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We present a detailed analytical theory for the plasmonic nanoring configuration first proposed by Alù et al.
�Opt. Express 14, 1557 �2006��, which is shown to provide negative magnetic permeability and negative index
of refraction at infrared and optical frequencies. We show analytically how the nanoring configuration may
provide superior performance when compared to some other solutions for optical negative-index materials,
offering a more “pure” magnetic response at these high frequencies, which is necessary for lowering the effects
of radiation losses and absorption. Sensitivity to losses and the bandwidth of operation of this magnetic
inclusion are also investigated in detail and compared with other available setups.
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I. INTRODUCTION

Engineering metamaterials with anomalous values of their
constitutive parameters, and in particular with negative real
parts of their permittivity � and/or permeability �, have be-
come a popular topic of research interest since the anoma-
lous refractive properties of left-handed materials �i.e., media
with both effective permittivity and permeability with nega-
tive real part and sufficiently low losses� have been demon-
strated experimentally at microwave frequencies.1 The tech-
nology behind such composite materials is fairly well
established in this frequency regime and involves the use of
resonant man-made inclusions, with sizes much smaller than
the wavelength of operation, interacting with the local elec-
tromagnetic fields to induce a proper resonant response in the
effective permittivity and/or permeability of the composite
homogenized metamaterial. At these relatively low frequen-
cies this is commonly obtained by utilizing conducting ma-
terials shaped as dipoles, which induce an �-negative
response,2 and as split-ring resonators �SRRs�, which provide
negative real part for �.3

The interest in translating these concepts to higher fre-
quencies, namely, near infrared and optical frequencies, has
met some technological challenges for what concerns the en-
gineering of a negative real part of permeability. If some
plasmonic materials, such as noble metals and polar dielec-
trics, have naturally a negative permittivity around this range
of frequencies,4 no natural materials indeed possess a nega-
tive permeability at optical frequencies. The same concept of
permeability has even been questioned at optical frequencies
in highly respected textbooks �Sec. 79 of Ref. 5�, where it is
argued that when the atomic size of the materials becomes
comparable with the wavelength of the electrons, i.e., for
sufficiently high frequencies, a magnetic polarization cannot
be associated with the electromagnetic response of materials
and it is “an over-refinement to distinguish between the mag-
netic displacement B and the magnetic field H.” It is worth
noting that in the same book it is also stated that at optical
frequencies “the effects due to the difference of � from unity
are in general indistinguishable from those of the spatial dis-
persion of the permittivity” �Sec. 103 of Ref. 5�, implicitly
assuming that although a magnetic response in its classic

sense is not expected from optical frequencies onwards, a
proper spatial dispersion in the material response may effec-
tively produce a magnetic response noticeably different from
that of free space. This is clearly related to the well-known
concept, true at any frequency range, that Maxwell equations
may be equivalently written by embedding the magnetic po-
larization into a proper spatial dispersion of the
permittivity.5,6 In other words, it appears possible, at least in
principle, to envision a proper subwavelength molecular
shape interacting with the optical magnetic field �or, if pre-
ferred, with the curl of the optical electric field� inducing a
non-negligible magnetic-dipole moment.

If a mere scaling of the SRR inclusion, widely employed
at lower frequencies, is not easily feasible due to the change
in the conduction properties of optical materials and the re-
lated well-known problems of saturation,7 several proposals
have been presented in the recent years to overcome this
difficulty and engineering an effective �-negative metamate-
rial in the visible. In Ref. 8 an SRR-shaped metallic inclu-
sion has been shown to work for this purpose up to the tera-
hertz �infrared� regime, whereas in Refs. 9 and 10 properly
engineered defects in photonic crystals have been shown to
induce a dominant magnetic-dipole moment at optical fre-
quencies. Guided waves in anisotropic or plasmonic
waveguides have been shown to “experience” an effective
negative permeability,11–13 and many other proposals of uti-
lizing properly designed plasmonic resonances for inducing a
magnetic-dipole response have been presented independently
by several groups.14–27

In particular, the coupling between a pair of closely
spaced plasmonic nanoparticles has been shown in Refs.
14–25 to support an antisymmetric resonance exhibiting a
sensible magnetic-dipole contribution. In order to make this
contribution significant, however, in some of these works the
size of the inclusion had to be comparable with the wave-
length of operation, making hardly distinguishable the
metamaterial resonance due to the particles embedded in the
material from the lattice resonance typical of any photonic
band-gap structure. Even the homogenization procedure for
assigning an effective permeability may be inadequate when
the lattice period becomes comparable with the wavelength
of operation.28–30
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Coming from a different point of view, for the same pur-
poses we have proposed to exploit the resonance supported
by arrangements of �more than two� plasmonic nanoparticles
placed around a circular subwavelength loop26 in order to
synthesize a nanoring magnetic resonator at optical frequen-
cies. We have shown how this geometry effectively responds
to a magnetic-field excitation with a dominant magnetic-
dipole response, similar to what an SRR inclusion would do
at lower frequencies. The main difference consists in the
physics behind the two phenomena: if an SRR at microwave
frequencies supports a resonant conduction current circulat-
ing around the center of the inclusion following the specific
shape of the loop and guided by the conducting material
composing the ring, in the nanoring geometry the displace-
ment current takes the same role, being guided by the plas-
monic resonances of the particles composing the loop. If the
conduction of materials is weakened by an increase in the
frequency of operation �e−i�t dependence�, the role of the
displacement current, i.e., the time derivative of the electric
displacement vector −i�D, being proportional to the fre-
quency of operation, indeed takes a dominant role at these
high frequencies. The proper arrangement of such plasmonic
nanoparticles, each of them near their own resonant fre-
quency, around a subwavelength loop supports a resonant
circulation of displacement current that induces a strong
magnetic response of the nanoring in its entirety. This inter-
pretation is also consistent with our recently introduced
nanocircuit paradigm,31,32 for which loops of plasmonic
nanoparticles interleaved by insulating gaps may be inter-
preted as the resonant interconnection of inductors and ca-
pacitors in a loop shape, somewhat transplanting the concept
of SRR into the optical nanocircuits.

An important point arising from our analysis26 consists in
the fact that the size of the nanoring is weakly related to the
resonant properties of this magnetic effect, but rather its
resonance is mainly associated with the plasmonic features
of the individual particles constituting the nanoring. Its size,
therefore, may be designed to be sufficiently small to allow
the proper definition of an effective permeability for an op-
tical metamaterial constituted of such nanoring inclusions.

In Ref. 26 it was also shown how this same inclusion may
possess, in addition, a resonant electric response and, pro-
vided that the electric and magnetic resonances are designed
to arise at close frequencies, the resulting metamaterial may
have overall left-handed properties, combining a negative
real part of its effective permittivity and permeability. This
may constitute an interesting venue to design left-handed
metamaterials at optical frequencies. Analogous properties of
such plasmonic nanorings have been later verified numeri-
cally with a dynamic analysis in a recent paper.27

In this paper, following these concepts, we develop a fully
dynamic analysis of the magnetic response of the nanoring
geometry, providing physical insights into this anomalous
magnetic nanoresonance and comparing its magnetic re-
sponse with the one obtained from pairs of plasmonic nano-
particles. We will show how the use of multiple particles
arranged in this circular geometry ensures a stronger and
“cleaner” magnetic-dipole response, effectively creating the
first attempt to design a purely magnetic inclusion at optical
frequencies. We also study in detail the bandwidth of such

resonance and the sensitivity to losses as a function of the
nanoring geometry.

II. GEOMETRY OF THE PROBLEM

As proposed in Ref. 26 our geometry of interest is formed
by a collection of N plasmonic subwavelength isotropic
nanoparticles of polarizability �p arranged equidistantly
around a circumference of radius R��b in the x-y plane, as
schematically depicted in Fig. 1. Here �b is the wavelength
of operation in the background material, which is assumed in
the following to have a permittivity �b and free-space perme-
ability �0. The excitation is assumed monochromatic with
e−i�t time dependence. If the center of the loop is at the
origin of a Cartesian reference system, the center of each
particle is placed symmetrically with respect to the origin at
the point r j ��R cos�2�j /N� , R sin�2�j /N� ,0� with j
=0, ... ,N−1. Note how this general geometry may describe
also the situation of a pair of two closely spaced nanopar-
ticles, as in Refs. 14–22, which would correspond to the case
of N=2, with their center-to-center distance being equal to
2R.

III. MAGNETIC RESPONSE OF THE NANORING

Consider now the response of this nanoring to a uniform
magnetic-field excitation Himp=Himpẑ directed along the axis
of the loop. The hypothesis of describing the electromagnetic
interaction of the particles composing the loop only through
their electric polarizability �p is justified by the subwave-
length size of each one of the particle and by the fact that
they are nonmagnetic, i.e., the permeabilities of each particle
and of the background material are all equal to that of free
space �0. This implies that each of the particles responds
solely to the local electric field Eloc and not directly to Himp.
Integrating Maxwell equation ��Eimp= i��0Himp under the
assumptions of a uniform quasistatic magnetic field over the
volume occupied by the loop and of subwavelength dimen-

FIG. 1. �Color online� A nanoring made of N nanoparticles sym-
metrically displaced around the origin of a Cartesian reference sys-
tem in the x-y plane. The electric polarization response to a uniform
magnetic excitation is depicted in the figure, ensuring purely rota-
tional induced electric dipoles �black arrows�.
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sions, we find that the following relation holds on the cir-
cumference where the particles are placed:

Eimp =
i��0RHimp

2
�̂ . �1�

Equation �1� derives the amplitude of the electric field im-
pressed on each particle, relating the magnetic response of
the nanoring to the local variation, i.e., the curl, of the im-
pressed electric field, consistent with the previous discussion
on the necessity of tailoring the weak spatial dispersion of
the molecule to achieve, at these high frequencies, a non-
negligible magnetic response. It should be noted that under
the quasistatic assumption of a uniform magnetic field on the
nanoloop, the averaged electric field on the system is zero, as
it is clear from Eq. �1�. This allows isolating the magnetic
response of the nanoring from its possible electric response,
which has been analyzed numerically in Ref. 26.

Each of the nanoparticles composing the loop, therefore,
is excited in this case by an impressed electric field directed
along the tangent to the circumference along which they are
positioned and proportional to the uniform magnetic field on
the loop. Owing to the symmetry of geometry and excitation,
the electric dipoles induced over the particles are also di-
rected along �̂, as depicted in Fig. 1 by the black arrows over
each particle. The induced dipole amplitude is proportional
to the local electric field induced on the volume of each
particle when its self-polarization contribution is not
considered,28,29 which is Eloc=Eimp+� j�j�E j j�=Eloc�̂
through the proportionality factor �p. In this expression E j j�
is the electric field induced by the dipole j on the position
where the particle j� is placed. Each one of the N particles
can, therefore, be represented as an effective dipole moment
p= p�̂=�pEloc�̂. Moreover E j j�= pQ j j� · �̂�r j��, where

Q j j� =
eikb�rj−rj��

4��b�r j − r j��
�kb

2�I − D j j�� + 	 1

�r j − r j��
2 −

ikb

�r j − r j��



��3D j j� − I�� �2�

is the three-dimensional �3D� dyadic Green’s function as

usually defined,28 with D j j�= �r j −r j� / �r j −r j����r j −r j� / �r j

−r j���, I being the identity dyadic, kb=���b�0=2� /�b, and
�̂�r j�� is the spherical unit vector �̂ at the location r j�; the
final closed-form expression for p is given by:

p =
i��0RHimp/2

�p
−1 − �

j�j�

N−1

Q j j� · �̂�r j� · �̂�r j��

. �3�

This expression, although derived under a different form
of excitation, is consistent with the results in Ref. 26, and it
is a fully dynamic expression valid within the only approxi-
mation that the dominant multipole order for each nanopar-
ticle composing the loop is dominated by its electric-dipole
response. For expressing the summation in the denominator
of Eq. �3� in a compact form, in Ref. 26 we have used the
static approximation of Q j j�, which neglected the radiation
contribution from the individual dipoles and therefore did
not satisfy the energy conservation relations for the nanoring.
Here, instead, we analyze in more detail the dynamic expres-
sion �3�, which allows us to show and discuss what are the
inherent fundamental limits and the conditions under which
such nanoring may be regarded as an effective magnetic in-
clusion.

For symmetry, the summation in Eq. �3� is independent of
the index j�, and therefore in its evaluation we can consider
j�=0 without losing generality. This implies that we are
evaluating the specific effective dipole amplitude of the par-
ticle placed at the point r0= �R ,0�. In this dynamic case, the
expression inside the summation in Eq. �3� may be evaluated
in closed form by noticing that �r j −r0�=2R�sin�j� /N�� and
the angle 	 formed by r j −r0 and x̂ is 	= �j� /N�− �� /2�, as
geometrically depicted in Fig. 1. We therefore obtain the
interesting dynamic result:

Q j0 · �̂�r j� · �̂�r0� =
e2ikbR sin�j
�

64�R3�b

3 − 3kb
2R2 + �1 + 4kb

2R2�cos�2j
� − kbRkbR cos�4j
� + i�5 sin�j
� + sin�3j
���
sin3�j
�

, �4�

with 
=� /N.
Expanding this expression in the Taylor series of R, we

can have a better insight into the meaning of Eq. �3�. In
particular, the imaginary part of Eq. �4� contains only even
powers of R, whereas the odd powers are associated with its
real part. We can write

Re�Q j0 · �̂�r j� · �̂�r0�� =
3 + cos�2j
�

64��bR3 sin3�j
�
+ o�kbR� ,

Im�Q j0 · �̂�r j� · �̂�r0�� =
kb

3 cos�2j
�
6��b

+
kb

5R2�1 − 3 cos�2j
��sin2�j
�
30��b

+ o�kbR�4. �5�

The imaginary part in Eq. �5�, in particular, relates di-
rectly to the power radiated by each one of the dipoles, pro-
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viding an insight into the dynamic physical behavior of the
nanoring �this imaginary part had been neglected in our qua-
sistatic analysis in Ref. 26�. It can be noted from Eq. �3� that
a self-sustained �i.e., source free for Himp=0� eigensolution
for such a system of particles may be obtained under the
condition that the denominator in Eq. �3� vanishes, i.e.,

�
j=1

N−1

Q j0 · �̂�r j� · �̂�r0� = �p
−1. �6�

The complex dispersion relation �6� for the nanoring reso-
nances depends directly on the inverse of the polarizability
�p

−1 of each nanoparticle in the loop. This quantity represents
just one degree of freedom in our problem, represented by its
real part �which corresponds to the reactance of our particle�,
since Im��p

−1� is directly related to the radiation and Ohmic
losses of the particle itself and it is determined merely by
energy relations, consistent with the discussion for the linear
array problem that we have discussed in Ref. 33. For in-
stance, it is well known how for a single isolated particle
with lossless material, Im��p

−1�=−kb
3 / �6��b�, due to its dipo-

lar scattering loss.29

This implies that a self-sustained resonant condition may
not be achievable for passive nanoparticles since, even in the
ideal lossless case, they radiate some energy. A complete
self-sustained resonance may be obtained only if the par-
ticles may compensate such radiation, i.e., if they are “ac-
tive.” This is confirmed, taking the imaginary part of both
sides of Eq. �6�, using Eq. �5�, and evaluating the involved
summation. For any N�2 this yields

−
kb

3

6��b
+

Nkb
5R2

24��b
+ o��kbR�4� = Im��p

−1� . �7�

For passive particles, for which33

Im��p
−1� = − kb

3/�6��b� − �loss, �8�

with �loss being a strictly positive quantity taking into ac-
count the possible Ohmic absorption, Eq. �7� cannot be sat-
isfied, and a self-sustained mode is not achievable due to the
inevitable presence of radiation losses. In particular, it is in-
teresting to note how, in the limit of lossless particles or
whenever Ohmic absorption may be neglected, the right-
hand side of Eq. �7� cancels out the first term in the left-hand
side for any N�2, term that corresponds to the contribution
to the electric-dipole moment radiation. Physically, this is
explained by the fact that a system with more than one par-
ticle arranged in this configuration and excited by a uniform
magnetic field does not possess any electric-dipole moment.
Moreover, as we show in the following, the second term in
Eq. �7�, which is a strictly positive quantity, takes into ac-
count the power associated with the magnetic-dipole radia-
tion, whereas the o��kbR�4� is associated with the higher-
order multipole radiation contributions. Considering the
presence of these radiative terms �i.e., considering the dy-
namic behavior of Green’s function� implies the finiteness of
the amplitude in Eq. �3� for any �real� frequency, as a symp-
tom of the presence of radiation damping from the loop, even
in the absence of Ohmic absorption.

After these considerations, it is interesting to expand the
current distribution represented by these induced dipoles, all
directed along �̂�r j� and with equal amplitude �Eq. �3��, in
terms of its multipole moments. In other words we evaluate
here the quasistatic multipole expansion of the current den-
sity J=−i�p� j=0

N−1�̂�r j�
�r−r j�. The quasistatic electric mul-
tipoles of order n, indicated in the following as pH

�n�, with the
subscript H to indicate that they are generated by a uniform
magnetic excitation of the loop, may be written as the fol-
lowing n-adic �Sec. 4.1 of Ref. 34�:

pH
�n� =

i

�
	�

V

Jr�n−1� + rJr�n−2� + ¯ + r�n−2�Jr + r�n−1�J
dV

= p�
j=0

N−1

�̂�r j�r j
�n−1� + ¯ + r j

�n−1��̂�r j� , �9�

where V is any volume containing the nanoparticles compos-
ing the loop and r�n−1� is the �n−1�-adic formed by the con-
secutive dyadic products of �n−1� vectors r= �x ,y ,z�. Ex-
panding the summation in Eq. �9� and applying geometrical
considerations, it follows that

pH
�n� = 0 for any n  N − 1, �10�

and the amplitude of the residual nonvanishing higher-order
electric multipoles is proportional to Rn−1.35

This result implies, as anticipated, that any configuration
with two or more identical nanoparticles displaced symmetri-
cally around the origin does not show any electric-dipole
moment response to a uniform magnetic excitation. The
higher the number of particles is, the more electric multi-
poles are canceled.

The magnetic multipoles mH
�n� may be written by duality

using formula �9� after the substitution J→−�i� /2�r�J.34

In this case, applying similar geometrical considerations it
follows that

mH
�2n� = 0 for any 2n  N , �11�

whereas odd magnetic multipoles mH
�2n+1� are always present

in the radiation from the nanoring. In particular, the
magnetic-dipole moment has amplitude

mH
�1� =

− i�pNR

2
ẑ , �12�

and the amplitude of all the nonvanishing magnetic multi-
poles is proportional to NRn.

The result in Eq. �12� is consistent with the findings de-
rived heuristically in Ref. 26 by analyzing the far-field radia-
tion by nanoring in the limit of �kbR�→0. This multipole
expansion rigorously proves this result and aims to address
the extent to which its electromagnetic response may be ef-
fectively considered “purely” magnetic as a function of its
geometrical parameters. In other words, in the following we
answer the questions how well may this configuration of
nanoparticles support a pure magnetic resonance as a func-
tion of its geometry and number of particles and how close
may the near-field resemble the one produced by an ideal
magnetic loop. The answer to these questions is important
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when we aim to embed such nanorings as artificial molecules
in a host medium in order to form a bulk metamaterial with
magnetic and/or negative-index properties. We show in the
following the advantages of employing a larger number of
particles around the loop.

When the particles composing the nanoring are only two,
the radiated field is dominated not only by the magnetic-
dipole moment—with expression given by Eq. �12�, mH

�1�

=−i�pRẑ—but also by a non-negligible electric-quadrupole
moment pH

�2�=2pR�x̂ŷ+ ŷx̂�. This quadrupolar contribution,
which is often neglected in the analysis of metamaterials
constituted by pairs of coupled nanoparticles, has been no-
ticed in Refs. 36 and 37. The magnetic and quadrupolar con-
tributions, as evident from the previous formulas, are of the
same order with respect to R, and therefore the quadrupolar
contribution cannot be reduced by varying the nanopair size.
This should be clearly taken into account when such pairs
are embedded in a bulk metamaterial. At the other extreme,
when the number of nanoparticles becomes large, the electric
multipoles are all negligible, whereas only the odd magnetic
multipoles have a role in the radiation from such loop. For a
sufficiently small loop, however, the contribution of the
magnetic-dipole moment, equal to Eq. �12�, dominates the
second major contribution, i.e., the magnetic octupole mo-
ment, which is equal to mH

�3�=−i�pNR3 /2�x̂x̂ẑ+ x̂ẑx̂+ ẑx̂x̂
+ ŷŷẑ+ ŷẑŷ+ ẑŷŷ�. When the number of particles is not large
enough and/or the loop is not electrically very small, so that
higher-order multipoles may be non-negligible, it is prefer-
able to use an even number of particles in order to cancel the
contribution from even magnetic and odd electric multipoles
�see Refs. 35–38�. It should be mentioned here that, in an
effort to create a purer magnetic molecule with a larger num-
ber of nanoparticles around a smaller radius R, we may de-
sign very closely spaced nanoparticles, a condition that
weakens the possibility of assuming that the interaction be-
tween neighboring particles may be accurately described by
a simple electric-dipole model. A large set of full-wave nu-
merical simulations of this problem, however, ensures us that
the analysis developed here still holds with accuracy, even
though the magnetic resonance may be slightly shifted from
the predicted value, due to the presence of a non-negligible
parasitic capacitance between neighboring particles. These
effects, which may be properly taken into account in a more
accurate multipolar analysis or with a numerical software, do
not affect the elegant analytical results derived here, which
remain qualitatively valid even in extremely packed geom-
etries.

Following this discussion, Fig. 2 shows the calculated
field distribution for the electric field E� in the plane �
=� /2 at different radial distances r from the origin, normal-
ized to the �uniform� field that would be radiated by an ideal
magnetic dipole with the amplitude given by Eq. �12�. The
different examples are calculated by varying the number of
particles and the size of the loop. We note that when the
nanoring is electrically very small and there is a sufficiently
large number of particles composing the loop �R=�b /100,
N=6, Fig. 2�a��, it is sufficient to be at a distance of ten times
the particle’s radius �still very close to the loop, at a distance
r=�b /10� to experience a field distribution identical to that
of a pure magnetic dipole, and the amplitude of the normal-

ized field rapidly converges to unity. As we increase the di-
mension of the loop for the same number of particles �R
=�b /10, N=6, Fig. 2�b��, the deviation from the magnetic-
dipole field distribution becomes less sensitive to the relative
distance from the origin �normalized to the radius size�, since
we are physically more distant from each nanoparticle. This
is consistent with the fact that, although the amplitude of
higher-order multipoles increases for larger �kbR�, their radi-
ated fields decay faster away from the origin. Reducing the
number of spheres �N=4, Figs. 2�c� and 2�d��, the distance
plays a more significant role, since lower-order multipoles
start to contribute significantly �note also the difference of
scales in Figs. 2�c� and 2�e��. Reducing the loop to just a pair
of particles, as in Figs. 2�e� and 2�f�, the field distribution in
the near field as well as the far field is drastically distorted by
the presence of the electric-quadrupole radiation, which af-
fects dramatically the shape of the scattered field from the
pair, independently of its size. It is also worth noting that in
the three cases with bigger loops �Figs. 2�b�, 2�d�, and 2�f��
the normalized far-zone field does not converge exactly to
unity, as it happens for the smaller loop case of Fig. 2�a� and
2�c�, since higher-order multipoles also start to contribute
noticeably to the far-zone field.

This analysis clarifies the extent to which resonant nano-
pairs may be effectively considered and interpreted as reso-
nant “magnetic dipoles.” It is clear how, in the setups pro-
posed in Refs. 14–22 employing nanopairs to design optical
negative-index metamaterials, special attention should be
paid in interpreting the resonant response of the pair as a
magnetic dipole, since the quadrupolar contribution from
such pairs cannot be neglected and it is instead comparable
with their magnetic response. As we discuss in the following,
these serious effects should be properly taken into account in
the proper homogenization of a metamaterial formed by such
inclusions.36

It is also evident from Fig. 2 how, even in the situations
for which a pure magnetic radiation may be achieved �N
�2�, there is a minimum distance beyond which it is pos-
sible to neglect higher-order contributions to the scattering.
As in any other metamaterial design, this distance should be
properly taken into account when the nanoring is embedded
in a regular lattice for a proper homogenization.

Having evaluated the magnetic dipole �Eq. �12�� induced
by a uniform magnetic field impressed on the configuration
of Fig. 1, it is possible to define the magnetic polarizability
�m of this nanoloop, which satisfies the relation mH

�1�

=�mHimp, in the quasistatic assumption that the magnetic
field may still be considered uniform over the loop. Compar-
ing Eqs. �3� and �12� we find

�m
−1 =

4�b

N�kbR�2��p
−1 − �

j�j�

N−1

Q j j� · �̂�r j� · �̂�r j��� , �13�

where the term in the summation, being independent of j�,
has expression given by Eq. �4�. If we neglect the imaginary
part of Eq. �13�, its value becomes consistent with what we
found in Ref. 26. It is interesting to analyze more carefully in
this context this imaginary part using the Taylor expansion
�5� and Eq. �8�. We find, for any N�1

DYNAMICAL THEORY OF ARTIFICIAL OPTICAL… PHYSICAL REVIEW B 78, 085112 �2008�

085112-5



Im��m
−1� =

4�b

N�kbR�2�− �loss

− �
j=1

N−1
kb

5R2�1 − 3 cos�2j
��sin2�j
�
30��b

+ o�kbR�4� ,

�14�

where the electric-dipole contribution to radiation coming
from �p, as given in Eq. �8�, has been canceled by part of the
summation.39 The residual sum can be evaluated in closed
forms as a function of the number of particles composing the
nanoloop,

Im��m
−1� = −

4�b�loss

N�kbR�2 −
4kb

3

15�
+ o�kbR�2 for N = 2,

Im��m
−1� = −

4�b�loss

N�kbR�2 −
kb

3

6�
+ o�kbR�2 for N � 2.

�15�

These relations on the imaginary part of Eq. �14� are
again related to energy conservation issues and describe how
the power extracted by the nanoring from the impinging field
is reradiated in free space. In particular, since the power
extracted by a magnetic dipole of amplitude m=�mHimp
from an impressed magnetic field Himp is equal to28

Pext =
1

2
Re�i��0m� · Himp� =

��0

2
Im��m��Himp�2 �16�

and the power radiated by such a magnetic dipole is equal
to40

FIG. 2. �Color online� Electric-field distribution in the �=� /2 �x-y� plane varying the distance r from the origin for the resonant loop of
Fig. 1 with �a� R=�b /100, N=6, �b� R=�b /10, N=6, �c� R=�b /100, N=4, �d� R=�b /10, N=4, �e� R=�b /100, N=2, and �f� R=�b /10, N=2.
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Prad =
��0/�bkb

4

12�
�m�2 =

��0/�bkb
4

12�
��m�2�Himp�2, �17�

the following relation holds for a lossless magnetic dipole for
which Pext= Prad,

Im��m
−1� = −

kb
3

6�
, �18�

which is analogous to the condition on the inverse electric
polarizability of electric particles previously employed �Eq.
�8��. When losses are present, the radiated power is less than
the extracted one and a negative term −�mloss is added to the
right-hand side of Eq. �18�.

Interestingly, in the limit of lossless particles in the loop
�i.e., when �loss=0�, formula �15� confirms analytically the
previous condition �Eq. �18�� for any N�2, provided that we
can neglect the higher-order terms o�kbR�2. This validates the
dynamic theory derived here and ensures that a collection of
three or more plasmonic nanoparticles arranged around a
loop indeed composes a pure magnetic molecule in the qua-
sistatic limit. The additional contribution o�kbR�2 is associ-
ated with the spurious radiation from the higher-order multi-
poles, which is associated in the expression for the magnetic
polarizability expression with radiation losses �since the ex-
tracted power does not coincide anymore with the power
radiated by the magnetic-dipole term�. This contribution is
negligible for sufficiently small loops and/or sufficiently high
number N of particles in the nanoring.

For a pair of nanoparticles, i.e., when N=2, however, the
situation is drastically different: the expression in Im��m

−1� is
modified in Eq. �15� by the inherent presence of the non-
negligible electric-quadrupole radiation, which is of the same
order as the magnetic-dipole moment, as previously noticed.
In other words, for a nanopair the inevitable presence of
electric-quadrupole radiation adds an amount of radiation
losses comparable with the magnetic-dipole contribution,
and the nanopair cannot be correctly interpreted as a lossless
pure magnetic inclusion when embedded in a metamaterial
lattice even in the ideal case for which material absorption
can be neglected. This contribution necessarily adds a nega-
tive term in Eq. �18�, implying that a pair of plasmonic nano-
particles, even though supporting a resonant magnetic re-
sponse, necessarily present a non-negligible radiation loss
associated with their electric-quadrupole radiation. This con-
firms the results of Fig. 2 and shows how a pair of plasmonic
nanoparticles at their antisymmetric resonance cannot be
treated as a purely magnetic molecule. A larger number of
particles around the loop are necessary to compensate this
effect and treat the molecule as a magnetic resonator, consis-
tent with Eq. �15�.

It is also worth noting how Eq. �15� implies that the
Ohmic absorption in each particle, related to �loss, has a
weaker effect on the magnetic resonance when the number of
employed particles is larger, since its effect is divided by N.
From Eq. �15�, we can indeed write the relation

�mloss =
4�b�loss

N�kbR�2 +
kb

3

10�
+ o�kbR�2 for N = 2.

�mloss =
4�b�loss

N�kbR�2 + o�kbR�2 for N � 2. �19�

The presence of Ohmic losses in the particles is discussed
more in detail in Sec. IV.

When larger particles are considered and the o�kbR�2 con-
tribution cannot be neglected, its evaluation may be con-
ducted by also considering a dynamic form for the excita-
tion. In this case, the quasistatic assumption of a uniform
magnetic field over the whole volume of the nanoring may
indeed represent a too strong approximation and it should be
substituted by a dynamic expression in the form Himp
=HimpJ0�kbr�ẑ, with J0�¯� being the cylindrical Bessel func-
tion �this field distribution, in fact, satisfies Maxwell equa-
tions and ensures a zero-derivative symmetric magnetic field
at the origin�. In this way we find the dynamic expression for
the impressed field on each particle, which substitutes Eq.
�1�,41

Eimp = i��0

�b
HimpJ1�kbR��̂ . �20�

In this case the averaged magnetic field over the nanoloop
is evaluated as

H̃imp =

�
0

R

Himprdr

R2/2
=

2HimpJ1�kbR�
kbR

ẑ , �21�

and the magnetic polarizability, defined as mH
�1�=�mH̃imp, in-

terestingly provides the same expression �Eq. �13��. It should
be mentioned, however, that the same concept of polarizabil-
ity and the corresponding homogenization procedure for a
bulk metamaterial made of these nanoparticles, as well as the
quasistatic multipole expansion �9�, lose part of their mean-
ing when the size of the particle becomes too large and com-
parable with the wavelength of operation. The formulas de-
rived here, therefore, hold until the higher-order multipole
contributions indicated with o�¯� remain of secondary im-
portance.

Having discussed how the imaginary part of Eq. �13� may
provide an interpretation of the magnetic properties of the
nanoring, we can analyze now how the real part of the in-
verse polarizability affects the nanoring design:

Re��m
−1� =

4�b

N�kbR�2Re��p
−1� −

kb
−2R−5

16N�
�
j=1

N−1
3 + cos�2j
�

sin3�j
�

+ o�kbR�−1, �22�

consistent with the quasistatic result in Ref. 26 �apart from a
sign misprint in Ref. 26, Eq. �9��.

A magnetic resonance is achieved when Re��m
−1�=0,

which happens near the resonant frequency of each of the
particle composing the loop �arising at Re��p

−1�=0�, but
slightly shifted by the coupling term represented by the sum-
mation in Eq. �22�. It is worth underlining that the magnetic
resonance depends mainly on the resonant properties of each
plasmonic particle composing the loop, rather than on the
loop geometry or size, implying that a subwavelength mag-
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netic resonance may be achieved, in principle, independently
of the total size of the nanoring. This is of particular impor-
tance for synthesizing subwavelength inclusions to be em-
bedded in a metamaterial for homogenization purposes.

Once the magnetic polarizability of the nanoloop is evalu-
ated, the effective permeability of a composite metamaterial
made of an infinite 3D lattice of such inclusions may be
calculated using appropriate homogenizing formulas.29 It
should be underlined, however, that the possible presence of
non-negligible spurious higher-order multipoles in the mag-
netic response of the nanoinclusion may sensibly affect this
homogenization procedure, and it may be effectively embed-
ded in the measured imaginary part of the effective �. For
what discussed above, this is of special importance for nano-
pair inclusions �N=2�. In the case of a regular cubic lattice,
whose periodicity compensates the radiation losses due to
the magnetic-dipole radiation from each nanoring, the effec-
tive permeability calculated with a Clausius-Mosotti homog-
enization is given by26

�eff
�p� = �0�1 + Nd

−1��m
−1 + i�k0

3/6��� − 1/3�−1� , �23�

with Nd being the number density of loops in the lattice. The
previous formula implies that the imaginary part of �eff

�p� may
be associated not only with the material absorption but also
with the radiation losses associated with higher-order multi-
poles.

It should also be mentioned that the presence of spurious
multipolar radiation, particularly important for N=2, may
give rise not only to radiation losses but also to an unwanted
spatial dispersion in the metamaterial response. If their con-
tribution is not negligible, the assumption that the metama-
terial response may be simply described by an effective per-
meability is not sufficient to properly describe its complex
wave interaction. More specifically, in the metamaterials
composed of nanopairs the presence of a non-negligible
electric-quadrupole contribution implies that the response to
the symmetric part of the gradient of the local electric field
should be properly embedded in modified constitutive
relations,42 since the permeability factor by itself may ne-
glect this response. In other words, it is indeed true that a
nanopair may provide a resonant magnetic response at its
antisymmetric resonance, as shown in Refs. 14–22, but as
the previous analysis shows, this effect is not separable from
the comparable presence of electric-quadrupole radiation and
higher-order multipoles. Assuming that the metamaterial re-
sponse may be described by a simple effective permeability
that may lead to inadequate results in terms of the prediction
of its scattering losses and spatial dispersion. These side ef-
fects may also affect the quality factor of the magnetic reso-
nance. These may be properly avoided by increasing the
number of particles around the nanoloop.

Figure 3 shows the frequency dispersion of the effective
permeability �eff

�p� of a regular cubic lattice with number den-
sity Nd= �160 nm�−3 of nanoloops of radius R=60 nm con-
stituted of silver nanospheres with radius a=24 nm in a free-
space background. In the calculations, realistic Ohmic losses
and frequency dispersion of the silver have been considered
using a classic Drude model.14 From the figure, it is noticed
that, when N is increased, the permeability resonance is

shifted by the larger mutual coupling among the particles, as
predicted by Eq. �22�, and that the magnetic resonance may
be strongly enhanced by an increase in N. The case with N
=2 would create a relatively weak magnetic resonance
around the antisymmetric resonant frequency of the pair, but
the effective permeability would not yield negative values,
being sensibly affected by Ohmic and radiation losses. If the
number of particles per loop is increased, the situation is
drastically improved and the robustness to losses and band-
width of operation is increased consistently.

IV. LOSSES AND Q FACTOR

Here we analyze the behavior of this magnetic resonance
as a function of the material losses. For this purpose, let us
consider the case of nanospheres of radius a and homoge-
neous permittivity �=�r+ i�i composing the nanoring. In this
case, the quasistatic expression for �loss of each nanosphere
is given by

�loss =
3

4�

�ia
−3

��r − �b�2 + �i
2 , �24�

which follows from the quasistatic expression of the electric
polarizability of a homogeneous sphere.4 This yields for the
Ohmic factor the expression �mloss,

�mloss =
kb

3

6�

18�kba�−3

N�kbR�2

�b�i

��r − �b�2 + �i
2 . �25�

FIG. 3. �Color online� �a� Real and �b� imaginary parts of the
effective permeability for a cubic lattice with number density Nd

= �160 nm�−3 made of nanoloops with radius R=60 nm each of
which is composed of N silver particles with radius a=24 nm.
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As expected, this factor is proportional in the low-loss
limit to the quantity �i. Moreover, a scaling up of the nano-
ring and nanoparticle size or equivalently a reduction in the
frequency of operation decreases the sensitivity to the mate-
rial losses. This represents the main lower limit on the pos-
sibility of squeezing the dimensions of such magnetic nano-
rings, since the sensitivity to the material losses increases
with a size reduction. On the other hand, a more negative
real part of permittivity for each particle at the frequency of
operation allows reducing this sensitivity due to the corre-
sponding reduction in the wave penetration �skin depth� in
each of the nanoparticles. This reduction factor is higher than
the loss tangent in the material �as it has been speculated, for
instance, in Ref. 20� and it is represented with good approxi-
mation by the ratio �i / ��r−�b�2. For a fixed geometry of the
nanoparticles, a larger number of particles composing the
loop shift down the resonant frequency, as shown by Eq.
�22�, and generally at lower frequencies plasmonic materials
have a lower negative permittivity �r, helping this phenom-
enon. Varying the geometry of each nanoparticle composing
the loop in order to move their individual resonance to a
more negative permittivity value may also help in reducing
the effect of losses. Also, increasing the background permit-
tivity �b may proportionally increase the absolute value −�r
at which the loop has its resonance, reducing its sensitivity to
losses. Finally, a larger number of nanoparticles composing
each loop reduce directly the radiation losses, as already de-
scribed, since N is in the denominator of Eq. �25�.

The Q factor of this magnetic resonance may also be
evaluated in closed form, providing an insight into its ex-
pected bandwidth of operation. For the case of a ring consti-
tuted by plasmonic spheres of radius a and Drude permittiv-
ity �= �1−3�0

2 /�2��b �here the effect of losses is neglected�,
the individual resonance of each particle arises at the angular
frequency �0. The overall magnetic resonance is obtained,
using Eq. �22�, for

�m0 = �0�1 −
a3

16R3 �
j=1

N−1
3 + cos�2j
�

sin3�j
�
, �26�

shifted down in frequency with respect to the self-resonance
of each nanoparticle due to the coupling among the nanopar-
ticles. It is interesting to note, as an aside, how the shifting
factor under the square root satisfies the inequality 0
� �a3 /16R3�� j=1

N−1�3+cos�2j
� /sin3�j
��� ���3� /2��0.6,
since the geometrical constraint aR sin�� /N� holds.43

The Q factor of this resonance is readily evaluated from
the previous formulas and it is equal to the following expres-
sion in this quasistatic limit:

Q =

6	1 −
a3

16R3 �
j=1

N−1
3 + cos�2j
�

sin3�j
� 

Nk̃b

5a3R2
, �27�

where k̃b is the background wave number calculated at �
=�m0.

It is evident that the Q factor of the magnetic resonance of
the nanoloop of Fig. 1 increases with a reduction in its ra-
dius, with a reduction in the size of the nanoparticles com-
posing it and with an increase in the number of particles in
the loop, consistently with the previous discussion. The frac-
tional bandwidth of operation is simply given by 1 /Q.

The electric response of the nanoloop of Fig. 1 may be
evaluated numerically as derived in Ref. 26, yielding a reso-
nance generally very close to the individual resonance of
each of the nanoparticles composing the loop. A judicious
design of the geometry of Fig. 1 may give rise to overlapping
electric and magnetic resonances, effectively providing a
way to design a left-handed metamaterial at optical frequen-
cies. We reiterate the importance of employing multiple
nanoparticles in the design of the nanoring in order to in-
crease the associated magnetic effects and reduction in losses
and spatial dispersion.

V. CONCLUSIONS

We have investigated in detail the physics underlying the
magnetic resonance of plasmonic nanorings at infrared and
optical frequencies, consistent with the geometry presented
in Ref. 26. In particular, we have proven analytically and
numerically the superiority of the nanoring geometry over
pairs of nanoparticles due to a purer magnetic response, nec-
essary to produce left-handed materials with lower absorp-
tion. Analytical closed-form expressions for the sensitivity to
losses and the Q factor and bandwidth of the associated mag-
netic resonance have also been derived and discussed.
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