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We investigate the effect of disorder on the voltage and layer thickness dependence of the current density in
(metal/organic semiconductor/metal) devices containing organic semiconductors with a Gaussian shape of the
density of states. The analysis is based on recently published numerically exact expressions for the dependence
of the charge-carrier mobility on the carrier density and the electric field in such materials [W. F. Pasveer e al.,
Phys. Rev. Lett. 94, 206601 (2005)]. For the device simulations, a numerically efficient one-dimensional
continuum drift-diffusion device model has been developed, which is also applicable to any other disorder-
induced carrier density and field dependence of the mobility and diffusion coefficient. The device and material
parameters chosen are relevant to organic light-emitting diode (OLED) applications. It is shown that a realistic
degree of disorder can give rise to apparent mobilities that vary over more than 2 orders of magnitude with the
layer thickness if the current-voltage curves are (incorrectly) analyzed in terms of the often-used drift-only
Mott-Gurney formula. This implies that meaningful analyses of transport in OLEDs should be based on the full

functional dependence of the mobility on the carrier density and field, induced by the disorder.
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I. INTRODUCTION

Devices that consist of an organic semiconductor which is
sandwiched in between two metallic electrodes are inten-
sively studied in view of applications in, for example, or-
ganic  light-emitting  diodes ~ (OLEDs),!  organic
photoconductors,” and organic photovoltaic devices.> The
electron or hole mobility, u, of the organic semiconductors
of which such devices are composed is frequently derived
from the steady-state current density (J) versus voltage (V)
characteristics of single-carrier devices, containing a single
organic layer.* The energy barriers at the interfaces for injec-
tion from the electrode into the organic semiconductor are
then such that the charge carriers that are responsible for the
current are either electrons or holes. In general, the injection
barriers are not precisely equal at both interfaces, leading to
a built-in voltage, Vy,;. In the absence of traps, and when (i)
only the drift contribution to the current density is taken into
account (neglecting the diffusion contribution), (ii) the bar-
rier at the injecting electrode is insignificant, and (iii) the
mobility may be assumed to be constant, the current density
is for V>V,; given by the Mott-Gurney (MG) square law,’

9 (V=-Vy)?
g = gu% (1)
with € and L the permittivity and the thickness of the organic
semiconductor, respectively.

In actual devices, deviations from Eq. (1) are found with a
slope of log(J) versus log(V-V,;) curves smaller than 2 at
relatively small voltages and higher than 2 at relatively large
voltages. The former effect is a result of charge-carrier dif-
fusion, which gives rise to the predominant contribution to
the current density at small voltages and which even leads to
a finite current density below Vi;. At relatively large volt-
ages, the drift contribution to the current density dominates.
Recently, it has been demonstrated that energetic disorder in
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organic semiconductors used in OLEDs strongly affects the
voltage dependence of the current density in both transport
regimes. First, Tessler and co-workers® showed that disorder
can give rise to a diffusion coefficient enhancement above
the value expected from the classical Einstein relation. For
the specific case of Gaussian disorder, such an increase in the
diffusion contribution to the current density occurs at high
carrier densities. Second, Blom and co-workers’”® demon-
strated experimentally that the mobility in various materials
that are frequently used in OLEDs, such as
poly-(p-phenylene vinylene) (PPV), depends on the charge-
carrier density. For organic field-effect transistors, a charge-
carrier density dependence of the mobility had already been
found earlier by Vissenberg and Matters,’ who explained the
effect assuming an exponential density of states.

Roichman et al.'” were the first to include both effects of
disorder on the mobility and the diffusion coefficient in a
transport model for single-carrier sandwich-type devices.
However, the model used in Ref. 10 for quantifying the car-
rier density dependence of the mobility was shown to neglect
the percolative nature of the hopping transport,!! which
strongly affects the temperature dependence of the mobility.
Pasveer et al.'> developed a model that correctly includes the
effects of percolation on the mobility and demonstrated that
in the drift-dominated high-voltage regime the temperature
dependence of the current density in PPV-based hole-only
devices can be described well assuming Gaussian disorder.
In their device model, the diffusion contribution to the cur-
rent density was neglected. Although the effects of diffusion
have been included in inorganic semiconductor device
models,!3 in models for OLEDs!%!* and in models for other
organic electronic devices,!” so far in none of these studies
the recent insights on the mobility in an organic semiconduc-
tor with Gaussian disorder, mentioned above, have been
taken into account.

In this paper, we analyze the electrical transport through
single-carrier (metal/organic semiconductor/metal) devices
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based on organic semiconductors with Gaussian disorder us-
ing a fully general model which includes the two effects of
disorder mentioned above: the enhancement of the diffusion
coefficient and the carrier density and field dependence of
the mobility. This allows us to provide a complete descrip-
tion of the current-voltage curves. We have developed a
practical method for calculating J(V) curves based on a nu-
merically fast one-dimensional continuum approach intro-
duced by Bonham and Jarvis (BJ).!®!7 The discussion of our
method for extending the BJ approach is focused on appli-
cations to devices based on materials with a Gaussian density
of states (DOS). However, the methodology is generic and is
applicable to any type of disorder, provided that the carrier
density and field dependences of the mobility and diffusion
coefficient are known.

Within our model, applied to hole transport, we assume
that at both electrodes thermal equilibrium is established be-
tween the electrode and the highest occupied molecular or-
bital (HOMO) of the organic semiconductor. This may be
expected to yield a fair description of the transport physics
when the injection barrier at the injecting contact is suffi-
ciently small. Under these conditions, an appreciable space
charge builds up at the injecting electrode, and the net cur-
rent density at that electrode is the result of a diffusive con-
tribution away from that electrode and a drift contribution
toward that electrode. The underlying assumption is that the
current density is not limited by the hopping rate of holes
from states near the Fermi level in the metal to HOMO states
on organic molecules close to the metal but by the finite bulk
mobility. Our model thus does not address cases with a very
high barrier at the injecting electrode, such as discussed by
Campbell Scott and Malliaras'® for devices with a manifold
of HOMO states with negligible width and by Arkhipov et
al.'® for the case of devices with a Gaussian DOS with a
width larger than the thermal energy kzT.

In its generic form, our model is also applicable to cases
in which polaron formation has a more important effect on
the mobility than energetic disorder. This will be the case
when the polaron binding energy, E,, is large as compared
to the width, o, of the Gaussian DOS. For that situation,
Fishchuk et al.?® have recently given an expression for the
mobility. Polaron formation has previously been argued to
determine the mobility in certain organic materials.?! In such
a case, the mobility is essentially independent of the carrier
concentration for concentrations below 0.1.2° However, as
discussed above, there is strong experimental evidence that
for the prototype material PPV, a polaron model does not
provide a good description. This is consistent with results
from a theoretical study by Meisel et al.,”> who showed that
for PPV the polaron binding energy, E,,, is very small
(<0.05 eV) as compared to the width, o, of the Gaussian
DOS (~0.14 eV), as deduced from an analysis of tempera-
ture dependent current-voltage curves.'?

We analyze in detail how Gaussian disorder affects the
full J(V) curves of symmetric devices (V,;=0 V) with excel-
lently injecting contacts, and the J(V) curves of devices with
one excellently injecting electrode and one electrode which
gives rise to a high injection barrier (resulting in a large
value of V). A key result of our study is that (conventional)
analyses of J(V) curves using the Mott-Gurney expression
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given by Eq. (1) can, incorrectly, lead to a very strong layer
thickness dependence of the apparent mobility. The effect
increases with increasing disorder.

Section II contains the description of the carrier density
and field-dependent mobility in a semiconductor with Gauss-
ian disorder, used in this paper, and a brief description of the
extended Bonham-Jarvis method, applied to devices based
on such semiconductors. More technical discussions, includ-
ing derivations of the expressions for the drift-diffusion
equation and the current density in terms of dimensionless
quantities, the iterative methods, used and the parametriza-
tion of the mobility and diffusion coefficient used, are given
in four Appendixes A-D. In Sec. III, the effects of Gaussian
disorder on the J(V) curves are discussed for symmetric de-
vices and for devices with a large built-in voltage. Section IV
contains a summary, conclusions, and outlook.

II. CALCULATIONAL METHOD

A. Mobility and diffusion coefficient in a material with a
Gaussian DOS

We focus in this paper on transport in devices containing
an organic semiconductor with Gaussian disorder. The semi-
conductor is characterized by three parameters: the site den-
sity, N,, the width of the DOS, o, and the inverse wave-
function localization length, «. In small-molecule organic
semiconductors and in polymers, N, may be associated with
the number of molecules and with the number of conjugated
segments per volume unit, respectively. Also the width, o, is
a physically well-defined parameter, at least for small-
molecule materials, which can be deduced from the model-
ing of a sufficiently extended set of temperature and layer
thickness dependent J(V) curves.?® Typical values of o in
disordered organic materials are 0.08-0.15 eV. The inverse
localization length, «, describes in an effective way how the
hopping rate between two sites decreases with increasing dis-
tance R, viz., as exp(—2aR) (see Ref. 12). For organic semi-
conducting materials, the average intersite distance a=N, 13
and the wave-function localization length are typically of the
order of 1 and 0.1 nm, respectively,?*%% so that o !~0.1
X a. The energy levels at neighboring sites are assumed to be
uncorrelated. The Gaussian DOS is given by

__N E_2>
N(E) = \ﬂmexp( 52 (2)

As shown by Pasveer et al.,'? the dependence of the mobility

on the carrier density, n, and the field, F, can then be factor-
ized so that

p(T.n.F) = po(T) X g1(n,T) X g5(F.T). A3)

Here wy(7) is the temperature (7)-dependent mobility in the
limit of a zero carrier density and zero electric field, and g,
and g, are dimensionless carrier density and field-dependent
mobility enhancement factors, respectively. The diffusion co-
efficient, D, is given by the generalized Einstein equation,®

085207-2



EFFECT OF GAUSSIAN DISORDER ON THE VOLTAGE...

N
(=]
)

-
(=]
EN

mobility enhancement g,

10° : . : .

-
o
)
T

N
OA
T

mobility enhancement g,

10° ;
0 1 2

diffusion enhancement g,

10™ 10° 107 10" 10°
carrier concentration

FIG. 1. Enhancement functions for a Gaussian DOS with di-
mensionless widths o/ (kgT)=3, 4, 5, and 6, as defined in Appendix
A: (a) g; as a function of the carrier concentration, n/N,, (b) g, as
a function of the reduced field eaF/ o, and (c) g3 as a function of
the carrier concentration. The filled circles in (a) and (c) indicate the
concentrations ¢* and ¢**, respectively, where the mobility and dif-
fusion coefficient, respectively, are enhanced by a factor 2 (see also
Appendix A). The open circles in (a) indicate the approximate val-
ues g; =~ 1/c¢™ at the concentrations ¢**.

kT
D(T.n,F) = %u(ﬂn,m X g3(T.n), (4)

where kg is the Boltzmann constant and g5 is a dimensionless
diffusion coefficient enhancement function that follows from
the shape of the density of states. We make use of the com-
pact expressions for the functions g, and g, that have been
given for the value of a™'=0.1Xa used in Ref. 12 with a
cutoff at high carrier densities in order to obtain a better
agreement with the numerically exact results given in Ref.
12. The expressions used for g;, g,, and g3 are given in
Appendix A. Figures 1(a)-1(c) show the dependence of g,
and g3 on the carrier concentration and of g, on the field for
various values of o/ (kgT).
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FIG. 2. Schematic energy diagram of a hole-only (metal/organic
semiconductor/metal) device with a Gaussian distribution with
width o of HOMO states and with ¢; and ¢, the hole injection
barriers at the left and right interfaces. Ey is the Fermi level in the
metallic electrodes and Vj; is the built-in voltage. The arrows indi-
cate schematically the hole (h*) hopping.

B. Method for solving the drift-diffusion equation

We consider hole transport in single-layer devices with
electrode interfaces at x=0 and x=L, where the carrier den-
sities are n;=n(0) and n,=n(L), respectively. A schematic
description of the energy-level structure assumed is shown in
Fig. 2. The injection barriers at the left and right electrodes,
¢ and ¢,, respectively, are defined as the difference between
the Fermi energy in the metallic electrode and the top of the
Gaussian DOS of the HOMO states. The built-in voltage is
thus equal to V,;=(¢,—¢@;)/e, with e the elementary charge.
By definition, for positive voltages, holes move from elec-
trode 1 to electrode 2. In the bulk of the device, transport
takes predominantly place via hops in the tail of the Gauss-
ian DOS. At the electrode interfaces we assume thermal
equilibrium so that the carrier density at interface i is given
by

n;= Jm N(E)#(ﬁdE. (5)
_x 1+exp<—k Tl>
B

The current density is a sum of drift and diffusion contribu-
tions,

dn(x)
dx

J=eu(x)n(x)F(x) — eD(x) (6)

The field and carrier densities are related via the Poisson
equation,
dF(x)
dx

€ =en(x), (7)
with & the permittivity.

Bonham and Jarvis'®!7 developed an efficient method for
solving the drift-diffusion problem for the case of a constant
(position independent) mobility and diffusion coefficient.
The basic merit of their method is that the two-point
boundary-value problem is reformulated as an initial value
problem: the solution of the drift-diffusion equation is devel-
oped from a single known starting point. Use is made of the
fact that the Poisson equation implies that the field increases
monotonically with position. It is therefore possible to trans-
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FIG. 3. Solutions y(f) of the dimensionless transport equation
[Eq. (8)] for the case of a constant mobility for a range of equidis-
tant values of the minimum dimensionless carrier density y,;, (full
curves, minimum positions indicated by filled circles, type-I solu-
tions) and for a range of equidistant values of carrier densities at
which inflection points y; are obtained (dashed curves, inflection
points indicated by open circles, type-II solutions). The thick
dashed line connects the second electrode end points, y,(f,), of
segments of the y(f) curves which are a solution of Eq. (8) for the
case y;=10* X y,, studied in Fig. 4(b), for a range of values of the
current density (see also Appendix D).

form Eq. (6) into an expression within which the x depen-
dence of n is replaced by an F dependence. For convenience,
Bonham and Jarvis!®!7 furthermore proposed a transforma-
tion in order to make all quantities dimensionless. We have
extended the BJ method to include disordered systems with a
carrier density and field-dependent mobility. As shown in
Appendix B, Eq. (6) can then be transformed to the follow-
ing dimensionless transport equation,

dy f 1

df ~ gln()] giln()] X glF(A] % galn()] Xy’
(8)

with y the dimensionless carrier density and f the dimension-
less field. The transformations from n to y and from F' to f
are included in Appendix B.

For the case of a constant mobility and diffusion coeffi-
cient, Eq. (8) simplifies to dy/df=f-1/y as g,=g,=g:=1.
The solutions are shown in Fig. 3. The curves show, strictly
speaking, how the carrier density can vary as a function of
the field in the device. However, the curves also tell how,
more qualitatively, the carrier density can vary with the po-
sition across the device, in view of the monotonous increase
of the field with position, explained above. The field-position
relationship is given in Appendix B [Eq. (B13)]. It is appar-
ent that there are two types of curves, as noticed first by
Bonham and Jarvis.!®!7 The full curves in the upper part of
the figure (“type-I solutions™), all show a (positive) mini-
mum value at a certain value of f. The dashed curves in the
lower part of the figure (“type-II solutions”) show no mini-
mum, and at a certain value of f, y(f) equals zero. All solu-
tions of the dimensionless transport equation [Eq. (8)] fall
under these two categories. The solution is always of type I if
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the injection barriers at both interfaces are equal so that n;
=n, and V};=0, as there is then a minimum at any voltage.
Otherwise, the solution is only of type I if n; and n, are
sufficiently large and the voltage is sufficiently small. The
distinction between these two solution types remains valid in
the case of a Gaussian DOS.

Following the method introduced by Bonham and
Jarvis,'®!7 the type-I solutions are obtained as follows. For a
selected value of the dimensionless carrier density at the
minimum, y,;,, the dimensionless field at the minimum, f,;,,
follows by setting the right-hand part of Eq. (8) to zero. For
the case of a constant mobility and diffusion coefficient,
Sunin=1/Ymin- Subsequently, the function y(f) can be obtained
using Eq. (8) by numerical integration toward smaller and
larger f using, e.g., a Runge-Kutta method. The integration
can then be stopped when the dimensionless boundary car-
rier densities y; and y, have been reached at fields f; and f,,
respectively. The backtransformation of the resulting func-
tion y(f) in the interval [f};f,] to the carrier density across
the device, and expressions for the current density and volt-
age in terms of y(f) are given in Appendix B. A complication
is that the relationship between the dimensionless boundary
carrier densities y, and y, and the actual values n; and n,
contains the—yet unknown—value of the current density
[see Egs. (B1) and (B9)]. Therefore, the solution has to be
determined by an iterative method, as explained in detail in
Appendix C. J(V) curves can be obtained by repeating these
calculations for a series of f;, values.

For obtaining the type-II solutions, points (f=f,, y=0)
may be used as starting points for the integration, as ex-
plained by Bonham and Jarvis.'” In this case, only a single
integration, toward the value f=f; (<f,) at which y=y,, is
needed. In the same way as described for type-I solutions,
the carrier density and current density can then be obtained
from y(f), calculated in the interval [f;(y;),f2(y2)].

In practice, this approach may lead to numerical difficul-
ties, as at the starting point of the integration the slope of
y(f) diverges [see Eq. (8) and Fig. 3]. Therefore, we propose
the use of an alternative starting point for the integration
procedure. We have found that all type-II curves have an
inflection point, (f;,y;), at which d*y/df*=0. In Appendix B,
an implicit relationship between f; and y; is given [Eq.
(B14)], from which y; can be obtained from a root-search
procedure for a given value of f;. For the case of a constant
mobility and diffusion coefficient, f;=1/y;— yiz. The function
y(f) can then be obtained by using the inflection point as the
starting point of numerical integration toward smaller and
larger f until the points at which y(f)=f, and f,, respectively,
are reached. We find that a further improvement of the effi-
ciency of the method is obtained by calculating f(y) func-
tions, instead of y(f) functions. Technical difficulties related
to the divergence of the slope of the y(f) curves when y
approaches zero are then avoided. The expressions that are
used for obtaining the current density and voltage from the
calculated f(y) function are included in Appendix B. In Ap-
pendix D some remarks are given concerning the voltage at
which the transition between type-I and type-II solutions
takes place.
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III. APPLICATION TO DEVICES WITH A GAUSSIAN DOS

In this section we present and analyze the dependence of
the J(V) curves on the width of the Gaussian DOS. In Sec.
IIT A, the effect of disorder on the carrier density across the
device is shown, and the transition from type-I to type-II
solutions is illustrated. In Secs. III B and III C, on symmetric
and asymmetric devices, with V;;=0 and V,;>0, respec-
tively, it is shown how the introduction of disorder affects
the voltage dependence of the current density in the diffusion
dominated and drift dominated transport regimes and at the
crossover between the two regimes. Furthermore, it is dem-
onstrated that, as a result of disorder, the apparent mobility
that would follow from a conventional analysis of the J(V)
curves using the drift-only Mott-Gurney relation [Eq. (1)]
can vary over many orders of magnitude if the device thick-
ness is varied.

A. Carrier density

In Fig. 4, the effect of disorder on the voltage dependent
carrier density at 7=298 across (a) one symmetric and [(b)
and (c)] two asymmetric devices is shown. The full and
dashed curves show the carrier density for the case of a dis-
ordered material, with o/ (kgT)=6, and for the case of a ma-
terial with a constant mobility and diffusion coefficient, re-
spectively. The latter situation would occur if at all points
across the device the transport would be in the Boltzmann
transport regime, which is the case, e.g., when the DOS is a
¢ function at an energy more than a few times kz7 above the
Fermi level of the two electrodes. The mobility and the dif-
fusion coefficient are then related by the standard Einstein
equation [i.e., the factor g3, defined by Eq. (A5), is equal to
1].

In the limiting case of a symmetric device with ideal con-
tacts (n;=n,=) and with a constant mobility and diffusion
coefficient, the carrier density at V=0 is given by?’

277
nx)=——— X nyg, 9)
2[ (x 1)}
cos”| ml —— <
L 2
with
SkBT
n0= esz . (10)

It follows that the carrier density in the device center is then
equal to 7y =27 X ny. For all devices considered in Figs.
4(a)-4(c), the carrier density at the left electrode is taken to
be equal to n,=10°Xn,. This ensures that injection at that
electrode can be characterized as “excellent” as at the left
contact the carrier density is then many orders of magnitude
larger than ... We take L=100 nm and &,=3 (relative
permittivity) so that n;=4.25X 10* m=3. This is of the order
of the site density in a typical organic semiconductor
(~10%” m™). For the systems with Gaussian disorder, we
assume that at the left interface the Fermi level coincides
with the top of the Gaussian DOS. This implies that the site
density is given by N,=2n,=8.51X10% m.
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FIG. 4. Calculated carrier density, with respect to the carrier
density at x=0, at 7=298 K, and at various voltages for devices
with a Gaussian DOS with width o such that o/(kzT)=6 (full
curves) and for the case of a constant mobility (dashed curves). In
all cases, L=100 nm, n1=4.25><1026 m3, N,=8.51X 10% m-3
(for systems with a Gaussian DOS), uy=1.0X10710 m?/(Vs),
£,=3, and (a) ny=n,, (b) n,=10"*Xn,, and (c) n,=10" X n,.

Figure 4(a) shows that for symmetric devices, with n,
=n, so that V;=0 V, the carrier density shows a minimum
at all voltages (type-I solutions). For the case of a constant
mobility and diffusion coefficient, the relative carrier density
at V=0 in the device center, ngey /1 1S not significantly
different from the value 277> X 10~ expected for the case of
ideal contacts using Eq. (9). For the case of a disordered
material, we do not have an analytical expression for n(x).
The numerical results shown by the figure reveal that the
effect of disorder on the carrier density across the devices is
surprisingly small. For V=0, the system is in thermal equi-
librium so that the small difference is not related to the de-
tailed form of the density and field dependence of the mobil-
ity but only to the different carrier density dependences of
the g5 functions (with the factor g5 as given by the general-
ized Einstein equation [Eq. (A5)] for the case of a Gaussian
DOS and with g;=1 assumed here for the case of a constant
mobility). Comparison of the full and dashed curves in Fig.
4(a) reveals that for all voltages the introduction of disorder
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leads to a larger carrier density near the electrodes and a
smaller carrier density in the device center. We view the
former effect as the result of the enhanced diffusion coeffi-
cient, and the latter effect as the self-consistent result of the
enhanced space charge near the electrodes, which counter-
acts diffusion to points deep inside the device.

Figure 4(b) shows the carrier density in devices with a
carrier density at the right contact equal to 10~*n,. For the
case of a constant mobility and diffusion coefficient, Vi;
=(kgT/e) X1In(n,/n,), so that V;=0.24 V. For devices with
disorder, V,; is equal to the difference of the Fermi-level
energies in a Gaussian DOS with o/ (kzT)=6 that correspond
to the carrier densities n; and n,, leading to V;;=0.60 V. The
value of n, used in this figure is still much larger than 27°
X ny. At small voltages, the carrier density shows therefore
still a minimum. However, for sufficiently large voltages,
above a transition voltage V*, n(x) decreases monotonically
with increasing x. At small voltages, the introduction of dis-
order leads to an increase in the carrier density at all posi-
tions across the device. The effect of disorder is opposite to
that for symmetric devices, shown in Fig. 4(a), because there
is no large space charge near the second contact which can
strongly hinder the increase in n(x) due to diffusion from the
first contact. As a result, the transition voltage revealed by
Fig. 4(b) between the type-I and type-II solutions is smaller
for the case of disorder with o/(kgT)=6 (V*=2.00 V) than
for the case of a constant mobility and diffusion coefficient
(V*=2.86 V).

When the carrier density at the second electrode de-
creases, V* decreases until it becomes zero when n, is suffi-
ciently small. Such a situation is shown in Fig. 4(c), which
gives the carrier density for the case n,=10""n,, so that V;;
=0.54 and 0.98 V for devices without and with disorder,
respectively. At all voltages, the carrier density decreases
then monotonically with increasing x (type-II solutions). For
devices with one ideal contact (n;=2°), and a second contact
with a high injection barrier (n,/n,<<1), and in the case of a
constant mobility and diffusion coefficient, the carrier den-
sity is given by?’

24

n(x) = ——— X ny, (11)
sinh2<A%)

where the parameter A (which is much larger than 1) follows
from the application of the boundary condition at the second
contact. At positions not too close to the first electrode, the
carrier density is thus to an excellent approximation given by
n(x)=ny X 8A%/exp(2Ax/L). This explains the linear x de-
pendence of log;o[n(x)] for x/L>0.2 shown in Fig. 4(c) for
the case V=0. As in Fig. 4(b), the effect of disorder on n(x)
is opposite to that for symmetric devices, shown in Fig. 4(a).
This may be explained in the same manner as discussed
above for Fig. 4(b).

Below 8 V, the carrier density shows a steady increase
with voltage throughout almost the entire device. However,
this trend is disrupted above 8 V. As an example, the thin and
thick full lines in Fig. 5(a) show the carrier densities at 8 and
16 V, respectively, for the symmetric devices discussed
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FIG. 5. (a) Reduced carrier density and (b) field across a sym-
metric device with o/(kgT)=6 and with the other parameters as in
Fig. 4(a), at 8 and 16 V (thin and thick full curves, respectively).
For V=16 V, the long-dashed and short-dashed curves give results
obtained by switching off the field dependence of the mobility (g,
=0) and obtained for a constant mobility, respectively. The arrow
indicates the cutoff field (see Appendix A).

above [Fig. 4(a)]. The carrier density shows for x> L/2 only
a very small increase, much less then shown in Fig. 4(a)
when varying V from 2 to 8 V and close to the second elec-
trode even a decrease. This effect can be attributed to a
strong field enhancement of the mobility in this part of the
device so that a given local current density can already be
obtained for a smaller local carrier density. Figure 5(b)
shows that for V=16 V, the electric field is very high in the
region x>L/2 and even approaching Fgu.n (2.8
X108 V/m) (see Appendix A). An explicit proof of the
strong effect of the field enhancement of the mobility has
been obtained by carrying out a calculation for V=16 V
with g,=0. The long-dashed curve in Fig. 5(a) shows that
switching off the field enhancement of the mobility results in
a much larger carrier density for x>L/2, approaching the
values for devices without disorder (short-dashed curve).
Furthermore, Fig. 5(b) shows that at 16 V the full effect of
disorder (including the field dependence of the mobility) is a
decrease in the field near the second electrode (thick full
curve) with respect to the case without disorder (short-
dashed curve), whereas the bare effect of the carrier density
dependence of the mobility due to disorder is an increase in
the field near the second electrode (long-dashed curve). This
increase occurs because the enhanced mobility in the high-
density region near the first electrode is self-consistently
matched by an increase in the field in the lower-density re-
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FIG. 6. J(V) curves for transport in a Gaussian DOS in symmet-
ric devices at 7=298 K with L=100 nm, n;=n,=2.13
X10% m™, N,=425X10% m™, wy=1.0x10"'" m?/(Vs), and
e,=3 and with (a) o/(kgT)=3 and (b) o/ (kzgT)=6. The thick curves
give the result including disorder and diffusion. Curves A and B
give the results for a constant mobility and without [Eq. (1)] and
with diffusion, respectively. Curve C in (b) gives the drift-diffusion
result for a system with o/(kgT)=6, but only taking the diffusion
coefficient enhancement into account. The dashed curves give the
results including disorder but without diffusion.

gion near the second electrode. A similar difference between
the fields across the device was found by Tanase et al.® when
making for drift-only systems a comparison for the cases of a
carrier density and a field-dependent mobility (Fig. 3 in Ref.
8).

B. Current density in symmetric devices (V},;=0)

In Fig. 6, the effect of disorder on the voltage dependence
of the current density in symmetric devices at 298 K is
shown. We take L=100 nm, &,=3, and n;=n,=2.13
X107 m= (n,/ny=0.5% 10°). The thick full lines show the
results for devices with Gaussian disorder with o/ (kgT)=3
and 6 in Figs. 6(a) and 6(b), respectively. The calculations
were performed assuming densities N,=2n; so that at the
interfaces the Fermi energy coincides with the top of the
Gaussian DOS. A first thin full curve in the figures shows the
current density for a constant mobility and neglecting diffu-
sion [Mott-Gurney formula, Eq. (1), curves A]. A second thin
full curve shows how, for the case of a constant mobility and
diffusion coefficient, the current density is enhanced above
the Mott-Gurney result if diffusion is included (curves B). In
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Fig. 6(b), a third thin full curve gives the current density
including the enhancement of the diffusion coefficient, as
given by Eq. (4), for the case of a Gaussian DOS with
o/(kgT)=6 (curve C). The dashed curves give the current
density in a Gaussian DOS if charge-carrier diffusion is ne-
glected (but including the carrier density and field depen-
dence of the mobility).

In the absence of diffusion, there is no charge in the de-
vice at V=0. The current density at finite voltages is then the
result of the voltage-dependent transport of a voltage-
dependent density of injected charges. As a result, the drift-
only current density is proportional to V2, as given quantita-
tively by the Mott-Gurney formula [Eq. (1)]. As a result of
diffusion, there is already at V=0 a space-charge density,
n(x,V=0), present in the device. The resulting local resistiv-
ity is p(x,V=0)=1/[eu(x,V=0)n(x,V=0)] so that in the
small-voltage limit the current density varies linearly with V
and is (exactly) given by

1 1

fL— XV=—7 1
(xao)dx f dx
0 P o n(x,0)u(x,0)e

J0= X V.

(12)

Indeed, all J(V) curves which have been calculated including
diffusion show at small voltages this expected Ohmic J-V
relationship.

The crossover voltage, Vi . sover» Detween the diffusion
and drift-dominated transport regimes may be defined as the
voltage at which Jyg=J,. For symmetric devices with ideal
contacts (n;=n,=) and a constant mobility and diffusion
coefficient, application of Egs. (9) and (12) leads to?’

kgT \% %
']0=4'7T2 EM0 3 =2eNceneroT - (13)
e L L

The crossover voltage is then given by V. over=327/9
XkgT/e. At room temperature, V. cover~ 0.9 V, indepen-
dent of &, u, and L. This is consistent with Fig. 6.
Equation (13) shows that, in the small-voltage limit, the
effective conductivity of the device is thus determined by the
conductivity in the device center. Strictly speaking, Eq. (13)
is only valid for the case of a constant mobility and diffusion
coefficient. However, it has already been remarked in Sec.
IIT A that the change in the carrier density distribution across
the device upon the introduction of disorder is surprisingly
small [see Fig. 4(a)]. In the small-voltage limit, the main
effect of the introduction of disorder is therefore expected to
be the carrier-density-dependent enhancement of the mobil-
ity in the device center. Neglecting the effect of disorder, the
carrier concentration in the center of the devices studied in
Fig. 4 is =4mny/N,~107>. For the case o/(kzT)=3, the
carrier density in the center of the device is then deep in the
Boltzmann regime [see Fig. 1(a)] so that at small voltages
the introduction of disorder only marginally enhances J,
above the value obtained when a constant mobility and dif-
fusion coefficient is assumed. In contrast, for the case
o/ (kgT)=6, J, is more than 1 order of magnitude larger than
the value that is obtained when a constant mobility and dif-
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FIG. 7. J(V) curves for transport in a Gaussian DOS in symmet-
ric devices at T7=298 K with n,=n,=2.13X10% m™3, u,=1.0
X 10719 m?/(Vs), and €,=3 and with (a) L=50 nm and (b) L
=400 nm devices. The full curves correspond to o/ (kzT)=6 (high-
est J) to 3 (lowest J). The filled circles indicate the points (at volt-
age V,), at which the slope of the J(V) curves on the double-
logarithmic scale used is equal to 2. The J(V) curves for the
situation without disorder and with and without diffusion are dashed
and dotted, respectively. The inset in (a) shows a part of the current-
density curve for o/ (kgT)=6 (full), together with results for lower
carrier density and field cutoff values (dashed and dotted curves,
respectively; see Appendix A).

fusion coefficient is assumed. The figure shows that only a
small part of this current-density enhancement can be under-
stood from the enhancement of the diffusion coefficient in a
Gaussian DOS. The largest part of the current-density en-
hancement can be understood when considering the enhance-
ment of the mobility due to its carrier density dependence.
As argued above, we must focus on the mobility in the center
of the device, where the carrier concentration is approxi-
mately ~107>. It can be seen from Fig. 1(a) that this is well
outside the Boltzmann regime, leading indeed to an enhance-
ment of the mobility of approximately 1 order of magnitude.

For large voltages, well above V., .over> the carrier density
and field dependence of the mobility is seen to significantly
enhance the current density above the J(V) curve that is ob-
tained for the case of a constant mobility and diffusion coef-
ficient. For o/ (kgT)=6, this enhancement amounts to almost
4 orders of magnitude at V=20 V. For the devices with
o/(kgT)=6 studied in Fig. 6(b), a comparison of the thick
full curve with the dashed curve shows that the neglect of
diffusion would give rise to errors larger than a factor of two
for V<4 V.
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apparent mobility
enhancement n(L)

thickness, L (um)

FIG. 8. Apparent mobility enhancement function 7(L) of the
current density as compared to the current density as expected from
the Mott-Gurney formula at voltage V=V, at which the slope of the
J(V) curves is equal to 2 on a double-logarithmic scale. Results are
given for o/(kgT)=3 to 6 for devices with V;=0 V (full curves)
and for devices with Vi;=1 V (dashed curves). The device param-
eters are identical to those given in the captions of Figs. 6 and 9.

It should be noted that all calculations were performed
using the same value of u,, independent of the ratio o/ (kgT).
In actual materials, w, is expected to decrease with increas-
ing o, as described in detail in Refs. 11 and 12. In real
devices, the overall effect of enhancing o (all other param-
eters remaining the same) is therefore a decrease in the cur-
rent density. As the purpose of showing Figs. 6(a) and 6(b) is
to indicate the current-density enhancement as a result of
disorder, the actual value of u (to which J is simply propor-
tional) is here of no relevance.

For a series of devices with decreasing layer thickness, for
which the carrier densities n; and n, at the electrodes are
kept the same, the average carrier density that is present in
the device due to diffusion increases. As a result, the effect of
the carrier density dependence of the mobility and diffusion
coefficient on the current density at small voltages (the linear
regime) increases with decreasing layer thickness. This can
be seen from Figs. 7(a) and 7(b), which show the current
density versus voltage for 50 and 400 nm devices, respec-
tively, for o/(kgT)=3, 4, 5, and 6 (full curves). Apart from
the layer thickness, all device parameters are equal to those
used in Fig. 6. For comparison, J(V) curves for the constant
mobility case with (dashed) and without (dotted) diffusion
are also given.

Each of the full curves shown in Figs. 7(a) and 7(b) con-
tains a point (V) at which the slope (on a double-log scale)
is equal to 2 (filled circles, in the range V~0.8—-8 V). Con-
ventionally, the voltage range around these points is often
viewed as intermediate, situated in between a low-voltage
range in which the diffusion contribution to the current den-
sity dominates (slope <2), and a high-voltage range in which
the field dependence of the mobility is significant (slope
>2). The current density in this intermediate voltage range is
therefore often (incorrectly) assumed to be given by the drift-
only Mott-Gurney formula [Eq. (1)], which is then used to
obtain the zero-field mobility, w(F=0).

Figure 8 gives the ratio 7 of the apparent mobility, .,
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that would follow from the (incorrect) procedure described
above and the mobility in the Boltzmann limit, w, as a func-
tion of the device thickness and for various values of
o/ (kgT). This ratio is given by

=&EE=M 14
Mo JMG(VZ)’ (14

where J(V,) is the actual current density at V=V,, and
Jumg(V,) is the current density as given by the Mott-Gurney
formula (i.e., neglecting diffusion and with u=pu,). We em-
phasize the log scale used in this figure. In the figure, the full
lines give the results for the symmetric devices discussed in
this section. The figure shows clearly that the application of
the conventional approach described above for determining
the mobility leads to values of the apparent mobility which
are strongly layer thickness dependent. This is a key conclu-
sion of our work.

For very thick devices, diffusion and the carrier density
and field enhancement of the mobility may safely be ne-
glected at the voltage V,. However, with decreasing thick-
ness, the current density becomes significantly larger than
the current density as expected using the Mott-Gurney for-
mula with the mobility as deduced from the current density
at large thicknesses. For example, for 100 nm devices with
o/(kgT)=6, which is realistic for PPV-based polymer
OLEDs at room temperature,12 the enhancement is more than
a factor 100. Even for 10 um devices, it is then still approxi-
mately a factor of 4. The large slope of the curves in the
thickness range that is most realistic for OLEDs, from 50 to
200 nm, implies that large errors will be made when predict-
ing the thickness dependence of J(V) curves when assuming
a constant mobility. Experimentally, this effect was first dem-
onstrated by Blom et al.?® for hole transport in PPV-based
polymers. We note that in that study the effect of diffusion
was neglected, and that the density dependence of the mo-
bility was obtained in a more empirical way, viz., from an
analysis of organic field-effect transistor current-voltage
curves.

The apparent mobility enhancement, 7, does not only de-
pend on =0/ (kgT) but also on the site density, N,. We find
that, to a good approximation, this dependence is described
by the scaling relation #[&,N,,L]=»(6,N,/B* BXL),
where $ is a dimensionless scaling factor. So the mobility
enhancement for a certain device is equal to that for another
device which, e.g., is two times thicker and is based on a
material with a four times smaller site density. The scaling is
exact if the field dependence of the mobility is neglected, as
explained in Appendix B. Experimental studies are needed to
determine effective values of N, for specific systems. For
NRS-PPV and OC,C,,-PPV, effective values of the intersite
distance equal to a=1.6 and 1.8 nm were found in Ref. 12.
That would lead to N,~0.2 X 10?” sites/m?>, approximately a
factor of 2 smaller than as assumed in Fig. 8. The scaling
relationship given above implies that the enhancement at a
thickness L is then equal to the enhancement given in Fig. 8
for the thickness L/ 2. For small-molecule materials, N,
might be associated with the number of molecules per m?,
which can be around 10> m~3 or even higher.
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FIG. 9. J(V) curves for transport in a Gaussian DOS in devices
at T=298 K with Vy;=1 V for o/(kzgT)=3 to 6 (full curves) and
for L=100 nm, N,=4.25X10* m=, n;=05XN, puy=1.0
X 10719 m?/(Vs), and &,=3. The filled circles indicate the points
(at voltage V), at which the slope of the J versus (V-V,;) curves on
a double-logarithmic scale is equal to 2. The long-dashed lines give
the current density in the V=0 limit, neglecting the effect of disor-
der on the mobility and diffusion coefficient [Eq. (15)]. The short-
dashed and dotted curves give the current density for devices with a
constant mobility and with and without diffusion, respectively.

C. Current density in asymmetric devices (V;>0)

Figure 9 shows how Gaussian disorder affects the J(V)
curves for devices with a built-in voltage of 1 V. The Fermi
level of the first electrode coincides with the top of the
Gaussian DOS so that there is no injection barrier at the first
electrode (¢;=0 eV, n;/N,=0.5) and an injection barrier at
the second electrode, ¢,, equal to 1 eV. Otherwise, the device
parameters are the same as used in Fig. 6. The full curves
show the results for devices with Gaussian disorder with
o/ (kgT)=3, 4, 5 and 6. The short-dashed curve shows the
result for devices with a constant mobility and diffusion co-
efficient, and the dotted curve shows the drift-only Mott-
Gurney result [Eq. (1)].

In the absence of diffusion, there is no current for V
<V,;. As aresult of the charge density that is already present
in the device due to diffusion, there is actually a finite current
density for any finite voltage. For sufficiently small voltages,
the J(V) curves are Ohmic with for sufficiently small volt-
ages a current density J, given by Eq. (12). Figure 9 shows
that with increasing disorder, J, increases strongly. This may
be understood as follows. From Egs. (11) and (12), it follows
that for the special case of a constant mobility and diffusion
coefficient, an ideal left contact and a sufficiently large
built-in voltage, J, may be expressed as

\%
JOZZAenzl.LOz, (15)

with A a dimensionless number that depends on n,. For the
devices studied here, with Vi;=1 V, this leads to A=16.8.
Analogous to the case of symmetric devices, studied in
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Sec. III B, this expression for J; is still a very good approxi-
mation for systems with a Gaussian DOS, in view of the
surprisingly small dependence of the shape of the charge
density across the device on the disorder [see Fig. 4(c)].
Equation (15) shows that J;, is thus determined by the carrier
density at the right contact. This density increases strongly
with disorder, e.g., from n,/N,=1.10 X 107" for o/ (kzT)=3
to 1,/ N,=5.47 X 107'° for o/ (kzT)=6. In Fig. 9, the current
density that is predicted from Eq. (15) is given by the dashed
lines. It may be seen that this almost fully explains the huge
increase of J, with increasing o/ (kzT). We note that, in view
of the small densities at the exit contact, only for the case
o/ (kgT)=6 the effect of a small enhancement of the mobility
due to its carrier-concentration dependence should be taken
into account in order to fully explain J,,.

The increase in J, with increasing disorder, via the effect
of n, on J, should be distinguished from the effect of disor-
der on the injection limited current density in a device with a
large injection barrier at the left contact, first noted by
Arkhipov et al.' The authors predicted an enhancement of
the injection current due to disorder, resulting from hopping
from the Fermi level in the electrodes into the tail of the
Gaussian DOS. Whereas the latter effect refers to a hopping
process at the electrode interfaces, determined by the injec-
tion kinetics, the effect discussed here concerns the influence
of the interfacial carrier density on the carrier density
throughout the entire device, affecting the bulk transport.

We have investigated to what extent an analysis of the
J(V) curves using the Mott-Gurney formula, after the appli-
cation of a 1 V built-in voltage correction, would give rise to
an apparent mobility enhancement, as found for symmetric
devices. At voltages well above Vy;, the J(V) curves given in
Figs. 6 and 9 coincide after the application of the built-in
voltage correction. The agreement becomes worse when V,;
is approached, leading to slightly different values of the volt-
ages, V, (full circles in Fig. 9), at which the slopes of the
shifted J(V) curves are equal to two on a double-logarithmic
scale. However, the layer thickness and disorder dependent
apparent mobility enhancement is very close to that found
for symmetric devices, as may be seen from the dashed
curves in Fig. 8. For all devices, symmetric and asymmetric,
the apparent mobility that would (incorrectly) follow from an
analysis of J(V) curves using the Mott-Gurney formula can
thus be strongly layer thickness dependent and can vary over
many orders of magnitude.

IV. SUMMARY, CONCLUSIONS, AND OUTLOOK

In this paper, the effect of Gaussian disorder on the volt-
age dependence of the current density in sandwich-type de-
vices has been studied. The analysis is based on the numeri-
cally exact results for the carrier density and field
dependence of the mobility given by Pasveer et al.,'”> and it
properly includes the carrier density-dependent enhancement
of the diffusion coefficient for a Gaussian DOS.® For sym-
metric and asymmetric devices, we find that conventional

PHYSICAL REVIEW B 78, 085207 (2008)

analyses of the J(V) curves using the Mott-Gurney relation-
ship [Eq. (1)] can, incorrectly, lead to a very strong layer
thickness dependence of the apparent mobility (Fig. 8).
Analyses, e.g., of OLED devices, which neglect the effect of
disorder on the carrier density and field dependence of the
mobility may thus be able to provide a good description of
the experimental data for devices with a given layer thick-
ness (as is frequently reported in the literature) but not si-
multaneously for a range of thicknesses using the same value
of wu. This is a key result of this work.

A detailed analysis has been given of the effect of Gauss-
ian disorder on the carrier density across the device. It has
been shown that the effect is surprisingly small, provided
that a comparison is made between devices with equal carrier
densities at the interfaces (Fig. 4). These results have been
used to quantitatively analyze the disorder dependence of the
current density at small voltages. The current density is then
shown to be proportional to the minimum carrier density in
the device. As shown by Fig. 9, the Ohmic current density at
small voltages in devices with a large (but fixed) built-in
voltage therefore increases significantly with increasing dis-
order.

A second key result of this work is the development of an
efficient drift-diffusion model for charge transport in devices
containing disordered organic semiconductors. The model is
an extension of an approach developed by Bonham and
Jarvis'®!7 to devices with arbitrary disorder, for which a gen-
eralized form of the drift-diffusion equation has been intro-
duced [Eq. (8)]. Although the method has been applied here
for the specific case of transport in materials with a Gaussian
DOS, it can be applied to any organic semiconductor, pro-
vided that the enhancement (g) functions are known. In par-
ticular, the method can be extended straightforwardly to sys-
tems containing trap states. Such an extension may be
envisaged to find practical applications to dye-doped host-
guest systems in, e.g., small-molecule OLEDs and to trap-
controlled hole? and electron®*3? transport through poly-
mers.
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APPENDIX A: MOBILITY AND DIFFUSION COEFFICIENT
ENHANCEMENT FUNCTIONS FOR TRANSPORT IN
A GAUSSIAN DOS

The following expressions are used for the mobility and
diffusion coefficient enhancement functions:!'®!1-?7
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gl(T,c)=exp{%(é2—&)(2c)‘s] for c=0.1, (Al)

g1(T,c)=g,(T,0.1) for

2
g

c>0.1, (A2)

for F=20/(ea), (A3)
&(T,F)=g,[T,20/(ea)] for F>20/(ea), (A4)
and
1 n
Tn)= — .
g5(T.n) ks T d_n’
dEy
B n
- (E—EF(n,T)>
= TP
f N(E) A dE.
o [ (E—EF(n,T)>]2
l+exp| ————
(AS)

In these expressions c=n/N, is the carrier concentration, a
=N, is the average intersite distance, =07/ (ksT) is the
dimensionless disorder parameter, J is given by

21n(a2 — &) —1In(In 4)
P .

(A6)

and Ep(c,T) is the Fermi energy. In Fig. 1, the dependence of
the g, g, and gz functions on the disorder parameter ¢ has
been shown.

We have introduced a cutoff carrier concentration, ¢t
=0.1, above which g, is constant, because close to that car-
rier concentration the compact expression for the mobility
enhancement [Eq. (Al)] starts to deviate strongly from the
numerically exact master equation result given in Ref. 12.
Instead of a further increase in g; with increasing c, as de-
scribed by Eq. (A1), the mobility increase slows down, or
even starts to decrease close to ¢=0.1, depending on the
theoretical approach used.!’'>33 More theoretical work will
be needed to improve the description of the mobility at high
carrier densities. In practice, this issue plays only a role for
OLEDs with an extremely well injecting electrode, and even
in such cases, the thickness of the zone near the electrode in
which the carrier concentration is larger than 0.1 is extremely
thin (see Fig. 3). Therefore, and due to the high conductivity
in this zone, the uncertainty concerning the mobility above
¢=0.1 is expected to be of little influence on the accuracy of
calculated J(V) curves of realistic OLEDs. In Sec. III, this is
confirmed by making a comparison with the result of a
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calculation carried out for a much smaller value of the cutoff
concentration, ¢q=0.01 (Fig. 7).

For similar reasons, we have introduced a cutoff field
F ott=20/ (ea) above which g, is constant. Around the cut-
off field taken, the enhancement of the mobility with increas-
ing field starts to level off, and at higher fields it even starts
to decrease.'? This happens when the field is so large that the
energies of the down-stream nearest-neighbor sites are dis-
placed by the field over two or three times the width of the
Gaussian DOS. In such a case, the mobility is not anymore
thermally activated and a further increase in the field does
not lead to an increase of the current density. The mobility
then shows a weak (linear) decrease with increasing field. In
principle, it would be possible to adapt the function g, by
taking the more complex field dependence of the mobility,
obtained in Ref. 12, into account. However, in practice, the
maximum voltages typically applied across OLEDs usually
do not give rise to fields close to the cutoff field, as shown in
more detail in Sec. III. Only in the case of well injecting
electrodes, high fields can occur in very thin interface re-
gions as a result of the interaction between the space charge
in the device and its image charge in the electrode. It is
presently not yet clear whether the continuum approach that
is followed in this paper provides a fully adequate treatment
of transport through such space-charge layers, in which there
is a very strong field and carrier density gradient. Therefore,
the use of a more complex form of g, is presently not justi-
fied.

The sensitivity to the cutoff in the parametrization used
for the enhancement functions g; and g, has been investi-
gated for the symmetric devices studied in Sec. III B for
which the effect on the J(V) curves is expected to be largest,
viz., those with L=50 nm and o/ (kgT)=6. The inset in Fig.
7(a) shows that the effect of taking cu,;=0.01, instead of
0.1 (dashed curve), or of taking Fyi5=1.5 X o/ (ea), instead
of 20/ (ea) (dotted curve), leads only for V>7 V to a very
small although noticeable deviation. This confirms the appro-
priateness of the parametrization scheme used.

The enhancement g; of the mobility sets in at a carrier
concentration that decreases with increasing disorder param-
eter o/ (kgT). The boundary concentration, ¢*, between the
low-concentration Boltzmann regime, in which the mobility
is constant, and the high-concentration regime in which it is
enhanced may be defined as the concentration at which g, is
equal to 2. In Appendix A of Ref. 11 it was proven that ¢* is
equal to the carrier concentration for which the Fermi energy
is equal to the thermal equilibrium energy E,=-02/(kgT),
leading to

1 1

c*=c(Ep=Ey) = —exp(— —62>. (A7)

2 2
Analogously, one may define another characteristic carrier
concentration, ¢**, as the concentration at which the en-
hancement g3 of the diffusion coefficient is equal to 2. We
have found that ¢™ is equal to the carrier concentration for
which the Fermi energy is equal to half the thermal equilib-
rium energy, i.e., ¢"*=c(Er=E,/2). We are not aware of a
published proof of this result. We use Eq. (A5) and apply the
transformation U=E/ o+ /2,
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The enumerator of the last expression may be written as a sum of two equal contributions that result from the two terms in
between the square brackets, and each of these contributions is equal to the denominator. That proofs that g;(Ep=FE,/2)=2. As

a result,

1
¢ =c(Ep=Ey2) = 8=exp<

\NoOTT
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( Ez)

| ) w €Xp —?
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cosh(—E)
2

dE. (A9)

It follows that ¢** is much larger than ¢*, as can also be seen from Figs. 1(a) and 1(c). From the approximate dependence of
g, on the Fermi energy, given by Eq. (28) in Ref. 11, it follows that g;(c¢*)=~1/c¢**. The degree to which this interesting
relationship is valid is apparent from the position of the open circles in Fig. 1(a) with respect to the full curves.

APPENDIX B: DERIVATION OF THE DIMENSIONLESS
TRANSPORT EQUATION AND OF THE EXPRESSIONS
FOR THE DIMENSIONLESS CURRENT DENSITY,
VOLTAGE, AND POSITION

Following Bonham and Jarvis,'¢ the drift-diffusion equa-
tion [Eq. (6)] may be written in dimensionless form [Eq. (8)]
by first defining a dimensionless carrier density, field, applied
voltage, position, and current density,

e*L?
= , B1
Y skBTn (B1)
L
= =F (B2)
kT
e
=—V, B3
u i (B3)
X
=—, B4
S=7 (B4)
2L3
is(i) =7 (B5)
kBT SI.LO

Equation (6) can then be rewritten in a compact form as

: dy

i=8182YE 818285 > (B6)
S

and the Poisson equation [Eq. (7)] is then given by dE/ds

=1v. Equation (B6) can then be transformed to

. dy
l=81827E—8182837d_E~ (B7)

Bonham and Jarvis'® showed that it is useful to make use of
a second transformation to scaled dimensionless field and
density parameters f and y, defined as

E
f= Il (B8)
and
Y
Y= (B9)

Substitution of these expressions in Eq. (B7) leads then to
the dimensionless transport equation [Eq. (8)].

The current density, voltage, and carrier density across the
device can in the following way be obtained from the solu-
tions y(f) of Eq. (8). From Egs. (B8) and (B9) and the di-
mensionless Poisson equation dE/ds=1, it follows that i*
=[1/y(f)]dE/ds=[1/y(f)]i"3df/ds SO that i3
=[1/y(f)]df/ds. Integration over s then yields
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([ 5)
a f y(f) /

as given already in Ref. 16. The dimensionless electrochemi-
cal potential difference (voltage, ) may be written as a sum
of the dimensionless built-in voltage, vy;, plus the electro-
static potential difference, given by [E-ds. Using Egs. (B8)
and (B9) and the Poisson equation, it follows then straight-
forwardly that u is given by

(B10)

12
Ldf ,

30 (B11)

’/‘:Ubi"‘

where the dimensionless built-in voltage is by definition
equal to

$Pr— P

vbizﬁ~

(B12)
We note that Eq. (B11) is equivalent to Eq. (17) in Ref. 16
for the special case of a constant mobility, but that Eq. (B11)
is more general. Using the Poisson equation and Egs. (B8)
and (B9) to write ds=dE/y=i"df/(i*?y), integration yields
the position s at field f(s),

f 1
S(f)=J ———df’. (B13)

f i1/3y(f/)

Equations (B10), (B11), and (B13) are valid for any system,
including systems with a carrier density and field-dependent
mobility and diffusion coefficient, as their derivation does
not involve the drift-diffusion equation.

As explained in Sec. II B, for obtaining type-II solutions it
is often convenient to use the inflection point in the y(f)
curve as a starting point for the determination of the full y(f)
function. From Eq. (8), it follows that for a given chosen
value of f;, the value of y; can be obtained from the equation

3 dn[gy(F)]| dF ,
217 g(f)y; + T . Tt
dl
+ (1 + M yi—&1(y)g(F)
y .
« dln[g3(y)] fiy?) « ( fvi _ 1 )
dy » 200 g1)ga(f)es ()
=0, (B14)
where [from Egs. (B2), (B5), and (B8)] dF/df

=[(eJ)/ (kgTeuy)]"3. Furthermore, it has been argued in Sec.
II B that type-II solutions are more conveniently obtained
from functions f(y) than from functions y(f). The current
density can then be obtained by rewriting Eq. (B10) using
Eq. (8),
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o) = )
i= —df| = ——dy
5 Y\ 5 Y\ dy
(f” 818283 )3
= E——— dy .
v 8185f(y) =1

Expressions for the voltage and position, obtained in a fully
analogous way from Egs. (B11) and (B13), are

(B15)

_ [ 808l f0)]es(fG)
”"”“L e ™ B
and
sl )]es() ,
s(”‘fy T - 610 el 1 B

In Sec. III B, a scaling relationship has been given for the
apparent mobility enhancement function, 7, in a device with
a Gaussian DOS of the form 7{&,N,,L]=5(6,N,/B* B
X L). Here, B is a dimensionless scaling factor. This scaling
can be understood as follows. The mobility and diffusion
coefficient enhancement functions g; and g5 are a function of
the local carrier concentration, c. From Egs. (B1) and (B9),
cxy/(N,L?). Therefore, a change in the system under which
the product N,L? remains constant does not change the solu-
tion of the dimensionless transport equation, Eq. (8). It can
be seen from Eq. (B1) that also the boundary conditions if
expressed in terms of n,/nq and n,/ny will then not change.
The two situations are therefore fully equivalent with the
same dimensionless currents i, and [using Eq. (B5)] with real
current densities J that differ at any voltage precisely by a
factor L3.

APPENDIX C: ITERATIVE METHODS FOR SOLVING
THE DRIFT-DIFFUSION EQUATION

In this Appendix, two alternative iterative methods are
described for obtaining solutions of the drift-diffusion equa-
tion: (i) method A, for fixed values of f;, or f;, and (ii)
method B, for fixed values of J.

Method A: This method involves the following steps:

Step 1. Choose for a given value of f;, or f; a trial cur-
rent density, J;.

Step 2. Calculate a new current density, J,, using the
method outlined in Sec. II.

Step 3. Use this new current density as a second trial
current density.

Step 4. Repeat this until convergence has been reached.
The approach makes use of the fact that for a fixed f;, or f;
a large positive (negative) deviation of the “trial” value of
the current density, J;, from the actual solution leads to a
smaller positive (negative) deviation of the resulting calcu-
lated current density, J,. This is analyzed below in more
detail.

For the case of a constant mobility, method A leads to fast
convergence when the starting value of J, is sufficiently
close to the solution J. However, that is not always true for
the case of a Gaussian DOS. In such a case, method B,
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FIG. 10. Calculated current density J, as a function of the as-
sumed current density J; for various values of the dimensionless
field at the inflection point, f;, for a device with o/ (kzT)=4 and
Vii=1, and further device parameters as given in the text. The full
and dashed curves follow from calculations with and without the
field enhancement of the mobility, respectively. For any chosen
value of J;, Eq. (8) is solved by varying f; until J,=J,.

described below, must be used. As an example, the situation
for a device at 7=298 K, with L=100 nm, pgy=1.0
X 10710 m?/(Vs), &,=3, N,=425%10% m™, ¢,=0 eV,
¢,=1 eV, and o/(kzT)=4, is analyzed. For all voltages, the
solutions are of type II. The thin full curves in Fig. 10 show
how for various values of the field f; at the inflection point
the calculated current density, J,, depends on the value of a
chosen trial value of the current density, J;. It follows from
the figure that for small values of f;, e.g., f;=3, method A
will provide fast convergence, as the slope of the thin f;=3
line is smaller than 1 near the point where J,=J, (thick line).
In contrast, for larger values of f;, convergence is not always
reached. For f;=5, e.g., there are two solutions in the frame
of the figure, of which the solution at the highest current
density (~10° A m™2) cannot be found using method A.
This is due to the fact that the slope of the thin f;=5 line is
larger than 1 near the point where J,=J,.

Method B: This method involves the following steps:

Step 1. Select the value of the current density J for which
a solution is to be found.

Step 2. Calculate the boundary conditions y; and y, using
Egs. (5), (B1), (B5), and (B9).

Step 3. Calculate the current density J' at two trial values
for f at the minimum or inflection point, f7,. First, the cor-
responding value of y/,,, is calculated by numerically solving
Eq. (8), with df/dy=0 in the case of a type-I solution, or Eq.
(B14) in the case of a type-II solution. Then, the functions
f+(y) and f_(y) are calculated in the intervals [y,,ygar] and
[Vstart> Y1), TESpectively, by numerical integration using Eq.
(8). Finally, these f functions are used to calculate J' from
Egs. (B5) and (B15).

Step 4. Determine from the resulting two current densities
J' a first prediction of f, by interpolation or extrapolation.
Use is made of the fact that, for a given value of J, J' is a
monotonic and increasing function of f,.
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Step 5. Calculate the current density for this predicted
value of fy, and use that (and all or part of the previously
calculated current densities) to obtain a next prediction.

Step 6. Repeat step 5 until a sufficiently accurate result is

obtained.
The resulting self-consistent f(y) function can be used to
calculate from Egs. (B3), (B12), and (B16) the voltage V and
(if of interest) to calculate using Egs. (B1), (B9), and (B17)
the carrier density across the device. As emphasized in Ap-
pendix D, special care must be taken when V is very close to
the transition voltage V¥, as the minimum or inflection point
reside then outside the device.

We have used method B for all our calculations. The fail-
ure (under some conditions) of the slightly more simple
method A is due to the field dependence of the mobility in a
Gaussian DOS. That may be seen from the fact that the full
curves in Fig. 10 have for certain current density ranges a
slope larger than 1, whereas the dashed curves (which are
obtained when setting g, equal to 1) all have a slope smaller
than 1 at the point of crossing the thick diagonal line.

APPENDIX D: THE TRANSITION FROM TYPE-I TO
TYPE-II SOLUTIONS

In systems with a finite value of the built-in voltage, a
transition from a type-I to a type-II solution occurs when the
voltage exceeds a certain value. The following method, illus-
trated here for the case of a constant mobility, can be used to
determine the transition voltage, V*. First, the curve Y(f) that
separates the two parts of the diagram shown in Fig. 2 is
calculated. Y(f) can be obtained numerically by integration
using Eq. (8) (with all g functions equal to 1), starting at a
point f.«>1, and using that then Y(fyu)=1/fque As Y
varies monotonically with f, it is also possible to define the
inverse function, F(y). The transition current density, i*, is
the solution of the integral equation

. 1o (i%) 1 3
o i) o
with
fl(i*)=F( (i*?%> and fz(i*)=F( (l_j;iB). (D2)

Here, V* can then be calculated using Egs. (B3) and (B11).
Figure 11 shows the dependence of V* on the dimensionless
carrier densities at the interfaces, y; and 7,, for a device with
the same thickness (L=100 nm) and relative permittivity
(e,=3) as taken in Fig. 3, also at 7=298 K. The two filled
circles correspond to the boundary conditions for which n(x)
curves are given in Figs. 3(a) and 3(b). For symmetric de-
vices (y;=7,), there is at any voltage a minimum in the
carrier density so that V* is infinite. When v, is smaller than
v,, but still sufficiently large, V* is finite (upper part of the
triangle). When 1y, is sufficiently small and not too close to
v, V=0 (part of the triangle at and below the V*=0 con-
tour).

No distinct physical effect is expected at the type-I to
type-II transition. This may, e.g., be seen from Fig. 3. In that
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FIG. 11. The transition voltage V* between solution types I and
IT as a function of the dimensionless carrier density at the two
electrodes, y; and 7,, for the devices with L=100 nm and &,=3 at
T=298 K. The two filled circles indicate the boundary conditions
used in Figs. 4(a) and 4(b).

figure, the thick dashed curve connects the end points (y,,f>)
of the density versus field segments which are a solution of
Eq. (8) for the system discussed in Fig. 4(b). The curve
shows no discontinuity at the boundary between the type-I

PHYSICAL REVIEW B 78, 085207 (2008)

and type-II regions. However, close inspection of Fig. 3
shows that the transition is mathematically slightly more
complicated than one might have anticipated. The figure
shows that at low voltages, the f;, value of the solutions
v(f) is smaller than f, so that the carrier density minimum
falls inside the device. In contrast, very close to the transition
voltage, V¥, at which the y(f) solution switches from the
upper to the lower part of the diagram, the f,;, value of the
solutions y(f) is larger than f, so that the minimum of the
carrier density falls outside the device. This follows from the
fact that f, has a finite value at the transition (f,=6.85 for the
example shown), whereas fy;, approaches infinity when V
approaches V*. At V*, the solution y(f) coincides (in the in-
terval [f,,f,] for which it is defined) with the curve that
separates the two parts of the diagram shown in Fig. 3. In a
certain voltage interval just below V*, the proper solution
thus does not show a carrier density minimum within the
device, but outside the device. Similarly, in a certain voltage
interval just above V¥, the proper solution does not show an
inflection point within the device, but outside the device. As
a result of the strong change of the slope of the y(f) curves
close to the second electrode, the widths of these voltage
intervals at either side of V* is in many cases extremely small
and of little practical importance. For the example discussed
above, their widths are less than 0.1 V.
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