state of the electron spin. We work near the
resonant condition with ��−�c�	g so that the hot cavity has
near-unity reflectance �rh�����1 in the strong-coupling re-
gime �see Fig. 2�a� and Eq. �2��. As the cold cavity also
shows unity reflectance, a linearly polarized probe beam re-
mains linearly polarized after reflection.

As mentioned above, if the excess electron lies in the spin
state �↑ �, the L light feels a hot cavity and gets a phase shift
of 
h after reflection whereas the R light feels the cold cavity
and gets a phase shift of 
0. As the linearly polarized probe
beam can be regarded as the superposition of two circularly
polarized components, i.e., �R�+ �L� �the factor 1 /�2 is ne-
glected�, the reflected light then becomes ei
0�R�+ei
h�L�.
The polarization direction of the reflected light rotates an
angle �F

↑ =

0−
h

2 , which is the so-called Faraday rotation.
Conversely, if the excess electron lies in the spin state �↓ �,

the R light feels a hot cavity and gets a phase shift of 
h after
reflection whereas the L light feels the cold cavity and gets a
phase shift of 
0. We thus get a Faraday rotation angle �F

↓

=

h−
0

2 =−�F
↑ . The sign of Faraday rotation angle depends on

the electron-spin state.
Figures 2�c� and 2�d� present the calculated Faraday rota-

tion angle vs the frequency detuning. The side leakage can
reduce the Faraday rotation angle; however, when �s��, the
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FIG. 2. Calculated �a� reflectance �r���� and �b� phase shift vs
frequency detuning from a cold cavity �solid curves� and a hot
cavity �dotted curves�. �c� and �d� show calculated Faraday rotation
angle vs frequency detuning for different side leakage rates ��s=0
solid, �s=0.5� dot, and �s=� dash� when the electron is in the
spin-up or spin-down states. g /�=2.4 and � /�=0.1 are taken by
considering the practical QD-cavity parameters �see text�, and �X−

=�c is assumed.
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Faraday rotation spectra is not very sensitive to the side leak-
age, and the rotation angles lie in the range between −� /2
and � /2, which are huge compared with the reported Fara-
day rotation in the off-resonance regime.9–11 We call it giant
optical Faraday rotation, which allows a single-shot mea-
surement of a single-electron spin.

If the electron lies in a superposition spin state ��
=��↑ �+��↓ �, after reflection, the light and spin states be-
come entangled,

��R� + �L�� � ���↑� + ��↓�� → ei
0 � ����R� + ei�
h−
0��L���↑�

+ ��ei�
h−
0��R� + �L���↓�� . �4�

To realize an ideal quantum measurement, we set 
h−
0
= �� /2 by adjusting the frequency detuning to �−�c
� �� /2 �see Fig. 2�b�� so that the two polarization states of
light are orthogonal to each other.24 If we measure the light
in the polarization state �+45°����R�+ i�L�� /�2 �or �−45°�
���R�− i�L�� /�2�, the electron spin collapses to the �↑ � �or
�↓ �� state. Although giant Faraday rotation occurs near the
resonance regime rather than the off-resonance regime,9–11

the real excitation or recombination of X− induced by the
probe beam is strongly suppressed as the light frequency
deviates from the two dressed X−-cavity modes due to the
vacuum-Rabi splitting. This is also the reason why the hot
cavity has near-unity reflectance near the central frequency
in this regime. Within the spin-relaxation time ��ms�,8 re-
peated measurements then yield the same results so this
single-shot spin-detection method is a QND measurement.9

Based on the above spin QND measurement, a QND mea-
surement of a single photon could also be implemented.25

The observation of giant Faraday rotation relies on the
realization of the strongly coupled QD-cavity system, which
has been demonstrated recently in various microcavities and
nanocavities.14–16 For micropillars with diameter around
1.5 �m, the coupling strength g=80 �eV and the quality
factor more than 4�104 �corresponding to �=33 �eV� have
been reported,14,23 indicating g /�=2.4 is achievable for the
In�Ga�As QD-cavity system. � is about several �eV. Our
calculations in Fig. 2 are based on these experimental values.

III. REMOTE SPIN ENTANGLEMENT VIA A SINGLE
PHOTON

For single spin QND detection, the probe beam could be
either weak coherent light or a train of single photons. When
using a single photon as the probe beam, we can create en-
tanglement between two remote spins in two spatially sepa-
rated QD-cavity systems as shown in Fig. 3�a�. Based on the
discussions above, the X−-cavity system can work as a
photon-spin entangling gate if g� �� ,�� and ��−�c�	g. We
introduce the reflection operator

r̂��� = �r0����ei
0��R��R� � �↑��↑ � + �L��L� � �↓��↓ ��

+ �rh����ei
h��L��L� � �↑��↑ � + �R��R� � �↓��↓ ��

= �r0����ei
0Û�
� , �5�

where Û�
� is the phase-shift operator defined as

Û�
� = ei
��L��L�� �↑��↑�+�R��R�� �↓��↓��, �6�

where 
=
h−
0. The reflection operator can be simplified
as the phase-shift operator for �rh�����1 and �r0�����1 �or
for balanced reflectance �rh����= �r0�����. In the first QD-

cavity system with the phase-shift operator Û�
1�, the excess
electron is prepared in the spin state �1�=�1�↑ �1+�1�↓ �1; In
the second QD-cavity system with the phase-shift operator

Û�
2�, the excess electron is prepared in the spin state �2�
=�2�↑ �2+�2�↓ �2. Both QD-cavity systems are assumed to
have the same �c=�X−.

A linearly polarized single photon is reflected from the
first cavity, then reflected from the second cavity, after which
it is detected �see Fig. 3�a��. The corresponding state trans-
formation is

��R� + �L�� � ��1�↑�1 + �1�↓�1� � ��2�↑�2 + �2�↓�2�

→ �1�2��R� + ei�
1+
2��L���↑�1�↑�2 + �1�2�ei�
1+
2��R�

+ �L���↓�1�↓�2 + �1�2�ei
2�R� + ei
1�L���↑�1�↓�2

+ �1�2�ei
1�R� + ei
2�L���↓�1�↑�2. �7�

When 
1=
2=� /2 by adjusting the frequency detuning to
�−�c�� /2 �see Fig. 2�b� and Ref. 24�, the output state
becomes

��R� − �L����1�2�↑�1�↑�2 − �1�2�↓�1�↓�2�

+ i��R� + �L����1�2�↑�1�↓�2 + �2�1�↓�1�↑�2� . �8�

The output photon states can be measured in orthogonal lin-
ear polarizations. On detecting the photon in the �R�− �L�
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FIG. 3. �a� A proposed scheme to create entanglement between
two remote spins via a single photon. M1 and M2 �reflection mir-
rors�, polarized beam splitter �PBS� and D1 and D2 �detectors�. �b�
Entanglement fidelity vs the coupling strength for different side
leakage rates ��s=0 solid, �s=0.05� dot, �s=0.1� dash, and
�s=0.2� dash dot�. The curves are cut off for g�1.5� as

h���−
0���= �� /2 is not achievable in this regime �Ref. 24�.
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state �0° linear�, we project Eq. �8� onto a two-spin entangled
state

��12� = �1�2�↑�1�↑�2 − �1�2�↓�1�↓�2. �9�

On detecting the photon in the �R�+ �L� state �90° linear�, we
project onto another two-spin entangled state

��12� = �1�2�↑�1�↓�2 + �2�1�↓�1�↑�2. �10�

On setting the coefficients �1,2 and �1,2 to 1 /�2, we get
maximally entangled spin states.

This scheme can be extended to create remote multispin
entangled states such as GHZ or cluster states. This would be
to sequentially entangle pairs of the spins by repeating the
above single-photon measurement scheme that leads to Eqs.
�9� and �10�, combined with controlled local spin rotations.

If the photon loss and the detection inefficiency are ne-
glected, our entanglement scheme is deterministic. Other
schemes based on quantum interference of emitted photons
can generate remote atomic entanglement26,27 and could be
extended to entangle distant spins.28,29 However these
schemes suffer from low success probability.27 Here we use a
single-photon quantum bus to couple or entangle remote
spins,30 which is similar to the scheme proposed by Leuen-
berger et al.,31 and the probabilistic scheme using bright co-
herent light as proposed by van Loock et al. and Ladd et al.32

The QD spin superposition state can be prepared, for ex-
ample, by optical pumping and/or optical cooling33 followed
by single spin rotations using nanosecond microwave pulses
or picosecond/femtosecond optical pulses.34 We also assume
the probe light �photon� pulse bandwidth is much smaller
than the cavity broadening, i.e., ��	� /2, so the frequency
detuning can be precisely set. Furthermore, the entangling
gate described by Eq. �6� has a well-defined phase and the
optical pulse shape remains unchanged on reflection. These
photons could come from QD-based single-photon
sources12,13 or from nanosecond laser pulses. Hence all
preparation and measurement time scales are short compared
to the spin coherence time ���s�.7

If the cavity side leakage is neglected, then our entangle-
ment scheme can achieve unity success probability and near-
unity fidelity in the strong-coupling regime �see Fig. 3�b�� as
�rh�����1 and �r0�����1. However, this is a big challenge

for QD-micropillar cavities although significant progress has
been made.23 If the cavity side leakage �s is taken into ac-
count, the entanglement fidelity with respect to the entangled
state described by Eq. �10� becomes

F =
1

�1 + 1
4� �r0����

�rh���� −
�rh����
�r0���� �2

, �11�

which is generally less than one. However, approximately
when �s�0.05�, there is still a point where we can achieve
unity fidelity as �r0����= �rh���� �see Fig. 3�b��. The reflec-
tance at this point is not unity so the gate success probability
is reduced �the cavity reflectivity is 82% when �s=0.05��.
�s=0.05� could possibly be achieved by taking a
pillar microcavity with the quality factor of �165 000
demonstrated in Ref. 23 and decreasing the reflection of the
top mirror to reduce the quality factor to �9000, which is
still in the strong-coupling regime.14 However, note that
�r0����� �rh���� does not affect the entanglement fidelity
with respect to the entangled state described by Eq. �9� and it
remains unity even when �s�0. By performing a single
spin-flip operation, Eq. �9� can be transformed to Eq. �10�.

IV. CONCLUSIONS

In conclusion, giant optical Faraday rotation induced by a
single-electron spin in a QD is proposed as a result of cavity-
QED. This enables us to do quantum nondemolition mea-
surement of a single-electron spin and to build a determinis-
tic photon-spin entangling gate. Based on it, a deterministic
and scalable scheme to create remote spin entanglement is
proposed. We can also extend this scheme to implement co-
herent quantum state transfer between photon and spin, and
entangle independent photons.25 We believe this work opens
an avenue for solid-state quantum networks with single pho-
tons and single QD spins.
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