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We present a comparative analysis of different microscopic approaches to quasiparticle properties in metals.
Aluminum is chosen as an application object, since it exhibits characteristics many of which are well-described
in the jellium model. Within this model, we consider how different levels of physical elaboration of the
electron-electron interaction affect the imaginary part of the quasiparticle self-energy and the quasiparticle
renormalization constant. Also, we present ab initio calculations of the quasiparticle lifetime in crystalline
aluminum with the use of both the linear muffin-tin orbital method and the plane-wave pseudopotential theory.
To complete the picture of inelastic scattering effects in aluminum, we report first-principles calculations on
electron-phonon interaction and on the phonon mediated contribution to the lifetime. The total inelastic lifetime
broadening is compared with experimental data known from the literature.
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I. INTRODUCTION

Quasiparticle excitations in metals play an important role
in a rich variety of physical and chemical phenomena.1 As an
example, one can mention energy transfer in photochemical
reactions, desorption and oxidation of molecules at surfaces,
spin transport within bulk metals, across interfaces, and at
surfaces. One of the key properties of quasiparticle excita-
tions is their lifetime �inverse quasiparticle decay rate� which
characterizes the duration of these excitations. Along with
the quasiparticle velocity, the lifetime determines such mea-
sure of influence of the excitation as the mean free path.

The decay rate �tot of a quasiparticle can be presented as
a sum of the following contributions:

�tot = �e-e + �e-ph. �1�

Here, the first term, �e-e, is the contribution from the inelastic
electron-electron �e-e� scattering mechanism that includes
several decay channels concerned with charge-density, spin-
density, singlet-pair, and triplet-pair fluctuations.2–5 The sec-
ond term, �e-ph, represents the contribution from inelastic
electron-phonon �e-ph� scattering. This contribution is usu-
ally considered as comparable with the electron-electron part
only close to the Fermi level, within a typical phonon energy
��D ��D is the Debye cutoff energy�.6,7 However, �e-ph can
play an important role at higher electron energies for metals
with large e-ph coupling.8 Moreover, unlike �e-e which ex-
periences very weak temperature dependence, the e-ph con-
tribution significantly increases with temperature and can
even exceed the e-e part.8

At present, there are many theoretical approaches to the
quasiparticle decay rate which differ one from another by the
level of physical elaboration of the electron-phonon and
electron-electron interactions. For example, similar to the
electron-phonon interaction, the electron-electron one can be
considered as realized through the exchanging by a number
of varieties of “bosons” �the aforementioned fluctuations�
composed of electrons and holes, which themselves strongly

interact through the exchange by other bosons.3 Depending
on how many varieties of these bosons are involved in the
description of the e-e interaction within an approach, one
obtains different results for contribution of the exchange-
correlation effects to quasiparticle properties.

Basically, the mentioned difference can be studied within
an application of the approaches to a given system. A com-
parison of the obtained results will allow one to reveal fac-
tors, which influence mainly quasiparticle properties upon
moving from one approach to another. However, the majority
of the approaches to �e-e can be effectively applied to a pro-
totype homogeneous system only. In applying them to real
metal systems, one encounters difficulties in taking properly
into consideration real band-structure effects. This means
that, apart from construction of a model of the e-e interac-
tion, real materials give an additional challenge. As a result,
a consistent comparison of the approaches applied to the
same material is an important matter.

In this paper, we give a comparative analysis of a wide
spectrum of approaches to �e-e as applied to aluminum. The
choice of such a material is motivated by the fact that alu-
minum possesses the free-electron-like band structure, and
therefore many properties of this simple metal can be de-
scribed well within the jellium model. In support of the lat-
ter, one can mention, e.g., the Fermi energy as determined by
x-ray photoemission,9 the plasmon dispersion and its very
small anisotropy,10,11 and the stopping power for protons and
antiprotons.12 As a consequence, aluminum can be consid-
ered as a prototype material that allows one to test a theoret-
ical approach to quasiparticle dynamics of jellium.

The approaches considered in this work are chosen to
reflect the present state of the art of quasiparticle dynamics
of metals. In order to make the paper self-sustained, we give
a brief description of the approaches existing in the litera-
ture, starting from the well-known G0W0 approximation,
passing through different methods taking into account the
contribution of both charge- and spin-density fluctuations,
and ending up with the so-called generalized G0W0 approxi-
mation. Within the description, we outline both the approxi-
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mations, which consider the mentioned contributions by
means of the spin-symmetric and spin-antisymmetric local-
field �LF� factors, and the approaches, which are based on a
variational method and do not involve quantities defined out-
side their scope. As a development of one of such ap-
proaches, we propose an approximation that consistently in-
cludes multiple electron-hole scattering effects both in the
screening properties and in the decay rate.

As regards the phonon-induced lifetime broadening, we
evaluate �e-ph expressed in terms of the Eliashberg spectral
function in the quasielastic approximation at different tem-
perature. Apart from the fact that �e-ph is of interest as a
contribution to the quasiparticle decay rate, this lifetime
broadening can play an important role in definition of the
proper approach to �e-e by comparing to available experi-
mental data.

The paper is organized as follows: In Sec. II, we briefly
describe all the considered approaches to the e-e decay rate
within many-body perturbation theory. Within the jellium
model, we compare them as applied to aluminum. In this
section, we also present results of our first-principles calcu-
lations for the e-e quasiparticle lifetime in Al which take into
account both charge- and spin-density fluctuations. Section
III contains our ab initio results on the e-ph decay rate evalu-
ated at different temperatures. In Sec. IV, we compare the
obtained total decay rate with experimental relaxation-time
data existing in the literature. The conclusions are also given
in Sec. IV. Unless stated otherwise, atomic units are used
throughout, i.e., e2=�=m=1.

II. ELECTRON-ELECTRON SCATTERING

Within many-body theory of condensed matter, a study of
quasiparticle properties, including the electron-electron life-
time ����=�e-e

−1��� as a function of exciting energy �, usu-
ally rests on the solution of the well-known closed set of
Hedin’s coupled integral equations.13 These equations �see,
e.g., Ref. 14� relate the Green’s function of a system under
the study

G�1,2� = G0�1,2� + G0�1,3���3,4�G�4,2� �2�

to the quasiparticle self-energy

��1,2� = iG�1,3�W�1,4���3,2,4� �3�

and, through the latter, to the screened interaction

W�1,2� = vc�1,2� + vc�1,3�P�3,4�W�4,2� , �4�

which is determined by the irreducible polarizability �with
the factor of 2 for spin�

P�1,2� = − 2iG�1,3�G�4,1���3,4,2� , �5�

where the vertex function

��1,2,3� = ��1 – 2���2 – 3�

+
���1,2�
�G�4,5�

G�4,6�G�7,5���6,7,3� . �6�

Here, considering the paramagnetic state, the standard short-

hand notation 1= �r1 , t1� for space-time coordinates is used.
Repeated variables are integrated, unless they appear on both
sides of the equations. In Eq. �2�, the Green’s function G0 of
zeroth order is built on a complete set of single-particle states
at the Hartree �mean-field� level. The interaction �4� de-
scribes a dynamic spin-independent dielectric screening of
the bare Coulomb interaction vc between two test charges
“nonidentical” to electrons in the Fermi sea.

According to Hedin’s concept, by solving these equations
iteratively, one generates the perturbation diagrammatic ex-
pansion for the self-energy, vertex function, and irreducible
polarizability in terms of the screened interaction.

A. Jellium model

1. G0W0 approximation

Starting from �=0 and, consequently, ��1,2 ,3�
=��1–2���2–3�, the first cycle of the iterative solution of
Hedin’s Eqs. �2�–�6� ends up by modeling the quasiparticle
self-energy as ��1,2�= iG0�1,2�W0�1,2� with the screened
interaction W0 obtained within the random-phase approxima-
tion �RPA�, where the irreducible polarizability is presented
by P0�1,2�=−2iG0�1,2�G0�2,1�. Such an expression for the
self-energy constitutes the so-called G0W0 approximation.

Taking into consideration homogeneity of jellium, in mo-
mentum space the mentioned self-energy and irreducible po-
larizability can be rewritten as

��k� =
i

�2	�4� dqG0�k − q�W0�q� , �7�

and

P0�q� = −
2i

�2	�4� dpG0�p − q�G0�p� , �8�

respectively. Here and in the following, the four-momentum
variable q as a shorthand for �q ,�� is used. The RPA
screened interaction is given by

W0�q� = vc��q�� + vc��q��P0�q�W0�q� . �9�

Feynman diagrams of the considered quantities are shown in
Fig. 1.

FIG. 1. A diagrammatic representation of the self-energy and the
screened interaction treated in the G0W0 and G0W� approxima-
tions. The solid lines with arrows represent the zeroth-order Green’s
function G0. The dotted and solid wiggly lines signify the RPA
screened interaction W0 and the screened interaction with the inclu-
sion of vertex corrections, respectively. The shaded triangles indi-
cate the vertex � evaluated in the local approximation.
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2. Local-field corrections

Within the RPA at the Hartree level, we deal with the
screening properties of the system of independent electrons
which do not feel any effect of exchange and correlation.
However, the existence of a local exchange-correlation �XC�
hole around electrons in the Fermi sea leads to the reduction
in the interaction between electrons, and, consequently, to
changes in the system response. Therefore, to get a more
realistic screening picture, within the paradigm of linear re-
sponse and locality of XC corrections, the many-body local-
field factors G↑↑�q� and G↑↓�q� are introduced.15 The factor
G↑↑�q� mainly accounts for the Pauli principle effect, while
G↑↓�q� is responsible for taking into account the Coulomb
correlation between antiparallel spin electrons. As a rule,
these factors are tabulated and parametrized by using quan-
tum Monte Carlo �QMC� calculations for the homogeneous
electron gas.

For paramagnetic systems, the symmetric and antisym-
metric combinations, G
�q�= �G↑↑�q�
G↑↓�q�� /2, of the
many-body local-field factors are introduced. The spin-
symmetric G+ determines the density �charge-charge� re-
sponse function5,15

Rd�q� =
P0�q�

1 − vc��q���1 − G+�q��P0�q�
, �10�

whereas G− enters the definition of the magnetic �longitudi-
nal spin-spin� response function5,15

RSzSz
�q� =

P0�q�
1 + vc��q��G−�q�P0�q�

. �11�

A simple way to analytically express q dependence of the
local-field factors is to cast them into energy-independent
Hubbard-type forms. In this case, the aforementioned com-
binations can be represented as16

G

IP�q� =

1

2
� �Q�2

�Q�2 + Q↑↑
2 


�Q�2

�Q�2 + Q↑↓
2 � . �12�

Here and in the following we use the dimensionless momen-
tum Q=q /kF, where the Fermi wave vector kF= ��rs�−1 is
determined by the electron density parameter rs given by
rs

3=3 / �4	n� �n being the electron density and �= �4 /9	�1/3�.
The parameters Q↑↑ and Q↑↓ �see Table I� are such that the
compressibility and susceptibility sum rules5 are satisfied by
G+

IP�q� and G−
IP�q� at the small-q limit, respectively.

In Ref. 17, the following more complex analytical expres-
sion for the spin-symmetric local-field factor has been pro-
posed:

G+
CDOP�Q� = C�Q�2 +

B�Q�2

g + �Q�2
+ �c�Q�4e−��Q�2, �13�

where the Hubbard-type term �with g=B / �A−C�� is present
nevertheless. The parameters of such a representation of G+
are determined in such a way as to meet the requirements of
the correct asymptotic behaviors for both small- and large-q
limits and to reproduce QMC results at intermediate q val-
ues. These parameters evaluated with the use of the correla-
tion energy of Ref. 18 are listed in Table I.

In formal analogy with Eq. �13�, the spin-antisymmetric
local-field factor that also behaves correctly at the small- and
large-q limits can be approximated as5,19

G−
SG�Q� = C�Q�2 +

B1�Q�2

g1 + �Q�2
, �14�

where g1=B1 / �A1−C� and B1=B−1+2g0 with the pair cor-
relation function at zero-interelectronic distance g0 param-
eterized, e.g., by the form of Ref. 20 �see Table I�.

In Fig. 2, we show the mentioned spin-symmetric and

TABLE I. Values of the parameters used in the analytical expressions �Eqs. �12�–�14�� for the spin-
symmetric and spin-antisymmetric local-field factors for rs=2.07 corresponding to the case of aluminum.

Q↑↑ Q↑↓ A B C �c � A1 g0

1.5014 3.2741 0.2679 0.8320 0.0491 0.1059 0.3794 0.1739 0.1385

FIG. 2. The local-field factors G+, G−, and GX as functions of
momentum �Q� at rs=2.07. Here and in the following the notation
CDOP signifies G+ taken in the analytic form of Ref. 17 �Eq. �13��.
The spin-antisymmetric local-field factor taken from Ref. 19 �Eq.
�14�� is marked as SG. IP�+� and IP�−� denote G+ and G− of Ref. 16
�Eq. �12��, respectively. The long-wave limit form for GX obtained
in Ref. 21 is marked by NC �its self-consistent variant is denoted by
the additional subscript sc�. The notation ZCE signifies GX corre-
sponding to the approach of Ref. 22 �the subscript 2/3 points out its
modification done in Ref. 21�. Inset: all of these local-field correc-
tions divided by squared momentum �Q�.
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spin-antisymmetric local-field factors as functions of �Q�. As
is seen from the figure, the spin-symmetric “CDOP” and
“IP�+�” factors �as well as the spin-antisymmetric “SG” and
“IP�−�” ones� are rather different in their dependencies on �Q�.
Nevertheless, due to the correct small-q asymptotic behavior,
both analytic expressions for G+ �or for G−� provide similar
local-field corrections at small values of �Q� �see inset of Fig.
2�. Other curves presented in the figure we discuss below.

3. G0W approximation

The Fourier transform of the irreducible polarizability
�Eq. �5�� that determines screening properties of the system
leads to23

P�q� = −
2i

�2	�4� dpG�p − q�G�p���p,q� . �15�

The RPA irreducible polarizability �Eq. �8�� corresponds to
the lowest order of the vertex function. This means that tak-
ing the exchange and correlation effects into consideration of
P implies evaluating the vertex function in higher orders of
the perturbation theory than it occurs in the RPA. One way to
evaluate these so-called vertex corrections to P0 is to for-
mally reduce them to the spin-symmetric local-field
factor.24,25 As was shown in Ref. 26, it can be done, e.g., by
using a variational approach within a local approximation
�see also Refs. 27–29�. In such a way, one sums a set of
infinite classes of diagrams that leads to the vertex function
dependent on one four-momentum only, i.e.,

��q� = �1 + vc��q��G+�q�P0�q��−1. �16�

This local form for � essentially simplifies calculations of P.
Actually, with the use of the zeroth-order Green’s function, it
allows one to rewrite Eq. �15� as

P�q� = P0�q���q� �17�

that, in turn, provides the density response function Rd�q�
= P�q�+ P�q�vc��q��Rd�q� in the form of Eq. �10�.

The Fourier-transformed dynamically screened interaction
�see Fig. 1�,

W�q� = vc��q�� + vc��q��P�q�W�q� , �18�

is determined by the irreducible polarizability �Eq. �17�� that
contains the vertex corrections �Eq. �16�� enhancing the den-
sity response. This interaction differs from that in the RPA
and, when used in the G0W0 formula in place of W0, allows
one to go beyond the G0W0 approximation. Such an approxi-
mation is denoted as the G0W one.

4. G0W� approximation

Starting from the Fourier transform of Eq. �3�,

��k� =
i

�2	�4� dqG�k − q�W�q���k,q� , �19�

it is natural to suppose that at the next level of complexity
the same vertex corrections should be included both in the
screened interaction and in the self-energy.27 In this case,

using the zeroth-order Green’s function, the screened inter-
action �Eq. �18�� with P of Eq. �17�, and the vertex function
�Eq. �16��, we arrive at the self-energy of the G0W� approxi-
mation �Feynman diagrams are shown in Fig. 1�. The latter
exploits the same G0W0 formula, where the resulting
screened interaction We-t�q�=W�q���q� is used instead of
W0. This We-t is interpreted as an electron-test charge
interaction15 in contrast to the test charge-test charge one, W.

On rewriting the electron-test charge interaction as
We-t�q�=vc��q��+vc

2��q���1−G+�q��Rd�q�, it becomes clear
that, as well as in the G0W0 and G0W approximations, qua-
siparticle properties are determined solely by the density re-
sponse. In other words, the self-energy includes only the
contribution of charge fluctuations. This means that a differ-
ent expression is needed for the self-energy in order to take
additionally into account the contribution of spin-density
fluctuations.

5. G0W0&T approximation

Owing to the correspondence between electron-hole
multiple-scattering events and spin fluctuations �see, e.g.,
Refs. 30–33�, their contribution can be included in the self-
energy by treating the latter as an integral over the four-point
e-h scattering amplitude2,3 shown in Fig. 3. A simple way to
calculate the self-energy in such a manner within a study that
rests on Hedin’s concept is to express the scattering ampli-
tude T in terms of the dynamically screened interaction as a
sort of T0 �a ladder approximation, where T0�1,2 �3,4�
=W�1,2���1–3���2–4��. At that, to preserve all the advan-
tages of the G0W0 approximation, the integral over T can be
considered as an additional term to the G0W0 self-energy.22,34

In this case, in order to avoid double counting, as in Ref. 3,
the scattering amplitude should start from the third order in
the screened interaction.21,34

Such an additional term can be regarded as vertex correc-
tions to the G0W0 self-energy. As in the G0W� case, a local
approximation can be developed to solve the Bethe-Salpeter
equation that describes the e-h scattering amplitude. In Ref.
34, it has been done by using a variational approach yielding
the amplitude T which in momentum space and in the case of
a uniform system depends only on the four-momentum trans-
fer along the electron-hole channel. As a result, the addi-
tional self-energy term �hereafter referred to as the T-matrix
contribution and denoted by �T� has the G0W0 formula �7�
with W0 replaced by the scattering amplitude

FIG. 3. Feynman diagrams of the self-energy treated as an inte-
gral over the e-h scattering amplitude T that is defined by the Bethe-
Salpeter equation with the irreducible e-h vertex T0. As before, solid
lines with arrows represent the zeroth-order Green’s function G0.

NECHAEV et al. PHYSICAL REVIEW B 78, 085113 �2008�

085113-4



T�q� = W˜�q�P0�q�W˜�q�� 1

1 + 1
2 P0�q�W˜�q�

− 1� , �20�

where the factor of 2 for spin is implied. The local interac-
tion

W˜�q� = − 2�P0�q��−1P1�q��P0�q��−1 �21�

is related to the first-order exchange diagram in the irreduc-
ible polarizability diagrammatic expansion

P1�q� = − 2� dkdp
q�k�W�k − p�
q�p� , �22�

where 
q�p�= iG0�p−q�G0�p� / �2	�4. Consequently, this in-
teraction can be identified with the many-body local-field

factor GX=W˜ /2vc evaluated within the first-order perturba-
tion theory �see, e.g., Ref. 35�, when the spin-symmetric and
spin-antisymmetric local-field factors are equal.

At the small-q limit, the local interaction becomes
q-independent and the factor GX shown in Fig. 2 as the “NC”
curve demonstrates the quadratic behavior, i.e., GX=AX�Q�2,

where the constant AX=W˜kF
2 / �8	�. With the use of the RPA

screened interaction W0 in Eq. �22�, at rs=2.07 the constant
AX is equal to 0.1817.

Within the presented G0W0&T approach, by replacing the

local interaction W˜�q� by the static screened interaction
W0�q ,0�, we can reproduce an approximation made in Ref.
22. This approximation is based on a first-principles
study36,37 of the strength U of Hubbard’s contact interaction,
where different matrix elements of the static screened inter-
action are analyzed. With such a local interaction, the factor
GX is equal to W0�q ,0��2vc��q���−1 �see the “ZCE” curve in
Fig. 2�. At the small-q limit, it leads to GX=AX�Q�2 with AX
=0.3641 that, as was shown in Ref. 21, overestimates the
ladder diagrams contribution at rs=2.07.

6. G0W�&T ladder approximation

Within the previous G0W0&T approach, which takes into
account some vertex corrections to the G0W0 self-energy, the
screening properties of the system are described within the
RPA, whereas in, e.g., the G0W� approximation, one gets a
more realistic screening picture. In order to eliminate this
defect, we go beyond the RPA. As a development of the
G0W0&T approach, here we propose an approximation that
allows one to take into account more ladder diagrams along
the line of Hedin’s expansion of both the self-energy and the
irreducible polarizability.

First, note that the vertex function of Eq. �6� with the
first-order functional derivation ���1,2� /�G�4,5�
=W�1,2���1–4���2–5� can be expressed in terms of the e-h
scattering amplitude of the ladder approximation. As a result,
in momentum space, with the use of the aforementioned
variational solution to the Bethe-Salpeter equation for
the amplitude T and with the zeroth-order Green’s function,
we arrive at the vertex function �X�q�= �1
+vc��q��GX�q�P0�q��−1, where GX=W˜ /2vc. Through Eqs. �17�
and �18� the screened interaction W in Eq. �22� can include
local-field corrections with the aid of the vertex function

�X�q�. This means that one can reach a self-consistency be-
tween GX and W which, on the one hand, contains local-field
corrections provided by GX and, on the other hand, deter-

mines this local-field factor through W˜. In this case the con-
stant AX:sc=0.1622 �sc denotes self-consistent� becomes
slightly smaller than that found with W0 �see Fig. 2 and note
the proximity of the “NC” and “NCsc” factors GX to G− at
small values of �Q��.

Second, with the use of such a self-consistent local-field
factor the leading term of the self-energy can be evaluated
within the G0W� approximation with �X�q�. At that, the
additional term �T should also be expressed in terms of the
sc factor GX. The resulting self-energy represents a sum of an
infinite number of ladder diagrams shown in Fig. 4. Thus,
within such an approximation, one can include consistently
multiple electron-hole scattering effects both in the screened
interaction and in the self-energy.

In the case of the approximation of Ref. 22 the coefficient
AX:sc= 2

3AX, which allows one to reasonably estimate the con-
sidered diagrams contribution in the entire metallic density
range.21 The local-field factor GX:sc=W0�q ,0��3vc��q���−1 is
shown in Fig. 2 as the “ZCE2/3” curve. As is seen from the
inset of the figure, at small momentum, such a factor GX:sc is
quite close to G+

CDOP. Thus, the “ZCE2/3” factor provides a
way to include real band-structure effects, when one models
local-field corrections in ab initio calculations of screening
properties.38

7. Generalized G0W0 approximation

A study of the self-energy as the integral over the e-h
scattering amplitude shown in Fig. 3 can also rest on an
expansion in terms of the bare Coulomb interaction �see,
e.g., Ref. 3�. In this case, the integral can be considered as
vertex corrections to the Hartree-Fock self-energy. A specific
example is the approach proposed in Ref. 2. In this approach
called “mother-of-all GW approximations” in Ref. 25 or
“generalized GW approximation” in Ref. 5, there are three
types of the irreducible e-h vertex. Each of them determines

FIG. 4. Feynman diagrams of the Hedin self-energy diagram-
matic expansion taken into consideration within the G0W�&T lad-
der approximation. The wiggly lines signify the dynamically
screened Coulomb interaction W. The solid lines with arrows rep-
resent the zeroth-order Green’s function G0. The shaded areas indi-
cate the vertex � and the scattering amplitude T evaluated in the
local approximation.
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the corresponding scattering e-h amplitude. Within the local
approximation these amplitudes read as

T�
��q� =
T0

�
��q�
1 + P0�q�T0

�
��q�
, �23�

T�t��q� =
T0

�t��q�
1 + 1

2 P0�q�T0
�t��q�

. �24�

Thus one can take into consideration the contributions of the
charge �+�, the longitudinal spin �−�, and the transverse spin
�t� decay channels. Definition of T0

�
� and T0
�t� is based

on a suggestion in the spirit of the approach of Ref. 15 that
these irreducible vertices can be identified2 with the
local-field factors through T0

�+��q�=−vc��q���1−G+�q��,
T0

�−��q�=vc��q��G−�q�, and T0
�t��q�=vc��q��Gt�q�.

Considering the integral over the scattering amplitudes
�Eqs. �23� and �24�� as an additional term with respect to the
Hartree-Fock self-energy, T�
� and T�t� should start, at least,
from the second order in vc to avoid double counting. As a
result, again, owing to the local approximation, we arrive at
the G0W0 expression �7� for the self-energy, where instead of
W0 one has the so-called effective electron-electron
interaction2,5,15

Veff�q� = vc��q�� + 	vc��q���1 − G+�q��
2Rd�q�

+ 	vc��q��G−�q�
2RSzSz
�q� + 	vc��q��Gt�q�
2RS+S−

�q� ,

�25�

with

RS+S−
�q� =

1
2 P0�q�

1 + vc��q��Gt�q� 1
2 P0�q�

�26�

being the transverse spin-response function.2

To compare this approach with those considered above,
we modify the mentioned self-energy by rewriting interac-
tion �25� as Veff�q�=W�q����q�+Vm�q� with W of Eq. �18�,
��=1+ ��−1��2−G+�, and

Vm�q� = 3
vc

2��q��G−
2�q�P0�q�

1 + vc��q��G−�q�P0�q�
, �27�

where the equivalence Gt�q�=2G−�q� for the paramagnetic
state is implied. Thus we split up the self-energy into the
contribution of charge fluctuations �d having the G0W�-like
formula and the contribution of spin fluctuations �m given by
the G0W0-like expression. Such a splitting allows us to ana-
lyze these contributions separately.

The interaction �25� can be also rewritten25 as Veff�q�
=We-t�q���q�+VLAD�q�, where VLAD�q�=Vd�q�+Vm�q� with

Vd�q� =
vc

2��q��G+
2�q�P0�q�

1 + vc��q��G+�q�P0�q�
. �28�

As a result, we reveal here that, within an approach in which
the spin-symmetric and spin-antisymmetric local-field fac-
tors are equal �for example, GX as in the first-order perturba-
tion theory�, the interaction VLAD represents T�q� of Eq. �20�
starting from the second order and not from the third one.

This means that the scattering amplitude �Eq. �20�� contains
three parts coming from the contribution of spin fluctuations
and one part—from charge fluctuations. Together with We-t,
as it used in the G0W�&T ladder approximation, such an
amplitude gives an interaction similar to that proposed in
Ref. 25, where it is considered as a more correct interaction
than Veff containing the term We-t�=W�2.

8. Numerical results and comparison

In order to address the question of what factors mainly
affect quasiparticle properties upon moving from one ap-
proach to another, we have performed extensive calculations
of the quasiparticle self-energy and the quasiparticle lifetime,
defined as39

�k
−1 = 2Zk�Im ��k,��k��� , �29�

at rs=2.07 that corresponds to the case of aluminum. In Eq.
�29�, Zk is the renormalization constant

Zk = �1 − � � Re ��k,��
��

�
�=��k�

�−1

, �30�

which determines the spectral weight of the quasiparticle,
and ��k�=k2 /2 being the noninteracting energy. First, we
examine the imaginary part of the self-energy at the four-
momentum �k ,��k��.

In Fig. 5, we show the contribution of charge-density fluc-
tuations to Im ��k ,��k�� in units of the Fermi energy EF as a
function of momentum. The contribution was calculated
without �the G0W0 approximation� and with the inclusion of
the local-field corrections. As is evident from the figure,
compared to the G0W0 approximation, the quantity of inter-
est becomes greater within the G0W approximation. It is
caused by the fact that the inclusion of the local-field correc-
tions enhances the density response. Within the G0W� ap-
proach, in the region of excitations of single e-h pairs, this
enhancement is almost totally reduced by inserting the vertex
corrections, i.e., by replacing W by the electron-test charge
screened interaction We-t that provides an additional XC in-
teraction of a test charge with electrons in the Fermi sea. In
the energy region, where a quasiparticle can decay into plas-
mons, this replacement ends up with a decrease in values of

FIG. 5. The absolute value of the imaginary part of the self-
energy �the density channel term� as a function of momentum
�k� /kF evaluated at �=��k� within the considered approaches.
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�Im ��k ,��k��� even with respect to the G0W0 curve. It is
caused by narrowing of plasmon peaks in �-dependence of
the imaginary part of the self-energy �see, e.g., Ref. 40�.
Note that this decrease is rather sensitive to the form taken
for the factor G+: Stronger local XC fields �see Fig. 2� cause
the G0W��−1� term to be larger.

The G0W�� formula yields an even larger decrease in
�Im ��k ,��k��� both in the single e-h pair excitation region
and in the plasmon emission one. It can be explained by the
fact that in this case the term additional to the G0W self-
energy is characterized by ���−1�= ��−1��2−G+�. This
means that in comparison with the G0W� case the term low-
ering the G0W curve goes up by a factor of �2−G+�.

In Fig. 6, we show the imaginary part of �T and �m.
Considering the T-matrix contribution first, one can see that
this term is quite sensitive21 to the form chosen for the factor
GX. Actually, small changes in GX, as it occurs when we use
the “NCsc” factor in place of the “NC” one �see Fig. 2�, result
in visible decreasing �Im �T� practically at any momentum
�k�, except for the vicinity of kF. In this vicinity the “NC”
and “NCsc” results are very close both to each other and to
the “ZCE2/3” curve. This is important because in contrast to

the local interaction �Eq. �21�� the approximation W˜�q�
=2W�q ,0� /3 makes ab initio calculations of the T-matrix
contribution feasible.41 The use of the local interaction of
Ref. 22 �see the “ZCE” curve� yields the T-matrix contribu-
tion that differs significantly in value and behavior.

As distinct from �T starting from the third order in W˜

=2vcGX, the magnetic term �m starts from the second order
in vcG− �see Eq. �27��. At that, �T including the contribution
of spin fluctuations and a fraction of the charge channel con-
tribution has the factor of 4, whereas �m accounting for the
magnetic channel term only is armed with the factor of 3.
Nevertheless, in spite of these differences, the “NC” and
“IP�−�” terms are of the same magnitude and demonstrate
similar behavior. The deviation of the magnetic term with the
different local-field corrections becomes particularly evident
only at �k��2.0kF, i.e., far in the plasmon emission region.

Now we consider the quasiparticle lifetime �Eq. �29��.
The obtained results are shown in Fig. 7 for several ap-
proaches. In the figure, we plot the lifetime as a function of
the exciting energy �E−EF� ranging from zero to 3.5 eV �the

range of �k� /kF from 1.0 to �1.14�. In order to give a possi-
bility to easily compare and reproduce the presented curves,
we take into consideration the fact that, within this exciting-
energy range, the scaled lifetime �� �E−EF�2 demonstrates
nearly linear behavior in �E−EF� for all the considered ap-
proaches. This means that one can use the linear fit

� � �E − EF�2 = D + S � �E − EF� �31�

to reproduce such a behavior. Table II contains our detailed
results on the scaled lifetime linear fitting in the mentioned
energy range. Here, as a reference mark, one can use the
Quinn-Ferrell formula42

�QF � �E − EF�2 = 36�3	2/2�−1/3rs
−5/2

that gives DQF=42.6932 fs·eV2 at rs=2.07.
In Table II, the renormalization constant Zk of Eq. �30� at

kF �denoted as ZF� is also presented. Here, as a reference
mark, we can regard the constant ZF

GZ=0.745 found for rs
=2.07 within the parametrization43 of the momentum
distribution44 of the uniform electron gas in its Fermi-liquid
regime. In the considered energy range, Zk varies slightly
with the momentum k. This means that, in order to obtain the
on-shell scaled lifetime �with Zk=1 in Eq. �29��, one can
multiply the presented D and S by the corresponding ZF.

As follows from Table II, taking the XC effects into ac-
count within the G0W approach results in shortening the life-
time in comparison with that in the G0W0 case, in spite of
decreasing ZF. It is caused by the increase in �Im �� �see Fig.
5�. As regards the G0W� case, one can see that this approxi-
mation depends weakly on the form chosen for the spin-
symmetric local-field factor �the ratio R clearly shows that
the parameter D changes within �2%� and gives results
close to those in the G0W0 approximation �see also Refs. 27,
40, and 45�. That is the reason why in Fig. 7 we do not show
the lifetimes obtained within the G0W� approximation.

A somewhat different situation is observed in the case of
the G0W0&T approximation. In comparison with the G0W0
lifetime, due to the inclusion of the T matrix, � becomes
noticeably shorter. The maximum lifetime shortening corre-
sponds to the approach of Ref. 22 �see the “ZCE” case in
Table II and in Fig. 7�. Note that the smallest ZF is obtained
also in this case, while the use of the “ZCE2/3” self-

FIG. 6. The absolute value of the imaginary part of the T-matrix
contribution �T and the magnetic channel term �m as a function of
momentum �k� /kF evaluated at �=��k� with different local-field
corrections.

FIG. 7. The electron lifetime � as a function of the exciting
energy E−EF.
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consistent local interaction yields the renormalization con-
stant that is the same as in the G0W0 approximation.

The main factor which in the considered energy range
governs a magnitude of the T-matrix contribution and the
magnetic term is the long-wave behavior of the local-field
factor �see inset of Fig. 2�. The point is that after an integra-
tion over angles in the formula defining the imaginary part of
�T or �m the resulting �q�-dependent integrand has a maxi-
mum at �0.25kF and �0.30kF in the “SG” and “ZCE” case,
respectively, or at �0.5kF for the “NCsc” T-matrix term. At
that, integrating over momentum up to 1.0kF, we obtain
�75% of the “SG” magnetic term, �90% of the “ZCE”
T-matrix contribution, and �50% of �Im �T� with the use of
the “NCsc” local-field factor. This means, first, that the short-
est lifetime provided by the approach of Ref. 22 �see Fig. 7�
is caused by large values of W˜ at the small-q limit �see inset
of Fig. 2, where the “ZCE” curve lies even above the G+
one�. Second, in the “NC” and “NCsc” cases, some overesti-
mation of the ladder diagrams is present, because the small
four-momentum transfer limit form for GX is used.

Note that using the “NC” local-field factor we arrive at
the G0W0&T curve which coincides with the on-shell G0W0
one �the parameter D
DQF�. According to the results of Ref.
21, such a coincidence will occur for rs values ranging from

2 to 56. Taking into account the small real part of the
T-matrix term,21 we can infer that the on-shell G0W0 ap-
proximation �Zk=1 in Eq. �29�� ensures the leading contri-
bution to many-body corrections to the Hartree single-
particle states and implicitly includes decay channels which
are not implied by the G0W0 diagram.

With the use of the “NCsc” local interaction, the
G0W�&T ladder approach modifies slightly the results ob-
tained in the G0W0&T case. This modification makes the
quasiparticle lifetime a little longer and brings ZF to its G0W0
value. As compared to the corresponding G0W� results, this
ladder approach shows how the T-matrix contribution ex-
pressed in terms of the screened interaction with the inclu-
sion of exchange effects by means of GX influences the life-
time.

As is evident from Table II and Fig. 7, in the G0Veff ap-
proach the leading G0W�� term, which represents the con-
tribution of charge fluctuations, leads to the lifetime that, in
contrast to all the cases analyzed before, noticeably exceeds
its G0W0 values. The use of the local-field factor of Eq. �13�
in �� results in the largest ZF among those presented in the
table. Similar to the G0W�&T case, the inclusion of the
additional �magnetic� term shortens � and reduces ZF. How-
ever, if the reduction of the momentum distribution discon-
tinuity is the same, the shortening of the lifetime is larger. As

TABLE II. Parameters D and S of the linear fitting �Eq. �31�� of the scaled lifetime and the renormaliza-
tion constant ZF at the Fermi wave vector kF evaluated in the considered approaches with the use of different
LF corrections. R represents the ratio between D in the G0W0 approach and this parameter in the correspond-
ing approach.

Approach LF corrections D
�fs·eV2�

S
�fs·eV�

ZF R

G0W0

None 56.2713 5.3819 0.76 1.00

G0W

CDOP 47.8690 4.0252 0.74 1.18

IP�+� 50.8109 4.4686 0.75 1.11

G0W�

CDOP 57.7073 5.7088 0.77 0.98

IP�+� 56.0002 5.3767 0.77 1.01

NC 56.7122 5.5110 0.77 0.99

NCsc 56.5789 5.4832 0.77 1.00

G0W0&T

ZCE 19.8410 4.8361 0.73 2.84

ZCE2/3 40.8488 5.3854 0.76 1.38

NC 42.1833 4.2696 0.75 1.33

NCsc 45.8245 4.5450 0.75 1.23

G0W�&T

NCsc 46.0464 4.6175 0.76 1.22

G0W��
CDOP 64.7112 7.1842 0.79 0.87

IP�+� 60.9492 6.3502 0.78 0.92

G0Veff

CDOP and SG 50.0421 5.6466 0.78 1.13

IP�+� and IP�−� 47.2844 5.1230 0.77 1.19
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a cumulative result, we can infer that in the considered
exciting-energy range the G0W�&T and G0Veff approaches
are similar both by values �see Fig. 7� and physics behind
them. At that the G0W�&T approximation does not involve
quantities, which are defined outside the scope of the ap-
proach.

B. First-principles calculations

In first-principles calculations, as a rule one starts not
from the Hartree level, but from the local-density approxi-
mation �LDA�. In this case the Kohn-Sham �KS� single-
particle wave functions �kn

KS and energy eigenvalues �kn
KS are

regarded as good approximations to the quasiparticle ones.
As a consequence, the many-body correction to �kn

KS is de-
fined by the matrix element ��kn

KS��������kn
KS� of the differ-

ence ��=�−vLDA
xc between the self-energy and the XC po-

tential vLDA
xc obtained in the LDA.14 This leads to the inverse

lifetime �Eq. �29�� given by

�kn
−1 = 2Zkn�Im ��kn��kn

KS�� �32�

with the renormalization factor �Eq. �30�� rewritten as

Zkn = �1 −
� Re ��kn���

��
�

�=�kn
KS

−1

. �33�

The self-energy, in turn, is expressed in terms of the zeroth-
order Green’s function G0 built up from �kn

KS and �kn
KS.

As follows from the above, the G0W0 and G0W0&T ap-
proximations set bounds to the results of the majority of the
considered approaches. Therefore, in this work, we perform
ab initio calculations within these approximations only. We
believe that it is well enough to accomplish our goal of com-
parison. Using the spectral function representation of G0 and
W0, one can explicitly write down the imaginary part of the
G0W0 self-energy as14

Im �kn��� = � �
qn�

�
ij

��kn
KS�q−kn�

KS �Bqi�

� Im�W0�ij�q, 
 �q−kn�
KS

� ��

� �Bqj��q−kn�
KS �kn

KS���
�q−kn�
KS

� ��� , �34�

where the upper �lower� sign corresponds to the exciting en-
ergy ��EF ���EF� and the sum over occupied �unoccu-
pied� states. In Eq. �34�, ��x� is the step function, 	Bki�r�
 is
a set of appropriate Bloch basis functions, and �W0�ij are
matrix elements of the RPA screened interaction in this basis.
In the present work, the functions �kn

KS and energies �kn
KS are

calculated by using both the linear muffin-tin orbital
�LMTO� method and the plane-wave pseudopotential ap-
proach. Within the latter, the functions Bki are plane waves
with i numbering reciprocal lattice vectors, whereas within
the former they are represented by products of LMTO’s.46

Having obtained the imaginary part of the self-energy, its
energy-dependent real part can be found from the Hilbert
transform.

In order to obtain the T-matrix contribution �T, Eq. �20� is
considered as a relation between the matrices �T�ij�q ,��,

�W˜�ij�q ,��, and �P0�ij�q ,�� found in the basis 	Bki�r�
. Fur-
ther, Eq. �34� is used with �T�ij instead of �W0�ij. The main

problem here is to calculate the local interaction �W˜�ij. Tak-
ing into account the results of Sec. II A 8, we model this

interaction as �W˜�ij =
2
3 �W0�ij�q ,0�. As a result, we have a

possibility to include real band-structure effects into the fac-
tor GX.

Having obtained the self-energy, one can evaluate the life-
time using Eqs. �32� and �33�. In order to compare the ob-
tained results with the jellium-model curves, we average the
calculated lifetime over momenta for a given exciting en-
ergy.

In Fig. 7, we show the LMTO results on momentum-
averaged electron lifetimes in aluminum. Here we see that
these ab initio results reproduce rather well the jellium-
model curves. As in the jellium model, we also reveal that
the on-shell G0W0 and G0W0&T results practically coincide.
This means that within our numerical accuracy we do not
find any considerable effect caused by taking the real band
structure of aluminum into account.

However, it is worth emphasizing that the lifetime values
evaluated within the same approximation �e.g., the on-shell
G0W0 one� vary with the method for band-structure calcula-
tions. As an example, in Fig. 8, we compare the LMTO re-
sults with the plane-wave pseudopotential lifetimes �calcula-
tions of the present work are marked as PWP-1, while
PWP-2 labels data taken from Ref. 47� and lifetimes ob-
tained in Ref. 48 within the linearized augmented plane-
wave method �LAPW�. Other published ab initio results
�e.g., Ref. 49� correspond to the data spread plotted. As is
evident from the figure, one can draw different conclusions
about the role of real band-structure effects. Actually, these
effects can lead to both shortening the quasiparticle lifetime

FIG. 8. The electron lifetime � as a function of the exciting
energy E−EF evaluated within the G0W0 on-shell approximation.
The open squares represent the LMTO calculations. The solid
circles depict the present calculation results obtained within the
plane-wave pseudopotential approach �PWP-1�. The open circles
�labeled as PWP-2� correspond to results of Ref. 47. The solid
diamonds represent the lifetime �some representative points� ob-
tained in Ref. 48 with the use of the LAPW method. The shaded
area bounded by two jellium-model curves “G0W0” and “G0W0

on-shell” includes jellium-model calculations �see Fig. 7�.
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and making it longer. Nevertheless, as an analysis of the
calculated scaled lifetime has shown, all the presented ab
initio data demonstrate the free-electron-like behavior of � as
a function of the exciting energy with underlying scattering
processes peculiar to jellium.

III. ELECTRON-PHONON SCATTERING

The phonon-induced lifetime broadening can be evaluated
from the imaginary part of the e-ph self-energy as50

�e-ph��� = 2	�
0

�m

d��2F��;��

��1 + 2n��� − f�� − �� + f�� + ��� . �35�

Here, f and n are the Fermi and Bose distribution functions,
respectively, which introduce the temperature dependence of
�e-ph, and �m is the maximum phonon frequency. The basic
quantity is the Eliashberg spectral function which measures
the contribution of phonons with energy �� to the scattering
of electrons:

�2F��;�� =
1

N����q,�
��� − �q,�� �

ki,kf

�g�ki,k f,q,���2

����ki
− �����kf

− �� , �36�

where g�ki ,k f ,q ,�� is the e-ph matrix element which indi-
cates the probability of electron scattering from initial state
ki to final state k f by phonon �q ,��. The sum is carried out
over initial and final electron states with energy � to obtain
the spectral function averaged over electron momentum.
N��� is the electron density of states per atom and per spin at
energy �. In Eq. �36� we apply the quasielastic approxima-
tion ���ki�f�

−�
�q,��
���ki�f�
−��, which allows to calculate

�e-ph with the same Eliashberg spectral function for both
emission and absorption processes. The strength of the e-ph
coupling � is defined as a first inverse frequency moment of
the spectral function:50

���� = 2�
0

�m �2F��;��
�

d� . �37�

The calculations were performed by using the density-
functional perturbation theory51,52 and the PWSCF code.53 The
electron-ion interaction was described by a nonlocal norm-
conserving pseudopotential generated following von Barth
and Car.53 To average the e-ph spectral function over all the
initial states we used a dense mesh of up to 900 k points in
the irreducible Brillouin zone �IBZ�. The summation over
phonons �q ,�� in Eq. �36� was carried out over 256 wave
vectors in the irreducible part. Since the set of wave vectors
sampled in the IBZ is large enough the results depend only
slightly on the value of the smearing width.

We have calculated �e-ph��� as a function averaged over
electron momentum. Figure 9�a� shows the lifetime broaden-
ing of excited electrons at different temperatures. As one can
see, �e-ph��� varies slightly with energy outside the Debye
energy. In particular, the variation range does not exceed 10
meV at T=0 and comes up to 40 meV at room temperature.

For exciting energies of 0.1–2.5 eV �e-ph���
40 meV at
T=0 and then increases slowly with �. The calculated e-ph
coupling parameter ���� averaged over momentum for the
same energies varies between 0.44 and 0.59 �see the inset of
Fig. 9�a��. The values of � at 0.1–2.5 eV nearly coincide
with the e-ph coupling parameter evaluated at the Fermi
level of Al, ��EF�=0.43. The temperature dependence of the
e-ph contribution is evident. At room temperature, �e-ph���
ranging from 66 meV to 104 meV becomes twice as much as
the e-ph contribution at T=0.

The obtained data can also be momentum resolved to
show the dependence of the e-ph coupling on the energy
band. For example, Fig. 10 shows the lifetime broadening for
excited electronic states in the electron bands Z3, Z4, and Z1
�XW symmetry direction� of Al at T=0 K. As evident from
the figure, the dependence of the e-ph contribution �e-ph���
on the energy band �Z4 or Z1� is rather appreciable. The
values at the same energy can vary, for example, by 24 meV
at �=1.3 eV and by 5 meV at 4 eV.

Figure 9�b� presents the momentum averaged e-ph spec-
tral function for �=2 eV which turns out to be very similar
to �2F�� ;�� at EF also shown in the figure. The difference is
noticeable only at low energies where the contribution of the

FIG. 9. �a� Phonon-induced lifetime broadening �e-ph averaged
over electron momentum as a function of exciting energy at differ-
ent temperatures. The inset gives the energy dependence of the
corresponding e-ph coupling parameter �. �b� Phonon density of
states F��� �thin line� and e-ph spectral function �2F�� ;�� at EF

�solid line� and at E−EF=2 eV �dashed line�.
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corresponding phonon modes increases gradually with elec-
tronic state energy. On the whole, the high-energy phonons
are more involved in the scattering processes of electrons
than the low-energy part of the phonon spectrum which is
strongly suppressed by e-ph matrix elements not only on the
Fermi surface. The same feature was also reported for other
simple metals Be �Ref. 54� and Mg �Ref. 55�. It is not the
case for d-metals like Pd, where the phonon density of states
and the Eliashberg spectral function at EF are very similar in
shape though the high-energy part of phonons is suppressed
more by e-ph matrix elements than the low-energy modes.8

IV. DISCUSSION AND CONCLUSIONS

In this work, we have considered theoretical approaches
to the quasiparticle lifetime �decay rate�, which are most fre-
quently used in the literature. We have also proposed an ap-
proach based on a variational solution to the Bethe-Salpeter
equation defining the electron-hole scattering amplitude in
the ladder approximation. With the screened Coulomb inter-
action evaluated beyond the RPA, the quasiparticle self-
energy of the approach consists of the G0W� part, which
accounts for the leading contribution of charge-density fluc-
tuations, and the T-matrix part, which enables one to take
into consideration the contribution of spin-density fluctua-
tions. Within the jellium model, we have demonstrated that,
at exciting energies less than 3.5 eV, all the considered ap-
proaches yield rather close results on the quasiparticle life-
time in aluminum. An exception is the method that sums
ladder self-energy diagrams by using the half inverse static
dielectric function as an exchange part of the many-body
local-field factor.

We have shown that the on-shell G0W0 approximation
that ensures the leading contribution to many-body correc-
tions simulates additional decay channels which are not im-
plied by the G0W0 diagram. Regarding the question of how
different expressions for the local-field factors influence the
self-energy within the same approach, we have revealed that
the approaches, which take into consideration the contribu-
tion of spin-density fluctuations, are the most sensible ones.
Also, we have analyzed what effect the mentioned fluctua-

tions produce on quasiparticle properties. We find that the
more scattering processes are involved in the electron-hole
interaction, the greater the renormalization constant is. At the
same time, the contribution to the imaginary part of the self-
energy has a trend to become smaller within the considered
exciting-energy range.

We have performed ab initio calculations of the lifetime
in aluminum with the use of both the linear muffin-tin orbital
method and the plane-wave pseudopotential theory. In the
first case, the ab initio results are similar to those obtained
within the jellium model, whereas in the second case there is
a decrease in lifetime values by �15%. By this we demon-
strate the dependence of real band-structure effects on prac-
tical schemes and computational details.

Also, the phonon contribution to the lifetime has been
considered. On the basis of ab initio calculations, we have
shown that, except for the Fermi energy vicinity, the phonon-
induced lifetime broadening �e-ph��� averaged over momen-
tum varies slightly with exciting energy. However, the mo-
mentum resolved e-ph contribution as a function of exciting
energy exhibits different behavior depending appreciably on
electron energy band. The temperature dependence of
�e-ph���, which becomes twice as much at room temperature
as compared with the e-ph contribution at T=0 K, is also
evident. The analysis of phonon modes participating in the
scattering processes of electrons has shown that the main
contribution comes from the high-energy part of the phonon
spectrum whereas the low-energy phonons are strongly sup-
pressed by e-ph matrix elements at all the exciting energies
considered.

In Fig. 11, we plot the ab initio results as compared with
time-resolved two-photon photoemission �TR-2PPE� data
available.56 As is obtained for other systems,57 G0W0 life-
times �representing here the group of the considered ap-
proaches giving close lifetime values� are longer than experi-
mental TR-2PPE relaxation times. In the case of aluminum,
at E−EF�1.7 eV, it becomes particularly evident. On the

FIG. 10. Phonon-induced lifetime broadening �e-ph as a function
of exciting energy for electronic energy bands Z3, Z4, and Z1 �XW
symmetry direction of the Brillouin zone� in Al at T=0 K. FIG. 11. The electron lifetime � as a function of the exciting

energy E−EF. The dashed line represents the LMTO lifetime cal-
culated within the on-shell G0W0 approximation. The solid line cor-
responds to the sum of the inelastic lifetime broadenings �e-e

G0W0 and
�e-ph �at T=0 K�. The solid squares are experimental data taken
from Ref. 56.
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whole, the behavior of the TR-2PPE relaxation time is such
that additional decay processes should be considered.

Taking into consideration both electron-electron and
electron-phonon inelastic scattering processes, we arrive at
electron lifetimes �solid line in Fig. 11� which demonstrate
the energy dependence similar to that for the experimental
relaxation times. Such a similarity is caused by a compara-
tively large e-ph contribution to the inelastic linewidth within
the exciting-energy region, where the e-e contribution is
rather small �see Fig. 12�. As exciting energy increases, the
linewidth due to the e-e scattering strengthens gradually,
while �e-ph changes hardly. This results in considerable short-
ening of the quasiparticle lifetime at energies up to E−EF
�2.0 eV and in a fairly good agreement between the experi-
mental data and theoretical results.

However, this agreement occurs for �e-ph at T=0 K,
whereas at room temperature the calculated inelastic lifetime
becomes notably shorter. This fact causes certain problems in
definition of the proper approach by comparing to the experi-
mental data. As to possible transport and cascade electron
contributions to the relaxation time, a rough estimation does
not help either to find the theoretical approach appropriate to
the case.

In conclusion, the presented comparative analysis of dif-
ferent approximations of many-body perturbation theory as
applied to aluminum has shown that the lifetime broadening
coming from inelastic electron-electron scattering varies
within �25% with the inclusion of scattering processes ad-
ditional to those described within the G0W0 approximation.
In comparison with the jellium model, taking the real band
structure into account does not lead to any essential changes
in the behavior of the lifetime as a function of exciting en-
ergy, except for some shortening. The behavior is notably
changed by including the electron-phonon contribution: The
total inelastic lifetime demonstrates relatively weak energy
dependence and, with the phonon-induced broadening evalu-
ated at T=0 K, decreases from �15 fs to �5 fs with excit-
ing energy that increases from 0.5 eV to 3.0 eV.
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