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We investigate the role of quantum coherence in the efficiency of excitation transfer in a ring-hub arrange-
ment of interacting two-level systems, mimicking a light-harvesting antenna connected to a reaction center as
it is found in natural photosynthetic systems. By using a quantum jump approach, we demonstrate that in the
presence of quantum coherent energy transfer and energetic disorder, the efficiency of excitation transfer from
the antenna to the reaction center depends intimately on the quantum superposition properties of the initial
state. In particular, we find that efficiency is sensitive to symmetric and asymmetric superposition of states in
the basis of localized excitations, indicating that initial-state properties can be used as an efficiency control
parameter at low temperatures.
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I. INTRODUCTION

Solar energy conversion in photosynthetic bacteria relies
on sophisticated light-harvesting �LH� antennae, which cap-
ture photons and then transfer the electronic excitation to a
molecular complex which serves as a reaction center �RC�.
There charge separation takes place and chemical energy
storage is initiated �e.g., see Ref. 1�. Some of the harvesting
complexes �LH1� and the RC are closely associated and form
a core unit to ensure an efficient pathway for the transfer of
excitations coming from peripheral antennae �LH2�. This
transfer takes only a few hundred picoseconds and is per-
formed with extraordinarily high efficiency: most of the ab-
sorbed photons give rise to a charge separation event.1 The
precise mechanisms underlying such high efficiency remain
elusive despite numerous studies on the subject.1–5 In par-
ticular, whether quantum coherence plays any role on pro-
moting the efficiency is still ambiguous.6–12 Some works in-
dicate that it will induce higher excitation-transfer rates10

while others argue that this may not necessarily be the case.11

Remarkably, recent experimental and theoretical works13–15

indicate that long-lasting electronic coherence can indeed in-
fluence the excitation-transfer dynamics in photosynthetic
complexes. For instance, quantum beats associated with elec-
tronic coherence in the Fenna-Matthews-Olson �FMO� com-
plex of green sulfur bacteria, which connects a large LH to
the RC has been reported by Engel et al.13 Also, coherence
among electronic states of closely associated pigments in the
RC of purple bacteria has been recently reported.14 Further-
more, the excitation transfer in organic dendrimers has at-
tracted significant attention through the prospect of creating
artificial photosynthetic systems.16 One of the key observa-
tions in these artificial systems is the evidence of coherent
energy-transfer mechanisms. These experiments therefore
open up the possibility of exploring �in detail� the interplay
between quantum coherence and the efficiency of natural and
artificial LH systems.

In this work we consider, as a model system, a ring-hub
arrangement of interacting two-level systems representing a
LH1-RC core unit as in purple bacteria17–19 and use the
quantum jump approach20,21 to provide a simple picture of

how the quantum superposition properties of the initial state
of the excitation relate to the efficiency of transfer from the
LH1 complex to the RC, when coherent energy transfer and
static disorder of single-site energies dominate. The quantum
jump approach20,21 proves to be particularly suitable to de-
scribe excitation dynamics in this situation because the
density-matrix elements can be calculated exactly from the
no-jump evolution, given that there is only one excitation at
most in the system and that only local dissipation rates �or
charge separation rates� are assumed.1,5 Considering initial
states as superpositions of single-site excitations, we find that
the efficiency profile depends both on the symmetry proper-
ties of such superposition states and on the number of sites
among which the excitation is initially delocalized. In par-
ticular, our results show a nontrivial interplay between exci-
tation delocalization and efficiency as there can be an opti-
mal delocalization length for which efficiency of transfer
reaches a maximum and transfer time a minimum. Such be-
havior is robust to the presence of energetic disorder. The
plan of this paper is as follows. Section II outlines the model
of energy transfer at low temperatures, as well as how we use
the quantum jump approach to calculate the main character-
istics of the photosynthetic core. Section III discusses our
results both for a toy model and for a more detailed Hamil-
tonian describing the LH1-RC complex.

II. COHERENT EXCITATION TRANSFER

We consider a system of M donor pigments surrounding a
RC with N acceptors �see Fig. 1� described by the Hamil-
tonian H=H0+HI. Labeling the donors from 1 to M and the
acceptors from M +1 to M +N, the single-particle Hamil-
tonian is H0=��=1

M+N����
+��

−, where �� is the excitation energy
of pigment � and the interaction Hamiltonian reads

HI = �
j=1

M

�
c=M+1

M+N

� jcV̂jc + �
j=1;k�j

M

JjkV̂jk + �
c=M+1;r�c

M+N

gcrV̂cr.

�1�

Here V̂ab=�a
+�b

−+�b
+�a

− where �+�−� is the Pauli operator for a
two-level system representing the localized Qy excited state
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of each bacteriochlorophyll a �Bchl� and � jc, Jjk, and gcr are
the donor-acceptor, donor-donor, and acceptor-acceptor cou-
plings, respectively.17 We are interested in the low-
temperature regime where static disorder dominates and dy-
namical effects can be neglected.22 In order to account for
static disorder, we treat �� as having a random component
��=E�+�E� where E� is the ensemble-average value and
�E� is the energy disorder at site � given by a Gaussian
distribution with zero mean and standard deviation �. We
assume that the open system dynamics is dominated by two
incoherent processes: the excitation can be dissipated in a
donor or it can induce charge separation at a site in the RC.
Such dynamics of the photosynthetic core can be described
by the Lindblad master equation ��=1�,

d

dt
	 = − i�H,	� +

1

2 �
�=1

M+N

�2A�	A�
† − A�

†A�	 − 	A�
†A�� , �2�

where the commutator generates the coherent part of the evo-
lution and the action of each operator A�=�2
���

− accounts
for a “jump” process associated either with dissipation of
excitation in a donor, i.e, 
�=
 with �=1, . . .M or with a
charge separation event at an acceptor of the RC, i.e, 
�=�
with �=M +1, . . .M +N. Here we have assumed identical
dissipation rates for the donors and identical charge separa-
tion rates for the acceptors at the RC. This formalism can be
extended to include other incoherent processes.

In order to solve Eq. �2� we follow the quantum jump
approach20 and rewrite Eq. �2� as

	̇ = − i�Hcond	 − 	Hcond
† � + �

�=1

M+N

A�	A�
† , �3�

with

Hcond = H − i
�
j=1

M

� j
+� j

− − i� �
c=M+1

N

�c
+�c

−. �4�

In this description, the excitation dynamics can be inter-
preted in terms of quantum trajectories where the system
follows a no-jump evolution associated with the non-
Hermitian Hamiltonian Hcond, interrupted by a single sto-
chastic collapse of the system to its ground state in the event
of either dissipation or charge separation, with probability
density p�=tr�A�	A�

†�. The no-jump trajectory conditioned
on no-decay-occur is described by 	̇cond�t�=−i�Hcond	cond
−	condHcond

† �. In particular, if the initial state is pure, i.e.,
���0��, the state remains pure �but unnormalized, i.e., dissi-
pative� in the no-jump trajectory and becomes ��cond�t��
=exp�−iHcondt����0��.

We now demonstrate that when a single excitation is
present in the photosynthetic core, the dynamics of all the
density-matrix elements can be calculated exactly knowing
only 	̇cond�t�. Notice that Hcond preserves the number of ex-
citations, i.e., �Hcond ,N�=0 with N=��=1

M+N��
+��

−. Hence, for
a single excitation the density-matrix dynamics is restricted
to the subspace of single-excitation states plus the ground
state. We choose the basis given by S= 	�0� , 	�j�
 , 	�c�

,
where �0�= �01 . . .0M ;0M+1 . . .0M+N� is the state with all the
pigments in their ground state and

�j� = �01 . . . 1 j . . . 0M ;0M+1 . . . 0M+N�

�c� = �01 . . . 0M ;0M+1 . . . 1c . . . 0M+N�

are states in which only the jth donor �or cth acceptor� is
excited. The labels after the semicolon in each ket refer to
the acceptors at the RC. Let us denote the density-matrix
elements 	kl�t�= �k�	�t��l� for any pair of states �k� , �l��S.
Notice that the second term of Eq. �3� satisfies
�k�A�	�t�A�

† �l�=0 for all states except when �k�= �l�= �0�.
Therefore, for single-excitation states 	̇kl�t�= �k�	̇cond�t��l�,
while 	̇00�t�=���0�A�	�t�A�

† �0�=2��
����	�t����. Now,
since 	�0�=	cond�0�, then 	00�t�=2��
����	cond�t����. This
demonstrates that the dynamics of all density-matrix ele-
ments can be entirely calculated with 	cond�t� and hence our
claim.

A. Efficiency and transfer times

With the above formalism we can now focus on the three
main features of our coherent LH1-RC core. As it is de-
scribed in the review by Sener and Schulten,23 these features
are: �i� the efficiency, which is given by the probability of an
excitation to be used for charge separation �as opposed to
being dissipated�, �ii� the average transfer time for an exci-
tation to get trapped by the RC and �iii� the excitation life-
time after the initial absorption of a photon.

Let us denote the initial state �0. Clearly, the probability
that the excitation is still in the system at time t, i.e, no-jump
probability is P�t ;�0�=��=1

M+N���	cond�t���� while w�t ;�0�
= 	̇00�t� is the probability density that a “jump” �charge sepa-
ration or dissipation� occurs between �t , t+dt� and it reads

FIG. 1. �Color online� Schematic of the LH1-RC core of purple
bacteria Rodobacter Sphaeroides. �a� Arrangement of the 32 bacte-
rioclorophylls �Bchls� molecules surrounding the RC. The RC has
two accessory Bchls and two acceptors forming a special pair re-
sponsible for charge separation. �b� Diagram of the induced dipole
moments in �a�. The arrows indicate the dipole moment directions
corresponding to data taken from Hu and Schulten �Ref. 18�. �c�
Toy model: the RC is assumed to be a single two-level system.
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w�t;�0� = 2
�
j=1

M

�j�	cond�t��j� + 2� �
c=M+1

M+N

�c�	cond�t��c�

� wD�t;�0� + wRC�t;�0� . �5�

Here wD�t ;�0�dt is the probability that it is dissipated by
any of the donors in �t , t+dt� while wRC�t ;�0�dt is the prob-
ability that the excitation is used for charge separation at the
RC. Notice also that w�t ;�0�=−dP�t ;�0� /dt leading to
0

w�t ;�0�dt=1, which implies that the excitation will even-
tually either be dissipated or trapped in the RC. In particular,
for pure initial states of the form �0=� j=1

M bj�0��j�
+�c=M+1

M+N bc�0��c� with � j=1
M �bj�0��2+�c=M+1

M+N �bc�0��2=1, we
have 	cond�t�= ��cond�t����cond�t�� with the unnormalized
conditional state given by

��cond�t�� = �
j=1

M

bj�t��j� + �
c=M+1

M+N

bc�t��c� . �6�

The monotonically decreasing norm of this state gives the
no-jump probability P�t ;�0�= ���cond��2 while wD�t ;�0�
=2
� j=1

M �bj�t��2 and

wRC�t;�0� = 2� �
c=M+1

M+N

�bc�t��2. �7�

We therefore define the efficiency ��� of energy transfer to
the RC as the total probability that the excitation is used in
charge separation. The transfer time �tf� is the average wait-
ing time before there is a jump associated with charge sepa-
ration in the RC, given that the excitation was initially in the
LH1 ring. The excitation lifetime ��� is the average waiting
time before a jump of any kind occurs,

� = �
0



dtwRC�t;�0�, tf =
1

�
�

0



dttwRC�t;�0� ,

� = �
0



dttw�t;�0� . �8�

III. EFFICIENCY CONTROL MECHANISMS

In the classical description,5,23 where incoherent Förster
transfer is assumed, typical efficiencies of energy transfer
tend to be near unit. This is due to a separation of the dissi-
pation �ns� and the excitation transfer and charge separation
time scales �ps�. We shall shortly show that using the same
parameters for single-site energies, electronic couplings, and
dissipation and charge separation rates, the efficiencies ob-
tained under coherent transfer are much lower and are
strongly dependent on the initial state of the excitation. We
find that the initial relative phases between localized excita-
tion states �j� and the number of donors, among which the
excitation is initially delocalized, can act act as efficiency
control mechanisms. In what follows, we first consider a
simple model for which analytical solutions can be obtained
and then we calculate efficiency and transfer times with the
model Hamiltonian given in Refs. 17 and 18.

A. Toy model for the LH1-RC complex

The simplest model for which analytical solutions can be
obtained corresponds to the RC taken as a single two-level
system, i.e., N=1, on resonance with the M =32 donors in
the LH1 ring �see Fig. 1�c��. Later we shall show that the
main qualitative behavior observed in this situation also ap-
plies to a model featuring the detailed structure of the
LH1-RC complex in purple bacteria. We consider initial
states in which the excitation is delocalized among donors,
i.e., �0=� j=1

M bj�0��j� with � j=1
M �bj�0��2=1. The unnormalized

state of Eq. �6� becomes ��cond�t��=� j=1
M bj�t��j�+bM+1�t��M

+1� satisfying the equation d��cond�t�� /dt=
−iHcond��cond�t��, which leads to a set of first-order coupled
differential equations for the complex amplitudes bj�t� and
bM+1�t�. In the Appendix we show that when the system’s
dynamics is invariant with respect to exchange of donors in
the antenna, one can find analytical solutions for bM+1�t�. Let
us define the effective interaction between a donor j and the
rest of pigments in the LH1 ring as � j =�kJjk, i.e., the sum of
all the coupling strengths between donor j and any other
pigment in the LH ring. The system’s dynamics is invariant
with respect to donor exchange when both all donor-RC cou-
plings are identical, i.e., � jc��, and the effective interaction
between a donor and the rest of pigments in the ring are also
identical for all donors, i.e., � j =� for all j. Under these
conditions, bM+1�t� satisfies the differential equation

b̈M+1�t�+XḃM+1�t�+YbM+1�t�=0 with X= ��+
+ i�� and Y
=M�2+��
+ i�� �see details in the Appendix�. For the initial
condition where bM+1�0�=0, i.e., excitation is initially in the
ring, we find

�bM+1�t��2 = F�t���
j=1

M

bj�0��2

. �9�

Here F�t�=4�2e−�
+��t�sin��t /2��2 / ���2 and � is the com-
plex frequency that determines the timescale of coherent os-
cillations, i.e., �=�4M�2− �
−�+ i��2. Note that � identi-
cal for all donors does not imply that the pair couplings Jjk
need to be identical for all possible pairs. Hence, analytical
solutions can be found for three different mechanisms of
interaction between the donors: �i� nearest neighbors with
Jjj+1=J /2, �ii� pairwise interaction with Jjk�J for all �j ,k�
pairs, and �iii� dipole-dipole interactions of the form Jjk
=J /rjk

3 where r jk is the relative position vector between the
induced dipole moments of donors j and k. From Eq. �7� the
probability density of having charge separation becomes
wRC�t ;�0�=2��bM+1�t��2, then we obtain an expression for
the corresponding efficiency,

� = 2��B0�2�
0



F�t�dt , �10�

with B0=� j=1
M bj�0�. Equation �10� is the main result of this

paper. It shows that the efficiency of transfer depends on the
quantum coherence properties of the initial state as it be-
comes proportional to �B0�2, i.e., the amplitude of probability,
and not just the probability that the excitation is initially in
the LH1. Therefore, the efficiency profile is sensitive to sym-
metric and asymmetric superpositions of localized excitation
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states �j�, i.e., it depends on the initial relative phases be-
tween states �j�. From Eq. �10� one can conclude that sym-
metric delocalized excitation states yield an increase in �
while some asymmetric states could be used to limit or even
prevent the transfer, i.e., �=0. Unless otherwise stated, we
hence consider symmetric initial states of the form ��m

s �
= �1 /�m�� j=1

m �j� where m�M is the number of donors
among which the excitation is initially delocalized. We de-
note m as the delocalization length. For these symmetric
states �B0�2=m and hence ��m as shown in Fig. 2�a�. Figure
2�a� also shows that the efficiency gradient depends on the
strength of the interaction between one donor and the rest,
which is quantified by �. We have chosen � to be the same
for all these situations, but J has been taken to be such that
�nearest��dipole��pairwise. For a fixed m, � reaches higher
values in the case of nearest-neighbor couplings while it
achieves similar values for dipole-dipole and pairwise inter-
actions. According to these results, interaction among donors
limits the efficiency: the stronger the effective interaction
between one donor and the ring, the lower the efficiency will
be. This phenomenon seems to resemble the “entanglement
sharing” dynamics in the context of a central spin coupled to
a spin bath.24 In our case the LH1 complex can be seen as a
spin bath for the RC. Dawson et al.24 have discussed that
interaction between bath spins translates to entanglement
among them; since entanglement cannot be shared arbi-
trarily among several particles, interaction among spins in
the bath limit entanglement between the central spin and the
bath, and therefore may limit the efficiency of transfer. A
discussion of efficiency and its possible relation with en-
tanglement is beyond the scope of this paper and the work in
this direction will be presented elsewhere.25 Interestingly, tf
in this simple model turns out to be independent of m as can
be deduced from Eq. �7�. Therefore, for the symmetric initial
states considered, tf depends mainly on the mechanism of
interaction as can be seen in Fig. 2�b�. The decay rate of

P�t ; ��m
s �� increases with m as shown in Fig. 2�c�. Corre-

spondingly, the excitation lifetime � decreases as shown in
Fig. 2�d�. The three situations satisfy tf ��, where the equal-
ity holds for the initial state in which the excitation is sym-
metrically delocalized among all donors.

B. Detailed model for the LH1-RC complex

We now apply the above formalism to the effective
Hamiltonian for the LH1-RC interaction given in Refs. 17
and 18. In this case the RC has a special pair of Bchls re-
sponsible for the charge separation, i.e., N=2 acceptors and
two more accessory Bchl molecules, which do not participate
in the charge separation process4 �see Figs. 1 and 3�. The
effective Hamiltonian is of the form given in Eq. �1� but with
certain particularities. First, the pigments at the RC are off
resonance with the donors. Second, the interactions between
adjacent molecules are quantified by two different constants,
i.e., J2j,2j+1=�1=806 cm−1 and J2j,2j−1=�2=377 cm−1,
which are derived through quantum chemical calculations.17

Third, the coupling between non-neighboring donors corre-
sponds to a dipole-dipole interaction of the form Jjk

= �� j .�� k / rjk
3 −

3�r� jk.�� j��r� jk.�� k�
rjk

5 , where �� j is the transition dipole
moment of the jth donor and r� jk is the relative position vec-
tor between donors j and k. The directions of � j have been
taken from Hu et al.18 and top views of the dipole represen-
tation of the LH1-RC core are shown in Figs. 1�b� and 3. For
the initial condition of the excitation in the LH1 complex, we
consider both symmetric initial states ��m

s �= �1 /�m�� j=1
m �j�

with total amplitude of probability �B0�2=m and asymmetric
states ��m

as�= �1 /�m�� j=1
m �−1� j�j� satisfying �B0�2=0. Since

the system’s dynamics is not invariant with respect to pig-
ment exchange, for each delocalization length m, we calcu-
late the average efficiency �m���� where the average is
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FIG. 2. Numerical results for �a� �, �b� tf, and and �d� � versus
m for the toy model with three different interaction mechanisms.
For nearest-neighbor interactions ��� the coupling is 100 meV,
while for the pairwise case �+� it is 10 meV and equals the average
dipole-dipole coupling ���. In each case, the donor-RC coupling �
equals 1 meV, 
=1 ns−1, and �=4 ps−1. �c� No-jump probability
for the case of dipole-dipole interactions as a function of time and
for different m values.

FIG. 3. �Color online� Top view of the directions of the transi-
tion dipole moments in the LH1-RC complex corresponding to the
simulated data in Ref. 18. The numbers indicate total dipole-dipole
interaction between individual donors and the special pair �filled
circles� � j =�c=1

2 � jc in units of cm−1. Locations A and B indicate
dimmer subunits whose total coupling strengths with the special
pair are maximum and minimum, respectively, i.e., �A=−0.95
−0.76=−1.71 and �B=0.17–0.22=−0.05.

OLAYA-CASTRO et al. PHYSICAL REVIEW B 78, 085115 �2008�

085115-4



taken over all possible states for which the excitation is de-
localized among m consecutive donors. Also, when energetic
disorder is considered for each value of standard deviation �,
the efficiency corresponds to the ensemble average over
1000 realizations of disordered H. We denote this average
efficiency ��m�� and the corresponding average transfer time
�tf��. An estimate of �=30 cm−1 for the standard deviation
of the diagonal disorder distribution in the LH1 has been
provided in the literature.26 Therefore we have carried out
calculations for �− values ranging from 0 to 150 cm−1 and
the results for symmetric and asymmetric initial states are
shown in Figs. 4 and 5, respectively. For symmetric states
and in the absence of energetic disorder, i.e., �=0, the be-
haviors of the efficiency and transfer time are very similar to
that in the toy model: ��m��=0 increases linearly with m �see
Fig. 4�a�� while �tf��=0 decreases �see Fig. 4�b��, achieving
maximum efficiency and minimum transfer time for the fully
delocalized situation. For disorder distributions correspond-
ing to small values of �, i.e., ��50 cm−1, there are sym-
metric states which exhibit efficiency improved in compari-
son to the situation where no disorder is considered. Such
states correspond to those for which m�10 as it can be seen
in Fig. 4�a�. However, the efficiency values are clearly de-
creased with increasing �. Conversely for the asymmetric
states satisfying �B0�2=0, the efficiency is a nonmonotonic
function of m, indicating that there is an optimal delocaliza-
tion length for which ��m�� has a maximum and for which
�tf�� has a minimum as it is shown in Fig. 5. The optimal
delocalization length is around m=8 for zero disorder and
becomes m=10 for higher �− values as it can been seen in
Fig. 5�a�. Such behavior is robust to the presence of energetic
disorder and indeed improved as the efficiency values are
larger with increasing �. It is also worth noting that in both

cases �symmetric and asymmetric states�, the efficiencies ob-
tained are lower than those given by a classical calculation
with rate equations derived for the same single-site energies,
electronic couplings, and dissipation and charge separation
rates here considered.5

The rich behavior exhibited in Figs. 4 and 5 has its roots
in the asymmetry of the donor-RC interactions given by the
presence of two acceptors at the center of the ring. The two
acceptors induce a preferred axis across the ring �across the
two acceptors� and a perpendicular axis to this one, such that
the donor-special pair couplings, i.e., � j =�c=1

2 � jc are in gen-
eral unequal. However, the couplings � j are very similar for
mirror pigments with respect to the axis crossing the A points
as well as for diametrally opposed Bchls, as can be seen in
Fig. 3. Also, we find that the coupling between a donor and
the rest of pigments in the ring is very similar for all donors,
i.e., � j ���1000 cm−1. In order to understand the implica-
tions of these symmetry-breaking interactions, we can com-
pare the zero-disorder case with our toy model but now con-
sidering site-dependent donor-RC couplings � j. As it is
described in the Appendix, assuming � j �� for all donors
but now nonidentical � j, we find bM+1�t��B0

w where B0
w

=� j=1
M � jbj�0� is the total weighted amplitude of probability

that the excitation is initially in the LH1 ring. Therefore the
efficiency will satisfy ���B0

w�2 indicating that the contribu-
tion of each donor to the transfer is weighted by its coupling
to the RC. For symmetric states with delocalization length m,
we have �B0

w�2= �1 /m��� j=1
m � j�2 while for asymmetric states

with the same delocalization �B0
w�2= �1 /m��� j=1

m �−1� j� j�2.
From these expressions, one can deduce that the overall
maximum in the efficiency landscape is obtained when the
excitation is symmetrically delocalized over the whole ring,
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FIG. 4. �Color online� Numerical results for initial symmetric
states of the form ��m

s �= �1 /�m�� j=1
m �j� satisfying �B0�2=m. �a� Ef-

ficiency and �b� transfer time versus m for different �− values.
Results shown are averaged over an ensemble of 1000 aggregates
for each standard deviation �. Single-site energies and electronic
couplings for the LH1-RC core have been taken from Ref. 18. For
donors in the LH1 complex Ej�0�=12 911 cm−1 while for the spe-
cial pair at the RC Ec�0�=12 748 cm−1 and for the accessory Bchl
Ea�0�=12 338 cm−1. In all cases 
=1 ns−1 and �=4 ps−1.
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FIG. 5. �Color online� Numerical results for initial asymmetric
states of the form ��m

as�= �1 /�m�� j=1
m �−1� j�j� satisfying �B0�2=0. �a�

Efficiency and �b� transfer time versus m for different �− values.
Results shown are averaged over an ensemble of 1000 aggregates
for each standard deviation �. Single-site energies and electronic
couplings for the LH1-RC core have been taken from Ref. 18. For
donors in the LH1 complex Ej�0�=12911 cm−1 while for the spe-
cial pair at the RC Ec�0�=12 748 cm−1 and for the accessory Bchl
Ea�0�=12 338 cm−1. In all cases 
=1 ns−1 and �=4 ps−1.
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while the efficiency can be zero for totally asymmetric delo-
calized states as half the donors contribute to the transfer in
the same way than the other half but with a relative � phase
difference. The expression of B0

w for the asymmetric states
also justifies the fact that there will be an optimal delocaliza-
tion length for which the combination of �−1� j� j values
yields a maximum B0

w as observed in Fig. 5�a�. Indeed, we
observe that the efficiency depends substantially on where
the delocalized state is with respect to the preferred axes
�results not shown�. In particular, notice that the reference
axes associated with the special pair indicate four dimmer
subunits whose total couplings with RC are maximum and
minimum as indicated, respectively, by points A and B in
Fig. 3. Delocalized states that are centered around these
points have, respectively, maximum and minimum efficiency
�results not shown�. Such dimmer positions are separated by
eight to ten pigments, which can explain why m�10 is an
optimal delocalization length for asymmetric states as, in av-
erage, such length will cover a position of maximum or mini-
mum efficiency but not both. This also explains the observed
shoulder at around m�10 for the symmetric states.

Now let us turn the attention to the efficiency improving
�diminishing� effect of disorder for asymmetric �symmetric�
states. This phenomenon can be explained by recalling what
we learned from the toy model presented in Sec. III A: the
efficiency of an initially antisymmetric state is zero due to
destructive quantum interference among donors’ amplitudes.
This value is clearly at a local minimum in the efficiency
landscape. Therefore, by adding diagonal noise to the Hamil-
tonian, we are in effect pushing the efficiency of the system
out of this local minimum and as such the efficiency can only
become more positive. Similar arguments apply for largely
delocalized symmetric states �m large�: a fully delocalized
state achieves the best efficiency, then any noise can only
have a detrimental effect. When m is small, we observe,
however, that the addition of small amount of disorder can be
beneficial �see Fig. 4�a��. This behavior is the result of an
interplay between two competing effects: �i� the above dis-
cussed symmetry-breaking donor-RC interactions and �ii� the
fact that a small amount of disorder in the donors’ energy
levels can render some of them closer to the energy level of
the acceptors, which will improve the forward transfer rate.

The above results suggest that efficiency can therefore be
used as an indicator for coherent energy transfer. In particu-
lar, two-dimensional spectroscopy techniques, recently de-
veloped to study coherence dynamics in photosynthetic
systems,13,14 may be used to create and probe quantum su-
perposition initial states. For instance, an optically allowed
state of LH1 is the completely delocalized asymmetric
state.17 For very low values of energetic disorder and at very
low temperatures, the efficiency of transfer from such state is
nearly zero as shown in Fig. 5. At a slightly higher tempera-
ture, the excitation will become less delocalized and as such
the efficiency would increase �cf. Fig. 5�. In other words, an
experiment measuring the efficiency of an LH1-RC core un-
der various temperatures, but still within a low-temperature
regime, could serve to ascertain the extent of coherence in
energy transfer. Interestingly, some experimental works have
indicated that in thermalized LH2 complexes the excitation
may be coherently delocalized over just a few donors of the

B850 ring,27 while at very low temperatures it can be fully
delocalized over the whole ring.28 Although no such system-
atic investigation has been reported on the LH1, fluoresence-
excitation spectra of individual LH1-RC complex of Rps.
acidophila at 1.2 K suggests that the excitation is largely
delocalized in the LH1 ring.29 An estimate of the temperature
T� below, which dominant coherent excitation transfer be-
tween the LH1 and the acceptors at the RC should be ex-
pected, is given by kBT���D /a with a�1 /2.30 Here �D is
the total coupling between a dimmer subunit in the LH1 ring
and the special pair at the RC and a is the dimensionless
constant characterizing the coupling strength between a dim-
mer and its environment. The ratio between the lattice reor-
ganization energy ELR and the nearest-neighbor couplings for
an individual Bchl in the LH1 ring gives an approximate
value for a.31 Then a�ELR / ��1+�2�, such that kBT�

��D��1+�2� /ELR. Taking ELR=330 cm−1 for the LH1
complex26,31 �D=1 cm−1 and �1+�2=1183 cm−1, we obtain
T��10 K, which is larger than the temperatures at which
spectroscopic properties of LH1-RC complexes have been
measured.26,29 Hence we believe that the described quantum
phenomena can be explored with current experimental exper-
tise.

In conclusion, we have introduced the quantum jump ap-
proach to study the role of quantum coherence in the excita-
tion transfer in photosynthetic complexes. We have shown
that initial-state properties can be used to control the effi-
ciency of transfer in multichromophoric arrangements at low
temperatures. Our results open up experimental possibilities
to investigate and exploit such coherent phenomena in arti-
ficial and natural systems capable of harvesting light.
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APPENDIX: DETAILS OF THE ANALYTICAL SOLUTIONS
FOR THE TOY MODEL

As described in Sec. III A, in the simplest situation where
the RC is taken as a single two-level system on resonance
with M donors, we are able to find analytical solutions for
the probability density of having a charge separation event at
the RC and, therefore, we find an analytical expression for
the efficiency of transfer in this toy model �see Eq. �10��.
Here we give the details of this calculation. The unnormal-
ized state ��cond�t�� given in Eq. �6� satisfies the relation
d��cond�t�� /dt=−iHcond��cond�t��, which leads to the follow-
ing set of first-order coupled differential equations:

ḃj�t� = − i� jbM+1�t� − i�
k�j

M

Jjkbk�t� − 
bj�t� , �A1�

ḃM+1�t� = − i�
j=1

M

� jbj�t� − �bM+1�t� . �A2�

From the above equations we obtain
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b̈M+1�t� + �ḃM+1�t� + �
j=1

M

� j
2bM+1�t� = G�t� ,

with

G�t� = i
�
j=1

M

� jbj�t� − �
j=1

M

�
k�j

M

� jJjkbk�t� .

Let us first consider the case where all donor-RC coupling
are identical, i.e., � j �� for all j=1. . .M. Defining the effec-
tive coupling between one donor and the LH1 ring as � j
=�k�j

M Jjk and assuming it identical for all the donors in the
LH1, i.e., � j ��, we have G�t�= �i
−���� j=1

M bj�t�. Now

from Eq. �A2� we get � j=1
M bj�t�= i�−1�ḃM+1�t�+�bM+1�t�� and

thus we arrive to

b̈M+1�t� + XḃM+1�t� + YbM+1�t� = 0, �A3�

with X= ��+
+ i�� and Y =M�2+��
+ i��. The solutions of
the above differential equation are of the form

bM+1�t� = f�t��
j=1

M

bj�0� + g�t�bM+1�0� , �A4�

with

f�t� = − 2i�e−Xt/2sin��t/2�
�

,

g�t� = e−Xt/2� �
 − � + i��
�

sin��t/2� + cos��t/2�� ,

and �=�4M�2− �
−�+ i��2. The above solution is invariant
with respect to exchange of any pair of two-level systems. It
is also worth noting that the above formalism allows to find
a closed expression for the collective amplitude of probabil-
ity B�t�=� j

Mbj�t�, which leads to further simplifications of
this system.32

For the case where donor-RC couplings are unequal, but
� j still satisfies � j ��, we obtain G�t�= �i
−��� j=1

M � jbj�t�
+� j� jbj�t� with � j =�k�j��k−� j�Jjk. Given that in the
LH1-RC complex mirroring pigments as well as diametrally
opposed pigments in the ring have very similar donor-special
pair couplings �cf. Fig. 3�, we can approximate G�t� as G�t�
��i
−��� j=1

M � jbj�t�. For the initial condition bM+1�0�=0,
we again arrive to a solution for bM+1�t� as in Eq. �A4�, i.e.,
bM+1�t�= f�t�B0

w and we define B0
w=� j=1

M � jbj�0� as the total
weighted amplitude of probability that the excitation is ini-
tially in the ring.
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