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Charge and spin orderings are studied on the simplest one-dimensional �1D� and the two-dimensional �2D�
square lattices within the generalized Falicov-Kimball model with Hund coupling between localized and
itinerant electrons. Using the restricted phase diagram method �RPDM�, a number of simple rules of formation
of various sorts of ground-state phases have been detected. In particular, relationships between density of
current carriers �electrons or holes� and type of charge and magnetic arrangement have been determined. In two
dimensions in the mixed-valence regime, only axial stripes �vertical or horizontal� have been found for inter-
mediate values of the coupling constants. They are composed of ferromagnetic or antiferromagnetic chains
interchanged with nonmagnetic ones. For band fillings close to the half filling, stripe phases oriented along one
of the main diagonal direction are formed. The results suggest the possibility of tuning modulations of charge
and magnetic superstructures with a change in doping.
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I. INTRODUCTION

Charge and magnetic superstructures observed in many
transition-metal oxides, such as, e.g., in R2−xSrxNiO4, where
R=La,Nd,1 have stimulated an intensive search for an expla-
nation of the origins of the phenomenon and its impact on
the physical properties of the systems. The subject has been
analyzed primarily in the framework of various versions of
the Hubbard or t-J model.2–9

An alternative approach based on the spinless Falicov-
Kimball model �FKM� was proposed in Ref. 10. Within the
space restricted to a large number of the simplest trial con-
figurations, the ground-state diagrams have been found ex-
actly showing how the chessboard phase evolves to phase
separation with a change in doping. It appeared that quite
large areas of the diagrams are occupied by stripe phases
oriented either along one of the main crystallographic axes
�axial stripes� or along one of the main diagonals �diagonal
stripes�. These findings were confirmed by rigorous
studies.11

The spinless FKM is simple enough to obtain controllable
results for all values of the coupling constant. However, the
model can deal only with charge-ordered phases and it ne-
glects magnetic properties. To overcome this shortcoming, a
generalized version of the spin-one-half FKM with a spin-
dependent local term representing Hund’s first rule was pro-
posed in Ref. 12. An important role of the Hund coupling in
explaining the magnetic properties of correlated electron sys-
tems was raised, e.g., in Refs. 13–15 and specifically in ap-
plying to the FKM in Ref. 16. In fact, the model we deal
with is very similar to the ferromagnetic Kondo lattice
model, which was also considered in the context of charge
and magnetic superstructures in correlated electron
systems.14,17

Here we assume that the simplest Ising-type anisotropy of
the Hund coupling is what enables us to examine the model
rigorously. The anisotropy is relevant in systems where spin-
flip processes have a minor meaning and stable magnetically
ordered phases occur �for more arguments, see Ref. 12�.

The extended model is still oversimplified to describe all
details of real materials. However, since it comprises only

basic interactions, which are present in all materials, where
both localized and itinerant electrons are relevant, we expect
that its characteristics emerging from our calculations are
quite universal. Our expectations are justified by the fact that
phases similar to those we detected were also found by other
authors who studied different models and used quite different
methods, as it was reported, e.g., in Ref. 6 for a version of
the Hubbard model and in Refs. 14 and 17 for the ferromag-
netic Kondo �or Hund� lattice model.

In Ref. 12 only some basic properties of the model in two
dimensions were examined. Farkašovký and Cencariková18

studied the model by means of small-cluster exact-
diagonalization calculations and an efficient numerical
method for large clusters containing up to 64 lattice sites.
They constructed phase diagrams, where they found a num-
ber of various types of charge and spin distributions and
observed a gradual reduction in the stability region of the
nonpolarized �NP� phase in favor of the fully polarized �FP�
and partially polarized �PP� phases with an increase in the
Hund coupling and with an increase in the number of local-
ized particles. The studies are interesting, as they enabled
examination of the model in a complementary way. However
the obtained results are too general for making predictions on
details of charge and spin ordering for a given set of model
parameters. Moreover, there are some strange irregularities
in their diagrams. For example, for small Hund couplings or
for small densities of both localized and itinerant particles,
one can find the FP phase at some isolated positions, sur-
rounded by NP phases. In addition a lack of PP phases in a
wide region of the diagram close to the chessboard AF phase,
especially for small J, seems to be an artifact resultant of
taking into consideration only clusters with even numbers of
sites.

A need for a clarification of this picture pushes us to ex-
amine the model more carefully. In our previous work we
considered only the two-dimensional �2D� case and we used
a too small configurational space to detect many regularities.
We noticed merely a few general tendencies for the forma-
tion of charge- and/or spin-ordered phases.12 Here we expand
upon our preceding work to both one-dimensional �1D� and
2D systems and provide a thorough analysis of the ground-
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state phase diagrams using a much larger set of admissible
configurations. It allows us to notice some simple rules of
formation of periodic phases �as well as their mixtures� not
noticed in previous studies.

The model Hamiltonian is

H = t�
�i,j�

�
�=↑,↓

di,�
† dj,� + U�

i
�

�,�=↑,↓
ni,�

d ni,�
f

− J�
i

�ni,↑
d − ni,↓

d ��ni,↑
f −i,↓

f � , �1�

where �i , j� denotes the nearest-neighbor lattice sites i and j,
� and � are spin indices, di,� �di,�

† � is an annihilation �cre-
ation� operator, and ni,�

d �ni,�
f � is an occupation number of

itinerant �localized� electrons. The on-site interaction be-
tween localized and itinerant electrons is represented by two
coupling constants: U, which is spin-independent Coulomb
type, and J, which is spin dependent and reflects the Hund’s
rule force. The hopping amplitude t is set equal to 1, so we
measure all energies in units of t.

Double occupancy of the localized electrons is forbidden,
implying that the on-site Coulomb repulsion Uf f between
two f electrons is infinite. Consequently, at a given site the
f-electron occupancy is assumed to be nf =nf ,↑+nf ,↓�1 and
the d-electron occupancy to be nd=nd,↑+nd,↓�2. Thus there
are three states per site allowed for the f electrons �nf =0;
nf ,↑=1 and nf ,↓=0; nf ,↑=0 and nf ,↓=1� and four states per site
allowed for the d electrons �nd=0; nd,↑=1 and nd,↓=0; nd,↑
=0 and nd,↓=1; nd=2�.

All single-ion interactions included in Eq. �1� preserve
states of localized electrons; i.e., the itinerant electrons trav-
eling through the lattice change neither the occupation num-
bers nor the spins of the localized ones. Then �H , f i�

+ f i��=0
for all i and �, so the local occupation number is conserved.

The localized electrons play the role of an external
charge- and spin-dependent potential for the itinerant elec-
trons. This external potential is “adjusted” by annealing, so
the total energy of the system attains its minimum. In other
words, there is a feedback between the subsystems of local-
ized and itinerant electrons. This is the feedback that is re-
sponsible for the long-period-ordered arrangements of the
localized electrons and consequently for the formation of
various charge and/or spin distributions at low temperatures.

In Sec. II we briefly describe our calculation scheme.
Then, in Sec. III we present two kinds of phase diagrams
referring to pure magnets �Sec. III A� and diluted magnets
�Sec. III B�. Section IV contains the summary and discus-
sion.

II. RESTRICTED PHASE DIAGRAM METHOD

We used the restricted phase diagram method �RPDM�
first in our studies of the spinless 1D FKM in Ref. 19 and
then also in Refs. 10, 12, and 20. Within the method, calcu-
lations are performed for infinite systems but with a restric-
tion to periodic phases, with periods not exceeding a certain
value, and their mixtures. Then, we can investigate both pe-
riodic phases and phase separation and segregation.

We emphasize that the RPDM is by no means a mean-
field approach and the calculations refer to infinite systems,

not to finite clusters. So we do not need to deal with neither
boundary nor finite-size effects. The energies �per site� of all
phases we consider here are evaluated with a very high and
controllable accuracy. For small period phases with no more
than four lattice sites in a unit cell, energy bands are given by
analytical expressions,21 and the precision is limited merely
by the selection of a grid in the k space. For large period
phases some very small errors, resulting from numerical di-
agonalization of matrices of size of the number of lattice
sites in a unit cell, may additionally enter. The details of the
current work are as follows.

We performed calculations in one dimension and two di-
mensions �the square lattice� for U=1, 2, 4, 6, and 8 and J
changing from 0.2U up to 0.75U and within the configura-
tional space restricted to all periodic phases with unit cells
containing up to 12 lattice sites for pure magnets and up to 8
for diluted magnets. To assure the stability of the phases
appearing on the diagrams, we constructed the grand canoni-
cal phase diagrams first �see Refs. 19 and 20 for a more
detailed discussion of the stability issue� on the plane of the
chemical potentials. Then we transformed the diagrams into
the canonical phase diagrams on the plane of the densities of
localized �� f� and itinerant ��d� electrons. By applying this
procedure, one automatically includes all mixtures of the
phases. The resulting phase diagrams are quite sensitive to
the values of the interaction parameters U and J. In general,
they have a rich structure composed of various families of
phases.

In order to calculate the Gibbs thermodynamic potential,
we first determined the electronic band structure for the itin-
erant electrons for each candidate periodic phase. We em-
ployed a sufficiently tiny grid in the Brillouin zone �up to
Nc=100 momentum points in one dimension and up to Nc
=80�80 in two dimensions for each band structure�. This
required us to diagonalize up to 12�12 matrices in the pure
magnet case and up to 8�8 matrices in the diluted magnet
case at each discrete momentum point in the Brillouin zone.
This results in at most 12 and 8 different energy bands in the
pure and diluted magnet cases, respectively. Hence, our cal-
culations can be viewed as finite size but very large cluster
calculations with cluster sizes ranging in one dimension from
N=100 up to N=100�12 in the pure magnet case and from
N=100 up to N=100�8 in the diluted magnet case. On the
other hand, in two dimensions the cluster sizes range from
N=80�80 up to N=80�80�12 in the pure magnet case
and from N=80�80 up to N=80�80�8 in the diluted
magnet case, depending on the number of sites in the unit
cell. �N=NcC, where Nc is equal to the number of unit cells
and C denotes the number of lattice sites in a unit cell for a
given configuration of localized electrons.�

We performed all the calculations separately for spin-up
and -down itinerant electrons. The eigenvalues of the band
structure are summed up to determine the ground-state en-
ergy for each density of the electrons. Then, the Gibbs ther-
modynamical potential for a given configuration �wf	 is cal-
culated for all possible values of the chemical potentials �d
and � f of the conduction and localized electrons, respec-
tively, through the formula
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G�wf	
=

1

N
�

�↑,�↓	�d

��↑��wf	� + �↓��wf	�� − �d��d↑ + �d↓�

− � f�� f↑ + � f↓� , �2�

where the symbol �↑��wf	� ��↓��wf	�� denotes the energy ei-
genvalues of a band structure attributed to spin-up �-down�
itinerant electrons for a given configuration �wf	 of localized
electrons.

It appears that only a small part of the initial candidate
phases can be found in the ground-state phase diagram. The
actual number depends on U, J, and C but the rate drops
drastically with an increase in C. We find that for the values
of the parameters we considered, it is less than 10% in the
1D case and less than 2% in the 2D case.

III. PHASE DIAGRAMS

In this paper we present two types of the ground-state
phase diagrams. The first type �pure magnets� demonstrates
only magnetic order, as it corresponds to the case � f =1 �each
site is occupied by exactly one f electron� on the plane
�J ,�d�. The second type �diluted magnets� demonstrates both
a magnetic and a charge order on the plane ��d ,� f� for fixed
values of J and U. The diagrams show the ground-state con-
figurations of the f electrons in both one dimension and two
dimensions for representative values of the model param-
eters. For a pure magnet we selected U=4, 0.2�J�3.0 in
one dimension and U=6, 0.2�J�3.0 in two dimensions.
For the diluted magnet U=2, J=0.5 in one dimension and
U=4, J=0.5 in two dimensions.

A. Pure magnets

In the pure magnetic diagrams the ferromagnetic �F�
phase is stable for �d close to 0 or 2 and the region of the
stability increases with J, whereas along the line �d=1 �the
half filling� the simplest AF phase is stable. Now, the most
interesting story concerns a way of transforming between the
two extreme phases with a change in �d.

Obviously, the process depends on J, but it is the density
�d that plays a crucial role in determining a spin order.
Namely, if �d= p /q, where p and q are relative prime num-
bers, then the period r of a stable phase in one dimension is
equal to q or a multiple of q �i.e., r=nq, n=1,2 , . . .�. Conse-
quently, if r=q and q is an odd number, then the system
cannot be antiferromagnetic �AF� but ferrimagnetic �FI�. In-
deed, we observe both FI and AF phases distributed over the
whole region between the F and the simplest AF phases. This
is in contrast to the results reported in Ref. 18, where many
FI phases �named as partially polarized or PP� were missed
in one dimension because only systems containing even
numbers of lattice sites were taken into account. On the other
hand, our AF phases are consistent with NP phases reported
in Ref. 18.

It appears that not only the period is determined by �d. We
found a remarkable feature concerning the number Lf of
changes in the f-electron spin orientation �from up to down
or from down to up� calculated per site. If in the diagram
displayed in Fig. 1 we move up along a vertical line �i.e.,

when J is fixed�, then Lf of subsequent phases increases with
the density �d. What is more, for J�1 in almost all cases
Lf =�d. Then the number of itinerant electrons is equal to the
number of pairs of localized electrons with magnetic mo-
ments oriented oppositely.

Physically this rule means that each moving electron is
somehow associated with an exactly one abrupt change in
the potential resulting from the localized electrons. In other
words, the minimum energy is attained when the number of
moving electrons and the number of changes in the potential
acting on them are equal to each other. The rule can be
noticed by direct inspection, e.g., looking along the dashed
line in Fig. 1 �for J=0.4�. In this case the unit cells of phases
located between F and the simplest AF phases are displayed
in Table I.

Obviously, for small enough �d, where the F phase is
stable, one has Lf =0 and for �d=1, where the simplest AF
phase is stable, one has Lf =1. So it is clear that in one
dimension the density of itinerant electrons �d not only de-
termines the periodicity �within an accuracy to a small natu-
ral number multiplier� of the arrangement of the f electrons
but also strongly influences the relative distribution of spins
up and down inside unit cells.

In two dimensions the process of transformation from F to
AF with an increase in �d can be divided into two stages �see
Fig. 2�. First, anisotropic quasi-one-dimensional structures
composed of parallel ferromagnetic chains oriented along
one of the main lattice axis are formed. We call the area the
region of axial stripes with ferromagnetic chains �see Figs. 2
and 3�. For J
3.05 this region ends up with the simplest
phase belonging to this class, which is composed of ferro-
magnetic chains with alternating spin directions. In our con-
siderations this is the very special phase, as it can be also
viewed as composed of the simplest antiferromagnetic chains
along the perpendicular axis. This is why we call the phase
AF-f/a, to underline that it is the antiferromagnetic phase
composed of ferro-/antiferromagnetic chains �see Figs. 2 and
3�.

Above the stability region of AF-f/a, the majority of
phases �see Fig. 3� are composed of either only the simplest
antiferromagnetic chains �for J
1.2� or with an admixture
of ferromagnetic chains �for J�1.8� and in the intermediate
interval of 1.2
J
1.8 also of ferrimagnetic chains. Some
phases found in this region can be viewed as composed of
diagonal ferromagnetic chains oriented along the diagonal
�1,1� direction. The final stage of the transformation of the
phases with an increase in �d is the simplest AF phase with
antiferromagnetic chains located along the both main lattice
axes.

It appears that the transformation from F to the simplest
AF phase is accompanied with an increase in the rate of
localization of itinerant electrons, as with an increase in �d
the mobility of the d electrons becomes more and more re-
stricted when the half filling is approached. For small �d,
where the F phase is stable, the f electrons act on the d
electrons as a uniform site-independent external field that
does not disturb their movements. Then, in the region of
axial stripes with ferromagnetic chains, the d electrons can
move easily but only along these chains, as along the per-
pendicular direction an external potential �coming from the f
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electrons� alternates by taking the two different values
U+J and U−J, which causes scattering of the d electrons.

The AF-f/a phase is an optimal one with respect to the
transport of the d electrons through the lattice but only along
one direction. Maybe it is related to the optimum doping
reported in some materials, when there is a balance between
a density of current carriers and their mobility over the lat-
tice. Obviously, one should be cautious when trying to relate
the results obtained for such a simple model with situations
observed in real materials. However it is interesting that the
optimum doping observed here is attained for �d close to 0.5,
which corresponds to the special case of quarter filling.

A further increase in �d causes a complete vanishing of
ferromagnetic chains for small values of J �J
1.2� and a
gradual decrease in their number for not too small J. It
means that the d electrons meet more and more potential
barriers in any direction, which makes them more and more
localized. Obviously, the rate of localization becomes higher
when J is large.

Here we point out another interesting feature of the
model. Namely, the critical value �d

� below which phases
containing antiferromagnetic chains are stable increases with
J, so the range of densities �d where the d electrons become
more localized shrinks, but at the same time the rate of the
localization becomes more pronounced. It means that for
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FIG. 1. �Color online� The one-dimensional pure magnetic phase diagram restricted to all periodic phases with � f =1 and with the
maximum period C�12. The straight-line segments mark stability intervals of the phases. Unit cells of the phases are expressed by
sequences of the plus and minus signs placed close to �in almost all cases just above� the corresponding line segments. The signs “+” and
“−” denote up- and down-spins of the f electrons, respectively. The extended area below the curve line at the bottom of the diagram shows
a stability region of the ferromagnetic phase. Unit cells of phases located along the dashed vertical line for J=0.4 are displayed in Table I.

TABLE I. Unit cells of phases located along the dashed line J
=0.4 in Fig. 1 and electron densities �d�=Lf� corresponding to them.

Unit cell �d

++ +−−− 1/3

++ +−−+ + +−−− 4/11

++ +−− 2/5

++ +−−+ +−− 4/9

++−− 1/2

++−+ +−−+ +−− 6/11

++−+ +−− 4/7

++−+ +−−+−− 3/5

++− 2/3

++−+ +−+−−+− 8/11

++−+−−+− 3/4

++−+− 4/5

++−+−+−−+−+− 5/6

++−+−+− 6/7

++−+−+−+− 8/9

++−+−+−+−+− 10/11

+− 1
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large J the d electrons pass from a delocalized to a localized
regime within a relatively small interval of their densities.
Moreover the reported results suggest that in the limit of
infinite J, the interval between the conducting F and the in-
sulating AF phases tends to zero �close to the line �d=1�.
This may be regarded as an analogy to the famous Nagaoka
problem studied within the Hubbard model.

B. Diluted magnets

Let us now analyze a phase diagram corresponding to a
diluted magnet, where both spin and charge orderings are
relevant. The diagram is displayed on the �� f ,�d� plane for
U=2 and J=0.5 in the 1D case �see Fig. 4� and for U=4 and
J=0.5 in the 2D case �see Fig. 5�. The maximum period C of
allowed phases in the two cases is equal to 8. The values of
the parameters U and J were chosen to be characteristic in-
termediate value representatives.

We found that in both the 1D and the 2D diagrams the
majority of periodic phases are located along one of the fol-
lowing three lines: � f =1−�d, � f =2−�d, or the diagonal � f
=1−�d /2. The first two mentioned lines correspond to
mixed-valence regimes.

Both antiferro- and ferrimagnetic arrangements of the f
electrons are found in the whole range of � f and �d in one
dimension and two dimensions. In one dimension the unit
cells of phases located along the line � f =1−�d are composed

of blocks of spins up �+� and down �−�, whereas the pairs of
opposite spins �+−� are stable along the � f =2−�d line. The
unit cells of phases located along the diagonal � f =1−�d /2
have the most homogeneous types of structures. A typical
example of the transformation can be noticed, e.g., for � f
=2 /3, where the unit cell �oo+ +−−	 transforms first to �o
+ +o−−	 and then to �o+−	 for �d=1 /3, 2/3, and 4/3, re-
spectively.

In two dimensions �see Figs. 5 and 6�, phases located
along the � f =1−�d line are composed of ferromagnetic �or
diluted ferromagnetic� and nonmagnetic chains oriented
along one of the lattice axis �e.g., D1 in Fig. 6�. Phases
belonging to this family are marked on the diagram in Fig. 5
by straight-line segments. It means that they are stable over
finite intervals of band fillings.

On the other hand, phases located along the � f =2−�d line
are composed of antiferromagnetic and nonmagnetic chains.
Phases located along the diagonal � f =1−�d /2 can be viewed
as composed of diluted ferro- or antiferromagnetic chains
�D2–D4 in Fig. 6�. The highest symmetry has the phase D3
placed at the central point of the diagram �� f =1 /2, �d=1�.

It is interesting that phases located along the diagonal � f
=1−�d /2 are insulating for any values of the model param-
eters we examined, as they have gaps at their Fermi levels,
whereas phases found along the line � f =1−�d have no en-
ergy gaps at their Fermi levels. Phases located along the line
� f =2−�d have no gaps for small values of U, but they do
have gaps for large enough U. This is consistent with the
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0.4

0.6

0.8

1

0.50.2 1 1.5 2 2.5 3 3.5 4

ρ d

J

J = 0.2−4.0

C ≤ 12

antiferromagnetic
axial chains

Ferro− and

Axial stripes composed of
ferromagnetic chains

Antiferromagnetic
axial chains

Ferro−, ferri−
and antiferro−
magnetic
axial chains

AF

AF

AF−f/a

F

FIG. 2. �Color online� The two-dimensional pure magnetic phase diagram restricted to all periodic phases with � f =1 and C�12. Typical
configurations of the spins of the f electrons representing phases from particular regions of the diagram are shown in Fig. 3.
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conjecture that the d electrons can easily �i.e., without scat-
tering� move along ferromagnetic and nonmagnetic chains.
However along antiferromagnetic chains their mobility be-
comes suppressed.

IV. SUMMARY AND DISCUSSION

Since the diagrams reported in this paper were con-
structed within the restricted space of periodic configura-
tions, they can serve only as skeletons of the full diagrams.
Here, similar to what was found in the case of the simplest
FKM,10 most of the diagrams’ areas are occupied by mix-
tures of various phases, occasionally penetrated by periodic
phases.

With an increase in the maximum period C of admissible
configurations, more and more periodic phases with higher
periods replace some of the mixtures on the canonical phase
diagrams. However, we observed that the higher period
phases do not destroy the diagrams’ structure; i.e., the charge
and spin distributions of these new phases follow the same
rules that we already detected for low period phases. So our

conjecture is that the full diagrams will be filled with phases
whose charge and magnetic order can be easily predicted �for
a given set of the coupling parameters and densities �d and
� f�. Of course, working within the RPDM, we are not able to
prove the statement rigorously. However, since it appears to
be quite reasonable, we expect that it can be established defi-
nitely by other methods.

In the limiting case of C tending to infinity, not only pe-
riodic but also aperiodic phases may happen to appear on the
diagrams. It is not clear if some mixtures of low period
phases survive in the central region of the full phase dia-
gram. However it is quite possible, as in the simplest spinless
FKM such phases are proven to have the lowest energy in
the large U limit.22

The rules of the formation of the phases we detected from
an analysis of the diagrams do not allow determining unam-
biguously the ground-state charge and spin arrangement for
given values of � f, �d, U, and J. However they provide
enough information needed for a rough prediction of what
sorts of phases appear on the diagrams and where they are
located.

In the pure magnetic case �� f =1�, the F phase is stable for
the densities �d such that �d	�d

��J� or 2−�d
��J�	�d, where

�d
��J� is an increasing function of J. Within the interval of J

ranging from 0.2 to 3.0, the function �d
��J� increases from

about 0.2 to slightly above 0.6 in one dimension �see Fig. 1�
and from about 0.1 to around 0.55 in two dimensions �see
Fig. 2�. The results are consistent with the data obtained in
Ref. 18.

When �d tends to the half filling �d=1, a transformation
from F to the simplest AF phase occurs in one dimension
according to the following simple rules:

�1� If �d= p /q, where p and q are relative prime integers,
then if a phase is periodic, its period is equal to nq �n
=1,2 , . . .�.

�2� For small J and �d= p /q, with q being an even integer,
periodic phases are antiferromagnetic, whereas for q that is
an odd number they are ferrimagnetic with the lowest pos-
sible magnetization. For large J higher magnetizations states
become stable.

�3� For a given J the number Lf of changes in spin orien-
tation calculated per site increases with �d and for small J it
is equal to �d.

�4� For a given density �d the number Lf drops with an
increase in J.

The rules confirm the presence of quite well organized
phase diagram structure not revealed in previous studies. In
fact, some of the details shown in Ref. 18, such as, for ex-
ample, arrangements of spins in a certain number of phases,
are in agreement with these rules. However, since only rings
composed of even numbers of sites and even numbers of
electrons were investigated in Ref. 18, a number of FI phases
were missed.

The driving mechanisms that are behind the detected rules
are still not fully understood. Recently Brydon and Gulácsi23

discovered that competitive roles of the forward-scattering
and backscattering of itinerant electrons can explain the ob-
served richness of the spinless FKM diagrams. We hope that
studies carried out along similar ways could be also per-
formed for the extended version of the FKM with the Hund

F AF−f/a

Ferro−, ferri− and antiferromagnetic axial chains

Ferro− and antiferromagnetic axial chains

Ferromagnetic axial chains

Antiferromagnetic axial chains

AF

FIG. 3. Examples of ground-state periodic phases found in the
diagram displayed in Fig. 2. The symbol � ��� denotes a spin-up
�-down� f electron. The shaded rectangles in the left bottom parts of
the pictures mark unit cells of the corresponding phases. The
straight-line segments mark the translation vectors.
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coupling and elucidate the rules we observed.
In two dimensions the situation is more complex and we

were not able to find out as many precise rules as in the 1D
case, even though our phase diagram shows more regularities
than those reported in Ref. 18. First of all, we noticed that all
phases that appear in the diagram are composed of ferromag-
netic or antiferromagnetic chains. For intermediate values of
J they are also composed of ferrimagnetic chains parallel to
each other. Obviously, the phases with only ferromagnetic
chains have one-dimensional unit cells and they form axial
stripes. These phases occur within an interval of electron
densities �d neighboring to those for which the F phase is
stable. For J
3.05 the interval ends with the simplest phase
belonging to the family, the AF-f/a phase �see Fig. 2�, which
separates regions of axial stripes from those of containing
antiferromagnetic chains. �Ferromagnetic and ferrimagnetic
chains could be also present for not too small values of J.� So
for �d out of the stability regions of F, AF-f/a, and axial
stripes, almost all phases are composed of either exclusively
antiferromagnetic chains or with an admixture of ferri- and
ferromagnetic chains. Some of them containing only ferro-
and antiferromagnetic chains are ferrimagnetic.

An analysis of diluted magnets diagrams �see Figs. 4–6�
also permits us to fix some rules of charge and spin forma-

tion and its evolution with a change in the densities �d and
� f. Here we focused on the most representative three families
of the phases. One of them consists of phases located along
the main diagonal. This family corresponds to the most ho-
mogeneous phases relevant for the spinless FKM. This is the
only family of diluted periodic phases which is left in the
limit of large U �if we keep J considerable smaller than U�.
Phases belonging to this family are characterized by the most
uniform charge distribution but not necessarily the most uni-
form magnetic distribution. In two dimensions all but one
particular phase have a form of sloped stripes composed of
parallel lines of ferromagnetic chains �see configurations D2
and D4 in Fig. 6�. The only exception is the most symmetric
antiferromagnetic chessboard phase D3 placed in the center
of the diagram. The phase has two-dimensional unit cell of
size 2�2 and is composed of diluted ferromagnetic lines
�see Fig. 6�.

Two other characteristic families refer to mixed-valence
regimes, for which either of the conditions �d+� f =1 or �d
+� f =2 is fulfilled. These phases are ground states only for
small and intermediate values of U �and U�J�. In one di-
mension, it appears that unit cells of phases belonging the
first category ��d+� f =1� are built of blocks of spins up sepa-
rated by pairs of empty sites from blocks of spins down. On
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FIG. 4. �Color online� The canonical phase diagram of the extended FKM with Hund coupling for the 1D lattice and U=2, J=0.5. The
crosses � and horizontal straight-line segments mark stability points or intervals of periodic phases. Their unit cells are drawn as sequences
of small circles and plus and minus signs, which correspond to sites nonoccupied and occupied by the spin-up and occupied by the
spin-down f electrons, respectively.
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the other hand, unit cells of phases belonging to the second
category ��d+� f =2� consist of empty sites separated by pairs
of oppositely oriented spins �+−�.

In two dimensions, all phases coming from the both
mixed-valence categories have the form of axial stripes. So
they have the same type of charge ordering. Nevertheless
their magnetic orders are clearly different, as phases that
belong to the first class are composed of ferromagnetic
chains �e.g., D1 in Fig. 6�, whereas phases for which the
condition �d+� f =2 is fulfilled are composed of antiferro-
magnetic chains �e.g., D5 in Fig. 6�.

Our current studies confirm findings reported in Ref. 6
that show that the compromise between kinetic energy of the
d electrons and their interaction with the f electrons imposes
the formation of superstructures with shapes of stripes. Ki-
netic energy tends to spread out the d electrons uniformly
over the lattice. However due to the presence of localized
magnetic ions, a kind of d-electron density deformation must
occur. Obviously, the deformation has to be conjugated with
an arrangement of the f electrons. Apparently, the simplest
departures from the homogeneity that are preferred have the
form of axial or diagonal stripes.
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FIG. 5. �Color online� The canonical phase diagram of the extended FKM with Hund coupling for the 2D square lattice and U=4, J
=0.5. The lines � f =1−�d, � f =2−�d, and � f =1−�d /2 are merely visual guides. The crosses � and horizontal straight-line segments mark
stability points and intervals of the periodic phases, respectively. Their unit cells are drawn as sequences of small circles and plus and minus
signs, which correspond to sites nonoccupied and occupied by the spin-up and occupied by the spin-down f electrons, respectively. A number
of pairs of phases have the same unit cells but different translation vectors. Unit cells of the phases are displayed along the horizontal lines
in the middle between the lines � f =1−�d and � f =1−�d /2 and in the middle between the lines � f =1−�d /2 and � f =2−�d. The configurations
located along the line � f =1 are presented in Fig. 3. A set of characteristic configurations D1–D5 is shown in Fig. 6.

D1 D2 D3 D4 D5

FIG. 6. Characteristic ground-state configurations displayed in Fig. 5. See the caption to Fig. 3 for more explanations.
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Perhaps the most important conclusion emerging from
this work is that the observed rules of the formation of the
phases suggest the possibility of manipulation of positional
arrangements of magnetic ions diluted in the system and also
their magnetic alignment with a change in doping. For ex-
ample, one should be able to tune a modulation of charge
and/or spin �stripes’ width�. If it can be done in a controllable
way, then in systems that can be described by the model, it
would be possible to change gradually the orientation of
stripe phases �between axial and diagonal� and to change the
magnetic order along chains �from ferromagnetic through
ferrimagnetic up to antiferromagnetic�.

We hope that the results will motivate some new experi-
mental work focusing on searching relationships between

density of current carriers �electrons or holes� and observed
charge and/or magnetic superstructure. According to our
findings complicated ordering patterns should emerge from
on-site interactions of localized and moving electrons and a
simplified version of Hund’s rule. Therefore, we expect that
experimental realizations of such patterns are robust in those
correlated electron systems where a substantial anisotropy of
spin-spin interactions occur.
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