
QED of excitons with nonlocal susceptibility in arbitrarily structured dielectrics

Motoaki Bamba1,2,3,* and Hajime Ishihara3,4

1Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka,
Osaka 560-8531, Japan

2Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102–8472, Japan
3CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

4Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
�Received 6 November 2007; revised manuscript received 10 May 2008; published 8 August 2008�

We have constructed a complete quantum theory for an optical process of excitons with nonlocal suscepti-
bility originating from their center-of-mass motion. This theory provides a practical calculation method for
arbitrary-structured nanoscale to macroscale dielectrics where excitons are weakly confined. We obtain good
correspondences with underlying theories, semiclassical microscopic nonlocal theory, and QED theories for
dispersive and absorptive materials with local susceptibility.

DOI: 10.1103/PhysRevB.78.085109 PACS number�s�: 71.35.�y, 42.50.Nn, 78.67.�n

I. INTRODUCTION

In the conventional theories of optical processes in con-
densed matters, light has been mainly treated classically re-
gardless of whether the matter systems are described in
quantum-mechanical terms �semiclassical theory� or classical
ones. These theories have successfully explained a variety of
optical phenomena regarding classical light or the coherent
states of photons. However, there is growing interest in the
quantum electrodynamics �QED� of elementary excitations
in condensed matter in order to discuss optical processes for
nonclassical light such as entangled states, single photons,
squeezed states, cavity photons, and so on. The relevant ex-
periments have already been reported, for example, the
entangled-photon generation via biexcitons �excitonic
molecules�,1 triggered single-photon generation from bound
excitons in a semiconductor,2 and the squeezing of cavity
polaritons in semiconductor microcavities.3 The quantization
of a radiation field has been studied for a long time not only
in a vacuum4 but also in a medium characterized by a
frequency-independent dielectric constant. On the other
hand, Hopfield5 systematically discussed the eigenstates of
exciton-photon systems or exciton polaritons; those have a
frequency dependence in the susceptibility ���� or dielectric
function ����=1+����, as seen in their dispersion relation
�2����=c2k2. Although in his treatment ���� only included
a real part, susceptibility is generally represented as a com-
plex function satisfying the Kramers-Kronig relations. In ad-
dition, its imaginary part, which causes damping effects, can-
not be neglected in the discussion of the resonant optical
processes of elementary excitations in condensed matter.

The quantization of the electromagnetic fields in such dis-
persive and absorptive dielectrics has been systematically
carried out for homogeneous media by Huttner and Barnett
�HB�6 and for inhomogeneous three-dimensional �3D� ones
by Suttorp and Wubs �SW�.7 In the former scheme, disper-
sive dielectrics are described using the classical Hopfield po-
lariton model,5 i.e., polarizable harmonic oscillators interact-
ing with a radiation field, and absorption is considered using
a reservoir of oscillators interacting with the polarizable
ones. The electromagnetic fields are described in terms of the

eigenoperators derived from the diagonalization of a Hamil-
tonian. In the expression of these fields, there exists a com-
plex dielectric function ���� represented by system param-
eters satisfying the Kramers-Kronig relations. This function
characterizes the quantum fluctuation of the electromagnetic
fields in the materials. The pioneering work of HB6 stimu-
lated various theoretical studies associated with the QED of
dispersive and absorptive dielectrics, for example, the spon-
taneous decay,8,9 input-output relations,10–12 and quantization
in amplifying, anisotropic, magnetic, or nonlinear media.13–17

On the other hand, SW7 generalized the quantization of the
electromagnetic fields in arbitrary-structured 3D dielectrics
by using the Laplace transformation technique.18 Around the
same time, the diagonalization of the Hamiltonian of SW7

has been performed by Suttorp and van Wonderen.19 In these
schemes, the complex dielectric function ��r ,�� depends on
the spatial position r of a medium and the radiation fre-
quency �.

In the above QED theories and also in semiclassical ones,
the dielectric function is usually treated as a local form
��r ,�� with respect to the spatial position. However, from
the microscopic point of view, the optical susceptibility gen-
erally has a nonlocal form as ��r ,r� ,��, which characterizes
the polarization P�r ,�� at position r induced by electric field
E�r� ,�� at a different position r� as

P�r,�� = �0� dr���r,r�,��E�r�,�� . �1�

This nonlocality originates from the spatial spreading of the
wave function of elementary excitations or, particularly for
excitons in semiconductors, their center-of-mass motion with
a finite translational mass. Usually, the nonlocality is not
considered to be important for macroscopic materials; this is
because the coherence length of elementary excitations is
usually much shorter than the spatial scale of the light wave-
length. Therefore, only the averaged values of physical quan-
tities over the coherence volume are reflected in observation,
and the nonlocal effect is not apparent. However, in high-
quality media, the motion of excitons should have a consid-
erably long coherence, and the electromagnetic fields should

PHYSICAL REVIEW B 78, 085109 �2008�

1098-0121/2008/78�8�/085109�22� ©2008 The American Physical Society085109-1

http://dx.doi.org/10.1103/PhysRevB.78.085109


vary in a considerably short distance in the resonance condi-
tion. In such cases, the nonlocality becomes important even
for bulk materials, as will be explained below.

In the case of homogeneous media, the nonlocal suscep-
tibility depends only on the difference r−r� of the two po-
sitions; then, Eq. �1� is rewritten in the reciprocal space as

P�k,�� = �0��k,��E�k,�� . �2�

In this manner, the susceptibility ��k ,�� has a wave-vector
dependence as well as � dependence even for homogeneous
media when it has the nonlocality. This k dependence leads
to more than one propagating or evanescent modes for a
single frequency satisfying

�2��k,�� = c2�k�2. �3�

Now, we consider a single exciton state with a finite transla-
tional mass mex, transverse exciton energy ET, and longitudi-
nal one EL at the respective band edges. Since the transverse
exciton energy is represented as Eex�k�=ET+�2�k�2 /2mex for
wave vector k, we can find two propagating polariton modes
for ���EL and one propagating mode at the polariton band
gap ET����EL in addition to an evanescent mode. These
multiple polariton modes do not appear in the classical
Hopfield polariton model5 because the excitons were as-
sumed to have infinite translational mass. As first reported by
Pekar,20 it appears that additional boundary conditions
�ABCs� should be introduced in addition to the Maxwell
boundary conditions for the unique connection between the
polariton modes within a material and the external ones at
the interface between two materials. This problem is known
as the ABC problem; it arises when the translational symme-
try of a system is broken due to surfaces or interfaces. Since
Pekar’s study, subsequent studies have revealed that this
problem can be resolved by considering the microscopically
determined boundary conditions of the excitonic center-of-
mass motion at interfaces.21–23 Nowadays, in the semiclassi-
cal framework, a calculation method independent of the no-
tation of ABCs is well known as an ABC-free theory24 or a
microscopic nonlocal theory.25,26 These theories consider the
nonlocality of the susceptibility ��r ,r� ,�� from the micro-
scopic point of view, in contrast to the macroscopic consid-
eration of the nonlocality such as the phenomenological in-
troduction of ABCs into the excitonic polarization.20 Under
these microscopic theories, various linear and nonlinear phe-
nomena in inhomogeneous materials have been discussed. In
particular, for nanostructured materials, where the coherence
of the center-of-mass motion of excitons is maintained in the
entire material �weak confinement regime�, the anomalous
size dependence of their optical processes has been
elucidated.27–31 With regard to nanofilms, the nonlocal theory
has successfully explained their peculiar spectral structures
originating from the polariton interference.23,32,33 Further,
with the recent development of fabrication technologies for
nanosamples, various peculiar effects due to long-range co-
herence are appearing through the interplay between the spa-
tial structures of electromagnetic and excitonic waves, such
as the resonant enhancement of a nonlinear response,30 inter-
change of quantized states due to giant radiative shift,34 and
ultrafast radiative decay with femtosecond order.35

From these theoretical and experimental results and due to
the considerable interest in the nonclassical states of elemen-
tary excitations,1–3 as mentioned above, it is very attractive
to discuss them in detail for the sake of applications to quan-
tum information technologies. Although some studies intro-
duced the nonlocality into the QED of dispersive and absorp-
tive dielectrics, there remains a problem of how to perform
calculations in practical applications, as will be shown in
Sec. II. The principal purpose of this study is to construct a
QED theory providing a practical calculation method for the
nonlocal systems from the microscopic point of view. In par-
ticular, we discuss excitons weakly confined in arbitrary-
structured 3D dielectrics considering the radiative and non-
radiative relaxations, which is necessary to discuss the
effects of, for example, material interfaces, excitonic con-
finement in nanostructures, and exciton relaxation processes.
For this purpose, we have developed a theory integrating a
microscopic nonlocal theory25,26 and the quantization tech-
nique of SW7 in this study. Further, we have already applied
the present theory to the practical calculation of entangled-
photon generation via biexcitons in nanostructures.36

In Sec. II, we explain the previously discussed QED theo-
ries with the nonlocality. The Hamiltonian of the present
paper is shown in Sec. III, and two fundamental equations of
our theory, the Maxwell wave equation and motion equations
of excitons, are, respectively, shown in Secs. IV and V. In
Sec. VI, we derive a wave equation with the nonlocal sus-
ceptibility as discussed in previous studies. Our QED theory
is explained in Sec. VII, and the commutation relations of
excitons and the electric field are shown in Sec. VIII. We
discuss the validity of the rotating wave approximation
�RWA� for our theory in Sec. IX and explain the practical
calculation scheme in Sec. X. Finally, we compare our QED
theory with other theories with the nonlocality and summa-
rize the discussion in Sec. XI. We only explain the outline of
our theory in the above sections and present detailed calcu-
lations of the derivation in Appendixes A–G. We discuss the
second quantization of excitonic polarization in Appendix A
and then derive the Hamiltonian from the microscopic point
of view in Appendix B. In Appendix C, we extend the Max-
well wave equation discussed by SW7 so that we can con-
sider the excitonic polarization and derive the motion equa-
tions of excitons in Appendix D. We evaluate commutation
relations in Appendix E and prove that the derived Green’s
tensor satisfies the wave equation with the nonlocal suscep-
tibility in Appendix F. In Appendix G, in order to verify the
validity of our theory, we calculate the equal-time commuta-
tion relations, which are expected from those of the
Schrödinger operators. In this paper, we use mks units and
Coulomb gauge.

II. PREVIOUS QED THEORIES WITH NONLOCAL
SUSCEPTIBILITY

The series of QED theories enables us to discuss the lin-
ear optical process in arbitrary-structured 3D dielectrics
characterized by a dielectric function ��r ,��. However, in
order to discuss the materials with the nonlocality, it is nec-
essary to consider more general elementary excitations that
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cannot be described by harmonic oscillators of the classical
Hopfield model.5

As a pioneering study on a full-quantum theory with the
nonlocality, Jenkins and Mukamel37 discussed molecular
crystals in d dimensions �d=1,2 ,3�, where the relative mo-
tion of excitons is localized at a single molecule and the
center of mass moves between molecules due to the dipole-
dipole interaction. While their theory concentrates on treat-
ing the resonant polarization without nonradiative relaxation,
recently, the nonlocality has been introduced into the field
quantization in dispersive and absorptive media,16,17,38–41 and
some studies have demonstrated the application of their theo-
ries for specific structures.17,38 Di Stefano et al.38 discussed
excitons with the nonlocality in media with spatial transla-
tion symmetries broken along one dimension, and they prac-
tically calculated the spatial and frequency dependences of
the vacuum-field fluctuation in a semiconductor quantum-
well structure. Thereafter, they extended their theory to an
arbitrary 3D structure39 and discussed the input-output rela-
tions in scattering systems.40 On the other hand, Bechler41

performed the field quantization for homogeneous systems
with the nonlocality by using the path-integral method, and
Suttorp16 performed the same for nonlocal, inhomogeneous,
and anisotropic systems by using the diagonalization
method. Most recently, Raabe et al.17 phenomenologically
discussed the nonlocal systems with both dielectric and mag-
netic properties. They proposed the use of the dielectric ap-
proximation with the surface impedance method for the prac-
tical application of their theory.

As seen in the above studies, it can be considered that a
consistent framework for the field quantization in dielectrics
with nonlocal susceptibility has already been established.
Thus, the issue of current importance is to establish a general
and practical calculation method applicable to arbitrary-
structured 3D systems; this is desired for the actual applica-
tions of the above framework, although interesting applica-
tions have already been demonstrated in specific situations
by Di Stefano et al.38 and Raabe et al.17 The essential task
for this purpose is the derivation of Green’s tensor for the
Maxwell wave equation with the nonlocal susceptibility, as
seen in Eq. �45� of the present paper.

In this paper, we provide a practical calculation method
for the Green’s tensor for arbitrary structures by using the
fact that the nonlocal susceptibility is represented as a sum-
mation of separable functions with respect to two positions,
as seen in Eq. �43�. This technique has been developed in the
semiclassical microscopic nonlocal theory.25,26 We extend
this theory to consider the quantum-mechanical properties of
electromagnetic fields by using the Laplace transformation
technique of SW7 and introducing commutation relations of
noise operators. In other words, we generalize the SW
theory7 to media with the nonlocality with providing a prac-
tical calculation method. Our theory consists of two equa-
tions in � representation: the Maxwell wave equation and the
motion equation of excitonic polarization. Both of them are
derived by the Laplace transformation technique.

In Secs. III–X, we focus on the main part of our theory,
and the lengthy derivations of the equations are given in
Appendixes A–D for the purpose of brevity in the main part.
We will then compare our theory with some of the above-
mentioned theories in Sec. XI.

III. HAMILTONIAN

We describe the dielectric materials with resonant contri-
butions from excitons with center-of-mass motion and the
nonresonant ones with the local dielectric function �bg�r ,��.
This treatment is essential for including the consideration of
the effects arising from the radiation mode structures modi-
fied by the practical dielectric structures �with absorption�
such as a substrate, a dielectric multilayer cavity, photonic
crystals, and so on, surrounding excitonic active structures.
We explicitly discuss the optical and nonradiative-relaxation
processes of the excitons, and the nonresonant backgrounds
are treated by the same procedure as that of SW.7 In Appen-
dix B, we derive our Hamiltonian from the Lagrangian and
obtain it as

H = Hem + Hint + Hmat, �4�

where Hem describes the radiation field and background di-
electric medium, Hmat the excitons and a reservoir of oscil-
lators, and Hint the interactions between Hem and Hmat. Hem is
the complete Hamiltonian discussed by SW,7 and its repre-
sentation is shown in Eq. �B9� of the present paper.

Based on the discussion in Appendix B, the interaction
Hamiltonian is represented as

Hint = −� dr�Iex�r� · A�r� −
1

2
Nex�r�A2�r��

+� dr�bg�r�	ex�r� +
1

2
� dr�ex�r�	ex�r� . �5�

A�r , t� is the vector potential and �bg�r , t� is the Coulomb
potential induced in the background. Iex�r� is the excitonic
current density without radiation contribution −Nex�r�A�r�,
i.e., the complete current density is written as Jex�r�=Iex�r�
−Nex�r�A�r� �see Appendix A�. 	ex�r� is the excitonic charge
density and

�ex�r� � � dr�
	ex�r��

4
�0�r − r��
�6�

is the Coulomb potential. The first and second terms of Eq.
�5� represent the interaction between the radiation field and
excitons. The third term represents the Coulomb interaction
between the induced charges of the excitons and that of the
background medium. The last term represents the interaction
between the excitonic charges themselves, and it is also con-
sidered as the dipole-dipole interaction between excitonic
polarizations or the exchange interaction between electrons
and holes26,42,43 �see Appendix B�. Although this term usu-
ally belongs to matter Hamiltonian Hmat, we displace it into
Hint because it can also be considered as the interaction be-
tween the longitudinal component of the polarization and
that of the electric field. This treatment will give us the mo-
tion equation of excitons in a simple form as seen in Eq. �33�
and will eliminate the explicit consideration of the
longitudinal-transverse �LT� splitting of the exciton eigenen-
ergies because the last term of Eq. �5� is just the origin of the
LT splitting.

With regard to the excitons, we generally describe them
starting from the basis of electrons and holes interacting with
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each other and themselves, as discussed in Appendix B.
However, as long as we consider the optical processes of
excitons under weak excitation, it is valid to describe elec-
tronic systems in terms of excitonic eigenstates and put the
nonresonant �background� contributions into Hem. In addi-
tion, in order to describe the nonradiative-relaxation process,
we consider a reservoir of oscillators interacting with exci-
tons. Then, we consider the matter Hamiltonian represented
as

Hmat = �
�

���b�
† b� + �

�
�

0

�

d
	�
d�
† �
�d��
� + 
b� + b�

† �

�
g��
�d��
� + g�
� �
�d�

† �
��� , �7�

where b� is the annihilation operator of the excitons in
eigenstate � with eigenfrequency ��; this does not include
the LT splitting because we displace the exchange interaction
between electrons and holes from Hmat to Hint. In this paper,
we assume that the center-of-mass motion of excitons is con-
fined in finite spaces, and index � represents the degrees of
freedom of not only the relative motion but also the transla-
tional one. Instead of evaluating the commutation relations
of b� from its representation �A23� with Fermi’s commuta-
tion relations of electrons and holes, we consider the exci-
tons as pure bosons satisfying


b�,b��
† � = ��,��, �8a�


b�,b��� = 0. �8b�

This approximation is valid under weak excitation. On the
other hand, in Eq. �7�, d��
� is the annihilation operator of
the reservoir oscillators with frequency 
 interacting with
the excitons in state � and g��
� is its coupling parameter.
The oscillators are independent of each other and satisfy the
following commutation relations:


d��
�,d��
† �
��� = ��,����
 − 
�� , �9a�


d��
�,d���
��� = 0. �9b�

IV. MAXWELL WAVE EQUATION

One of the fundamental equations of our theory is the
Maxwell wave equation, which is derived in Appendix C
along with the quantization scheme of SW7 and has a noise
current-density operator. In this section, we show the equa-
tion and commutation relation of the noise operator and dis-
cuss its similarities and differences as compared to the SW
theory.7

Since we consider the matter system to be a combination
of excitons and the background medium, the electric field
contains Coulomb potentials induced by excitons and the
background, and it is represented as

E�r,t� = −
�

�t
A�r,t� − ��bg�r,t� − ��ex�r,t� . �10�

Because the Coulomb gauge is used in our scheme, the vec-
tor potential is a transverse field satisfying � ·A�r�=0, and

the second and third terms represent the longitudinal fields.
In Appendix C, from the Laplace transform of the Heisen-
berg equations of the system variables, we derive the Max-
well wave equation for the Fourier component of the electric
field as

� � � � Ê+�r,�� −
�2

c2 �bg�r,��Ê+�r,��

= i�0�Ĵ0�r,�� + �0�2P̂ex
+ �r,�� , �11�

where Ê+�r ,�� is the positive-frequency Fourier component

of E�r , t� and Ê−�r ,�� is the negative-frequency one. They
are defined as

Ê��r,�� �
1

2

�

−�

�

dte�i�tE�r,t� �12�

and satisfy

Ê��r,�� = Ê��r,− �� = 	Ê��r,− ����†. �13�

We represent Fourier-transformed operators with a hat � ˆ� in
this paper. In Eq. �11�, the matter information is described by
the dielectric function �bg�r ,�� of the background system

and the excitonic polarization density P̂ex
+ �r ,��, which is an

additional polarization as compared to the SW theory.7 On
the other hand, as compared to the classical electrodynamics,

Eq. �11� has an additional operator Ĵ0�r ,�� on the right-hand
side �RHS�. This is called the noise current density and it is
interpreted as a source of the electromagnetic fields or the
fluctuation caused by absorption in the background. It plays
an essential role in the series of QED theories for dispersive
and absorptive dielectrics. The same type of operator for
homogeneous systems has been derived by HB,6 and the one
for inhomogeneous 3D systems has been phenomenologi-
cally introduced in Ref. 44. On the other hand, from the
Laplace-transformed motion equations of system variables,
SW7 systematically derived the representation of the opera-
tor, which is represented in terms of the canonical variables
and momenta of the system at t=0. In the present paper,

Ĵ0�r ,�� is derived as Eq. �C26� and satisfies

Ĵ0�r,�� = 	Ĵ0�r,− ����† �14�

as the electric field satisfies Eq. �13�. Although SW7 calcu-
lated the commutation relation of their noise operator from
those of the system operators, we introduce the commutation

relation of Ĵ0�r ,�� as


Ĵ0�r,��,	Ĵ0�r�,�����†� = 
Ĵ0�r,��, Ĵ0�r�,− ����

= ��� − �����r − r��

�
�0��2



Im
�bg�r,���1 , �15�

where 
Ĵ0 , 	Ĵ0�†� is a 3�3 tensor and its �� ,��� element im-

plies 
	Ĵ0�� , 	Ĵ0
†���� for �=x ,y ,z. In the present paper, we will

discuss the validity of commutation relation �15� from the
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validity of those for excitons and the electric field derived in
Sec. VIII.

Next, we discuss the relation between the QED theories
and the correlation function theory. Using Green’s tensor
G�r ,r� ,�� satisfying

� � � � G�r,r�,�� −
�2

c2 �bg�r,��G�r,r�,�� = ��r − r��1 ,

�16�

we can rewrite Eq. �11� as

Ê+�r,�� = Ê0
+�r,�� + �0�2� dr�G�r,r�,�� · P̂ex

+ �r�,�� ,

�17�

where Ê0
+�r ,�� is the background field, the electric field in

the Hem system, and it is defined as

Ê0
+�r,�� � i�0�� dr�G�r,r�,�� · Ĵ0�r�,�� . �18�

In the classical electrodynamics, this is usually introduced as
a homogeneous solution satisfying

� � � � 
Ê0
+�r,��� −

�2

c2 �bg�r,��
Ê0
+�r,��� = 0 �19�

and is considered as an incident field for excitons. On the
other hand, since the background dielectric function satisfies

�bg�r,�� = 	�bg�r,− ����� = �bg
� �r,− �� , �20�

the Green’s tensor also satisfies

G�r,r�,�� = 	G�r,r�,− ����� = G��r,r�,− �� . �21�

Then, the negative-frequency Fourier component of the elec-
tric field is represented as

Ê−�r,�� = Ê+�r,− �� = Ê0
−�r,��

+ �0�2� dr�G��r,r�,�� · P̂ex
− �r�,�� , �22�

and the background field is given as

Ê0
−�r,�� � − i�0�� dr�G��r,r�,�� · Ĵ0�r�,− �� . �23�

Since Ĵ0�r ,�� satisfies Eq. �14�, Ê0
��r ,�� also satisfies the

following relation as Ê�r ,�� satisfies Eq. �13�:

Ê0
��r,�� = Ê0

��r,− �� = 	Ê0
��r,− ����†. �24�

Furthermore, from the commutation relation �15� of Ĵ0�r ,��,
that of Ê0

��r ,�� can be derived as


Ê0
+�r,��,Ê0

−�r�,����

= 
Ê0
+�r,��,Ê0

+�r�,− ����

= ��� − ���
�0��2

i2


G�r,r�,�� − G��r,r�,��� , �25�

where we use the equivalence shown in Eq. �1.54� of Ref.
13,

� ds
�2

c2 
�bg�s,�� − �bg
� �s,���G�r,s,�� · G��s,r�,��

= G�r,r�,�� − G��r,r�,�� , �26�

and the reciprocity relation,

G�r,r�,�� = 	G�r�,r,���t. �27�

Equations �25� can be understood by the fact that in the
background system, Green’s tensor G�r ,r� ,�� identifies
with the retarded correlation function of the electric field.45

This means that when we define the background field in the
time domain as

E0�r,t� � �
0

�

d�
e−i�tÊ0
+�r,�� + ei�tÊ0

−�r,���

= �
−�

�

d�e−i�tÊ0
+�r,�� , �28�

the Green’s tensor can be represented as

− �0��2G�r,r�,�� = − i�
t�

�

dtei��t−t��

E0�r,t�,E0�r�,t���� .

�29�

We can verify that this representation satisfies Eq. �25�.
Therefore, because of the causality seen in Eq. �29�,
G�r ,r� ,�� satisfies the Kramers-Kronig relation and has no
pole in the upper half of the complex � plane.

V. MOTION EQUATION OF EXCITONS

Next, we discuss the motion of the excitonic polarization

P̂ex
+ �r ,�� in the Maxwell wave equation 
Eq. �11��. In Ap-

pendix A, we derive the second-quantized form of it in terms
of the exciton operator set 	b�� as

Pex�r� = �
�


P��r�b� + P�
� �r�b�

† � , �30�

where the expansion coefficient P��r� is

P��r� = P�e�G��r� . �31�

P� is the transition dipole moment; e�, a unit vector in the
polarization direction; and G��r�, the wave function of the
center-of-mass motion in exciton state �. Since we assume
the weak confinement regime, P� approximately depends
only on the relative motion of excitons and is related to the
LT splitting as �LT

� = �P��2 /�0�bg.
In Appendix D, we derive the Heisenberg equation of ex-

citons from Hamiltonians �5� and �7� and transform it into an
equation for the Fourier component of the exciton operator,

b̂���� �
1

2

�

−�

�

dtei�tb��t� . �32�

The transformed equation is obtained as
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��� − �� − i�����/2�b̂���� + 
− i�����/2�	b̂��− ����†

=� drP�
� �r� · Ê+�r,�� + D̂���� , �33�

where ����� is the nonradiative-relaxation width defined as
Eq. �D7� in terms of the exciton-reservoir interaction coeffi-
cient g��
�, and it satisfies

����� = − 	���− ����� = − ��
� �− �� . �34�

In the calculation for analyzing practical materials, we usu-
ally give real values to 	������ themselves as fitting param-
eters, but we do not estimate them from definition �D7� for
given coefficients 	g��
��, which enter into our scheme only

via 	������. On the other hand, operator D̂���� represents
the fluctuation caused by the reservoir oscillators. Its defini-
tion is shown in Eq. �D8� and it also satisfies

D̂���� = 	D̂��− ����†. �35�

From the fluctuation dissipation theorem, we introduce their
commutation relation as


D̂����,	D̂��������†�

= 
D̂����,D̂���− ����

= ��,����� − ���
�

i2


i����� + i��
� ���

2
. �36�

D̂���� is another noise operator of our system and is inde-

pendent of the noise current density Ĵ0�r ,��, and it satisfies


D̂����, Ĵ0�r,���� = 
D̂����,	Ĵ0�r,�����†� = 0 . �37�

The validities of Eqs. �36�, �37�, and �15� will be discussed
in Sec. VIII.

Motion 
Eq. �33�� of the excitons is rewritten with its
Hermite conjugate as

S� ����� b̂����

	b̂��− ����†
� =� dr�P�

� �r�

P��r� � · Ê+�r,��

+ �1

1�D̂���� , �38�

where the coefficient matrix is

S� ���� = ���� − �� − i�����/2 − i�����/2
− i�����/2 ��� + �� − i�����/2 � .

�39�

Here, by introducing an inverse matrix W� �����S� �
−1���, Eq.

�38� becomes

� b̂����

	b̂��− ����†
� =� drW� �����P�

� �r�

P��r� � · Ê+�r,�� + W� ����

��1

1�D̂���� . �40�

Now, we substitute Eq. �40� into the � representation of the
polarization density �30�,

P̂ex
+ �r,�� = �

�


P��r�b̂���� + P�
� �r�	b̂��− ����†� , �41�

then, we obtain

P̂ex
+ �r,�� = �0� dr��ex�r,r�,�� · Ê+�r,��

+ �
�
�P��r�

P�
� �r� �t

W� �����1

1
�D̂���� , �42�

where the susceptibility has a nonlocal form as

�ex�r,r�,�� =
1

�0
�
�
�P��r�

P�
� �r� �t

W� �����P�
� �r��

P��r��
� . �43�

Since this function can be directly derived from the motion

Eq. �D1�� of excitons and that 
Eq. �D3�� of reserver oscil-
lators with satisfying the causality, �ex�r ,r� ,�� satisfies the
Kramers-Kronig relations and has no pole in the upper half
of the � plane, and it also satisfies

�ex�r,r�,�� = 	�ex�r,r�,− �����. �44�

However, it does not have a reciprocity relation
�ex�r ,r� ,��� 	�ex�r� ,r ,���t because of the general aniso-
tropy of excitons. The spatial spreading of the exciton state,
the origin of the nonlocality, is reflected through the polar-
ization coefficient P��r� or the center-of-mass wave func-
tion G��r�. On the other hand, the spatial structure of the
background dielectrics is characterized by the dielectric
function �bg�r ,�� in the Maxwell wave equation 
Eq. �11��
and in commutation relation 
Eq. �15��. In our framework,
we can discuss arbitrary-structured exciton motions and
background dielectrics through these functions.

VI. MAXWELL WAVE EQUATION WITH NONLOCAL
SUSCEPTIBILITY

In order to discuss the optical processes of excitons, we
must simultaneously solve the Maxwell wave equation 
Eq.
�11�� and the motion equation 
Eq. �42�� of the polarization

density to describe the unknown variables Ê+�r ,�� and

P̂ex
+ �r ,�� in terms of the noise operators Ĵ0�r ,�� and D̂����.

Substituting Eq. �42� into Eq. �11�, we obtain a wave equa-
tion with the nonlocal susceptibility as
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� � � � Ê+�r,�� −
�2

c2 �bg�r,��Ê+�r,��

−
�2

c2� dr��ex�r,r�,�� · Ê+�r�,�� = i�0�Ĵ0��r,�� ,

�45�

where we define another noise operator comprising Ĵ0�r ,��
and the second term of Eq. �42� as

Ĵ0��r,�� = Ĵ0�r,�� − i��
�
�P��r�

P�
� �r� �t

W� �����1

1
�D̂���� .

�46�

From Eqs. �14�, �34�, and �35�, this operator also satisfies

Ĵ0��r,�� = 	Ĵ0��r,− ����†. �47�

In Appendix E, from commutation relations �15�, �36�, and

�37�, we calculate that for Ĵ0��r ,�� as


Ĵ0��r,��,	Ĵ0��r�,�����†�

= ��� − ���
�0��2

i2


��r,r�,�� − ��t�r�,r,��� , �48�

where ��r ,r� ,�� is the dielectric tensor defined as

��r,r�,�� = ��r − r���bg�r,��1 + �ex�r,r�,�� . �49�

The wave equation 
Eq. �45�� and commutation relation 
Eq.
�48�� are just the ones discussed by Savasta and
co-workers39,40 and they also have the same forms as those
of Raabe et al.17 Further, Eq. �48� can be understood as a
natural result from the fluctuation theorem, as discussed in
Refs. 17, 39, and 40. Along the lines of these studies, the
problem reduces to finding a Green’s tensor satisfying

� � � � Gren�r,r�,�� −
�2

c2 �bg�r,��Gren�r,r�,��

−
�2

c2� dr��ex�r,r�,�� · Gren�r�,r�,�� = ��r − r��1 .

�50�

This tensor renormalizes the linear optical process of exci-
tons with the nonlocality and enables us to rewrite Eq. �45�
as

Ê+�r,�� = i�0�� dr�Gren�r,r�,�� · Ĵ0��r�,�� . �51�

However, it appears very difficult to solve this nonlocal
equation in the practical application of their theories. This
problem can be solved by using the fact that the nonlocal
susceptibility �43� is represented as a summation of sepa-
rable functions with respect to r and r�. One scheme is to
directly derive Gren�r ,r� ,��, as discussed in Ref. 46, and the
other is to reduce this integrodifferential equation into a si-
multaneous linear equation set.25,26 In our QED theory, we
adopt the latter scheme because it provides not only the

Green’s tensor of the former but also considerable interesting
information about exciton-polariton systems.

VII. SELF-CONSISTENT EQUATION SET

Instead of solving the integrodifferential equation 
Eq.
�50��, we reduce the problem into a linear equation set by
using the same technique as the microscopic nonlocal theory
developed in the semiclassical framework.25,26 Substituting
representation �17� of the electric field into the motion equa-

tion 
Eq. �33�� of excitons by expanding P̂ex
+ �r ,�� as Eq.

�41�, we obtain a linear equation with respect to exciton am-

plitudes b̂���� and 	b̂��−����† as

�
��


S�,�����b̂����� + T�,�����	b̂���− ����†�

=� drP�
� �r� · Ê0

+�r,�� + D̂���� , �52�

where the coefficient matrix elements are defined as

S�,����� � 
��� − �� − i�����/2���,�� + A�,����� ,

�53�

T�,����� � 
− i�����/2���,�� + B�,����� . �54�

The first term on the RHS of Eq. �52� can be interpreted as
an exciton amplitude directly induced by the background
electric field. Here, we use the word “directly” to mean that
the term does not include the diffusion of the exciton ampli-
tudes via the electromagnetic fields. Such an effect is re-
flected through the correction terms appearing in Eqs. �53�
and �54�,

A�,����� = − �0�2� drdr�P�
� �r� · G�r,r�,�� · P���r�� ,

�55�

B�,����� = − �0�2� drdr�P�
� �r� · G�r,r�,�� · P��

� �r�� .

�56�

These can be interpreted as follows: the polarization at r�
induces an electric field, and later, it induces another polar-
ization at r. The interaction between the transverse fields is
the retarded interaction, and the one between the longitudinal
fields is interpreted as the Coulomb interaction between in-
duced charges. The latter is just the exchange interaction
between electrons and holes, which we displace from Hmat to
Hint, and gives the LT splitting of the exciton eigenenergies.

From Eq. �52� and its Hermite conjugate, we obtain a

linear equation set for b̂���� and 	b̂��−����† as
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�
��
� S�,�����

T�,��
� �− ��

T�,�����

S�,��
� �− �� �� b̂�����

	b̂���− ����†�
=� dr�P�

� �r�

P��r� � · Ê0
+�r,�� +�1

1�D̂���� . �57�

This equation is called the self-consistent equation set and
has the same form as that in the semiclassical theory.26 By
calculating the inverse of the coefficient matrix, the exciton
operators are written as

� b̂����

	b̂��− ����†
�

= �
��
� W�,�����

Z�,��
� �− ��

Z�,�����

W�,��
� �− �� �

��� dr�P��
� �r�

P���r� � · Ê0
+�r,�� + �1

1�D̂������ ,

�58�

where the inverse matrix has the same symmetry as the origi-
nal one, and they satisfy

�
�
� S�,����

T�,�
� �− ��

T�,����
S�,�

� �− �� �� W�,�����

Z�,��
� �− ��

Z�,�����

W�,��
� �− �� �

= �
�
� W�,����

Z�,�
� �− ��

Z�,����
W�,�

� �− �� �� S�,�����

T�,��
� �− ��

T�,�����

S�,��
� �− �� �

= ��,��1 . �59�

We can describe the other physical variables in terms of

these exciton operators and Ê0
+�r ,�� in our system. For ex-

ample, we can represent the excitonic polarization by Eq.
�41�, and the electric field �17� as

Ê+�r,�� = Ê0
+�r,��

+ �
�


E��r,��b̂���� − E�
� �r,− ��	b̂��− ����†� ,

�60�

where the coefficients are defined as

E��r,�� � �0�2� dr�G�r,r�,�� · P��r�� , �61�

F��r,�� � �0�2� dr�G�r,r�,�� · P�
� �r�� , �62�

and because of Eq. �21�, there exists a relation

E��r,�� = F�
� �r,− �� = 	F��r,− �����. �63�

VIII. COMMUTATION RELATIONS

In Sec. VII, we describe the exciton operators in terms of

Ê0
+�r ,�� and D̂����. In Appendix E, we calculate the com-

mutation relations of excitons from those of Ê0
��r ,�� and

D̂���� 
Eqs. �25�, �36�, and �37��. As a result, those are rep-
resented by elements of the inverse matrix �59�,


b̂����,	b̂��������†� = ��� − ���
�

i2


W�,����� − W��,�

� ���� ,

�64a�


b̂����, b̂���− ���� = ��� − ���
�

i2


Z�,����� − Z��,��− ��� .

�64b�

In addition, we also derive the commutation relation of the
electric-field operators 
Eq. �60��,


Ê+�r,��,Ê−�r�,���� = 
Ê+�r,��,Ê+�r�,− ����

= ��� − ���
�0��2

i2


�
Gren�r,r�,�� − Gren
*t �r�,r,��� ,

�65�

where Gren�r ,r� ,�� is defined as

Gren�r,r�,�� = G�r,r�,�� +
1

�0�2 �
�,��

	E��r,��W�,�����

�F���r�,�� + E��r,��Z�,�����E���r�,��

+ E�
� �r,− ��W�,��

� �− ��F��
� �r�,− ��

+ E�
� �r,− ��Z�,��

� �− ��E��
� �r�,− ��� . �66�

We can find that this tensor satisfies

Gren�r,r�,�� = 	Gren�r,r�,− ����� = Gren
* �r,r�,− ��

�67�

but does not satisfy the reciprocity relation �27� because of
the anisotropic susceptibility tensor �43� of the excitonic po-
larization. In Appendix F, we verify that Gren�r ,r� ,�� satis-
fies the wave equation 
Eq. �50��, and it can be interpreted as
the Green’s tensor for Maxwell wave equation 
Eq. �45��
with the nonlocal susceptibility. This fact shows the validi-
ties of commutation relations �15�, �36�, and �37� introduced
from the fluctuation dissipation theorem.

As discussed in Sec. IV, the Green’s tensor G�r ,r� ,�� is
the retarded correlation function for the electric field in the
background system. In the same manner as this relation,
commutation relation �65� indicates that the Green’s tensor
Gren�r ,r� ,�� identifies with the Fourier transform of the re-
tarded correlation function of the electric field in our entire
system,
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− �0��2Gren�r,r�,�� = − i�
t�

�

dtei��t−t��

E�r,t�,E�r�,t���� .

�68�

In addition, commutation relations �64a� and �64b� means
that W�,����� and Z�,����� identify with Fourier transforms
of the retarded correlation functions of exciton operators,

− �W�,����� = − i�
t�

�

dtei��t−t��

b��t�,b��
† �t���� , �69�

− �Z�,����� = − i�
t�

�

dtei��t−t��

b��t�,b���t���� . �70�

Therefore, Gren�r ,r� ,��, W�,�����, and Z�,����� have no
pole in the upper half of the complex � plane, and they
satisfy the Kramers-Kronig relation.

In Appendix G, for the verification of the validity of the
introduced commutation relations �15�, �36�, and �37� for

Ĵ0�r ,�� and D̂����, we derive that commutation relations
�64� and �65� satisfy the equal-time ones expected in the
Schrödinger representation.

IX. VALIDITY OF RWA

In the semiclassical framework, the microscopic nonlocal
theory has mostly been discussed under the RWA. In this
section, we discuss the validity and usefulness of the RWA in
our QED theory.

The RWA means that nonresonant terms proportional
to ��+���−1 are negligible as compared to resonant terms
��−���−1. In discussing the resonant optical processes of
elementary excitations in condensed matter and also in atoms
and molecules, the RWA is usually considered to be a valid
approximation. This is because the width of the energy range
of interest is usually sufficiently small as compared to the
eigenenergies of the elementary excitations. In particular, in
the case of excitons, the width is of the order of LT splitting,
center-of-mass motion energy, or radiative- and nonradiative-
relaxation widths, which are usually more than 3 orders of
magnitude smaller than the excitons’ eigenenergies. Since
the nonlocality becomes essential only under the resonance
conditions, the RWA does not impose any significant restric-
tion on our theory for the discussion of nonlocal systems. In
the following paragraphs, we apply the RWA to the excitons’
motion and derive simplified equations and commutation re-
lations.

Under the RWA, i.e., ����, the excitons’ motion equa-
tion 
Eq. �33�� can be written as


��� − �� − i�����/2�b̂����

=� drP�
� �r� · Ê+�r,�� + D̂���� �71�

because a contribution from 	b̂��−����†= b̂�
† ��� is negligible

as compared to that of b̂����. For the same reason, the exci-
tonic polarization �41� is also rewritten as

P̂ex
+ �r,�� = �

�

P��r�b̂���� . �72�

Substituting Eq. �71� into this equation, we obtain the exci-
tonic polarization, instead of Eq. �42�, as

P̂ex
+ �r,�� = �0� dr��̃ex�r,r�,�� · Ê+�r,��

+ �
�

P��r�D̂����
��� − �� − i�����/2

, �73�

where the susceptibility tensor �43� is simplified as

�̃ex�r,r�,�� =
1

�0
�
�

P��r�P�
� �r��

��� − �� − i�����/2
. �74�

This function also satisfies the Kramers-Kronig relation and
has no pole in the upper of the complex � plane because it is
also derived from motion equation 
Eq. �D1�� of excitons
and that 
Eq. �D3�� of reservoir oscillators under the RWA.
However, while the susceptibility �43� satisfies Eq. �44�
without the RWA, we have �̃ex�r ,r� ,��� 	�̃ex�r ,r�−�����

because we discuss only under ����.
Substituting Eq. �73� into the Maxwell wave equation


Eq. �11��, we obtain another wave equation, instead of Eq.
�45�, as

� � � � Ê+�r,�� −
�2

c2 �bg�r,��Ê+�r,��

−
�2

c2� dr��̃ex�r,r�,�� · Ê+�r�,�� = i�0�Ĵ0��r,�� ,

�75�

where the noise current density �46� is rewritten as

Ĵ0��r,�� = Ĵ0�r,�� − i��
�

P��r�D̂����
��� − �� − i�����/2

. �76�

From commutation relations �15�, �36�, and �37�, we obtain

that for Ĵ0��r ,�� as


Ĵ0��r,��,	Ĵ0��r�,��*��†� = ��� − ���
�0��2

i2


�̃�r,r�,��

− �̃�t�r�,r,��� , �77�

where the nonlocal dielectric tensor is represented as

�̃�r,r�,�� = ��r − r���bg�r,��1 + �̃ex�r,r�,�� . �78�

Therefore, even under the RWA, the commutation relation
has the same form as the original one 
Eq. �48��, which is
described by the nonlocal dielectric tensor �49�.

On the other hand, substituting Eq. �17�, the representa-
tion of the electric field, into the approximated motion equa-

tion 
Eq. �71�� of excitons with expanding P̂ex
+ �r ,�� as the

approximated form �72�, we obtain a linear equation set with

respect to only 	b̂�����, instead of Eq. �52�, as
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�
��

S�,�����b̂����� =� drP�
� �r� · Ê0

+�r,�� + D̂���� .

�79�

By calculating the inverse matrix W̃���=S−1���, on the ba-
sis of the exciton states, we obtain the representation of the
exciton operators as

b̂���� = �
��

W̃�,������� drP��
� �r� · Ê0

+�r,�� + D̂������ .

�80�

From the commutation relations �25�, �36�, and �37�, we ob-
tain those of the excitons under the RWA as


b̂����,	b̂�����*��†� = ��� − ���
�

i2


W̃�,����� − W̃

��,�
* ���� ,

�81a�


b̂����, b̂���− ���� = 0. �81b�

Since W̃�,���−���W̃�,�����, as obtained from
��������0, Eq. �81b� is zero. In addition, we have

W�,������Z�,����� and W�,������W̃�,����� under the
RWA. Therefore, the commutation relations �81a� and �81b�
can be considered as approximations of Eqs. �64�, which are
derived without the RWA.

On the other hand, instead of Eq. �60�, the electric field is
written under the RWA as

Ê+�r,�� = Ê0
+�r,�� + �

�

E��r,��b̂���� . �82�

From the commutation relations �25�, �81a�, and �81b�, we
obtain those of the electric field in the same form as Eq. �65�
as


Ê+�r,��,Ê−�r�,���� = ��� − ���
�0��2

i2


�
G̃ren�r,r�,�� − G̃ren
�t �r�,r,��� ,

�83�

where G̃ren�r ,r� ,�� is represented, instead of Eq. �66�, as

G̃ren�r,r�,�� = G�r,r�,�� +
1

�0�2 �
�,��

E��r,��

�W̃�,�����F���r�,�� . �84�

Since W�,������Z�,����� and W�,������W�,��
� �−��, this

tensor can be considered as an approximation of Eq. �66�.
Further, this also satisfies the wave equation 
Eq. �50�� by
replacing �ex�r ,r� ,�� with �̃ex�r ,r� ,��. However,
Eq. �67� is not maintained under the RWA as

G̃ren�r ,r� ,��� 	G̃ren�r ,r� ,−����� because we discuss under
����.

Since the commutation relations of excitons and the elec-
tromagnetic field maintain their forms from the general ones,

W̃�,����� and G̃ren�r ,r� ,�� can also be considered as re-
tarded correlation functions under the RWA. Furthermore,
since these functions are considered as approximations of the
general ones, it is safe to say that the RWA is valid in our
QED theory, and it is useful in the practical application from
the view point of the simplicity of the self-consistent equa-
tion set and the Green’s tensor.

X. CALCULATION SCHEME

In this section, we explicitly show a calculation scheme
for practical applications of our theory. First, we describe
practical materials in terms of our system parameters, i.e.,
background dielectric function �bg�r ,��, excitons’ eigenfre-
quencies 	���, transition dipole moments 	P��, polarization
direction 	e��, center-of-mass wave functions 	G��r��, and
nonradiative-relaxation widths 	���. We usually determine
	��� and 	G��r�� from boundary conditions for exciton
center-of-mass motion. The absolute value of P� is deter-
mined by the LT splitting energy �LT

� = �P��2 /�0�bg, and 	���
and the phase differences of 	P�� between different relative-
motion states are treated as fitting parameters for experimen-
tal results. However, we often consider only the lowest rela-
tive motion of excitons when the energies of higher states are
far from our energy region of interest. In such a case, the
phase of P� does not appear in the calculation of observables
under the RWA, and only 	��� remain as fitting parameters.

Next, we derive the Green’s tensor G�r ,r� ,�� that satis-
fies Eq. �16�, which is uniquely determined by �bg�r ,��. The
form of G�r ,r� ,�� has already been known for various
structures with high symmetry,47 and it can also be numeri-
cally calculated for arbitrary 3D structures.48 Then, we per-
form integrations in A�,�����, B�,�����, E��r ,��, and
F��r ,�� 
Eqs. �55�, �56�, �61�, and �62�� and numerically
calculate the inverse of the coefficient matrix of the self-
consistent equation set �57� 
or Eq. �79� under the RWA�.
Next, we obtain the Green’s tensor Gren�r ,r� ,��, Eq. �66�

or G̃ren�r ,r� ,��, Eq. �84� under the RWA�.

The size of the coefficient matrix is 2N�2N �or N�N
under the RWA�, where N is the number of exciton states to
be considered in the calculation. The above numerical calcu-
lation has been performed for semiconductor quantum dots,
films, multilayers, and so on in the semiclassical
framework.26 Furthermore, we have already applied our
QED theory with the RWA for the analysis of the entangled-
photon generation from a semiconductor film with a thick-
ness of a few hundred nanometers.36 In this numerical calcu-
lation, we considered 200 exciton states. In this manner, our
QED theory is definitely feasible for practical applications.

XI. DISCUSSION

In this study, by using the quantization technique of Sut-
torp and Wubs7,18 and the technique of the microscopic non-
local theory,25,26 we have constructed a QED theory for ex-
citons in arbitrary-structured dielectrics with considering the
nonlocal susceptibility and nonradiative relaxation of exci-
tons. This theory keeps good correspondences with both the
nonlocal theory and the QED theories for dispersive and ab-
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sorptive materials. On the other hand, as mentioned in Sec.
II, the QED of media with the nonlocality has already been
discussed in a few studies. From the viewpoint of practical
applications, we compare our theory with the studies of Di
Stefano and co-workers38–40 and Raabe et al.17

Di Stefano et al. discussed the quantum-well structures of
dispersive and absorptive dielectrics with the nonlocality in
Ref. 38, and their theory is generalized to enable the consid-
eration of arbitrary structures in Refs. 39 and 40. However,
there still remains a problem in deriving the Green’s tensors
for the generalized wave equation, as shown in Eq. �50� in
the present paper. On the other hand, our theory provides a
solution to this problem by providing a definite calculation
method based on a linear equation set, which is derived from
the Green’s tensor G�r ,r� ,�� and the fact that the nonlocal
susceptibility is represented as a summation of separable
functions with respect to two positions, as seen in Eq. �43�.
The problem of Ref. 40 can be solved by using our theory
because we derive the Green’s tensor �66� for arbitrary-
structured excitonic polarization and background dielectrics.

On the other hand, Raabe et al.17 proposed the use of the
dielectric approximation with the surface impedance method
for the practical calculation of the Green’s tensor for the
Maxwell wave equation with the nonlocal susceptibility. In
the dielectric approximation, the characteristic length of spa-
tial dispersion �the spatial spreading of the excitons’ center-
of-mass motion� is assumed to be small as compared to the
spatial length of materials, and the information outside a fo-
cusing region is compressed to integrations of the electro-
magnetic fields at the interfaces. The Green’s tensor can be
derived using the surface impedance method for a given sur-
face impedance or admittance, which includes the outside
information. In contrast, our theory provides the Green’s ten-
sor, without any significant approximations, for given
�bg�r ,�� and microscopic information of excitons.

As mentioned in Sec. I, there is a growing interest in the
QED of elementary excitations in condensed matters. For
example, theoretical studies on entangled-photon generation
via biexcitons have already been performed by Savasta
et al.49,50 �although the nonlocality was not sufficiently con-
sidered in these calculations� and, by extending our QED
theory reported in the present paper, we discuss it in the
excitonic system weakly confined in nanostructures,36 which
are known to exhibit anomalous nonlinear optical
phenomena.27–31 In addition, Scheel and Welsch14,15 dis-
cussed the QED of nonlinear media with absorption and dis-
persion �but without the nonlocality�. When we discuss the
nonlinear processes of excitons with the nonlocality, we must
self-consistently treat their nonlinear motion equation and
the Maxwell wave equation. Based on the self-consistent
equation set �57� or �79�, as discussed in the present paper,
the new objective is to solve the equation set with nonlinear
terms originating from nonlinear processes, as we have
done.36 On the other hand, based on the Maxwell wave equa-
tion 
Eq. �45�� with the nonlocal susceptibility, as discussed
in the previously discussed QED theories,16,17,38–41 we must
solve the wave equation with nonlinear and nonlocal suscep-
tibility. Both approaches can be performed by applying some
techniques such as successive approximation, and the expec-
tation values of the observables are calculated based on the

commutation relations �64� of excitons and those 
Eq. �65��
of the electric field 
Eqs. �81a�, �81b�, and �83� under the
RWA� that are described in terms of W�,�����, Z�,�����, and
Gren�r ,r� ,�� derived in the present paper. However, such
calculations are usually difficult. In such a case, more de-
tailed and systematic calculations should be performed by
using the Feynman diagram technique with the correlation
functions, which identifies with the retarded correlation func-
tions under the RWA and can then be derived in our QED
theory. In this sense, our scheme will be a powerful tool to
discuss the nonlinear processes of elementary excitations in
condensed matter with the nonlocality. Based on our QED
theory, we are going to discuss various optical phenomena
that cannot be discussed in the semiclassical framework.
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APPENDIX A: THE SECOND QUANTIZATION OF
EXCITONIC POLARIZATION

In this appendix, we provide microscopic descriptions of
the current density, charge density, and polarization density
of charged particles. Then, we expand them in terms of the
electron or exciton operators. We represent the second-
quantized operators with a hat � ˆ� in this appendix.

Considering charged particles with mass mi and charge qi
at position ri, the current density Jcp�r� and charge density
	cp�r� are represented as

Jcp�r� � �
i

qi

2

ṙi��r − ri� + ��r − ri�ṙi� , �A1�

	cp�r� � �
i

qi��r − ri� . �A2�

Here, due to the interaction with the radiation field �see Ap-
pendix B�, the momentum of the charged particles is repre-
sented as

pi = miṙi + qiA�ri� . �A3�

Then, current density �A1� includes a contribution from the
radiation field. In order to expand it in terms of electron or
exciton operators, we extract the radiation contribution from
Jcp�r�,

Icp�r� � �
i

qi

2mi

pi��r − ri� + ��r − ri�pi� . �A4�

By representing the coefficient of the radiation contribution
as

Ncp�r� � �
i

qi
2

mi
��r − ri� , �A5�

we can represent complete current density �A1� as
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Jcp�r� = Icp�r� − Ncp�r�A�r� . �A6�

This subtraction of the radiation contribution is discussed in
Sec. 2.2 of Ref. 26.

Next, we expand the above variables in terms of the elec-
tron operator â� and its wave function ���r�. The field op-
erator is represented as

�̂�r� = �
c

âc�c�r� + �
v

âv�v�r� , �A7�

where labels c and v represent the degrees of freedom of
conduction and valence electrons, respectively. Assuming
optical excitation of the electron-hole pairs, we obtain the
second-quantized form of the above variables as

Îex�r� =
�− e�
2m

�
c,v

âv
†âc
�v

��r�p�c�r� − �c�r�p�v
��r�� + H . c . ,

�A8�

N̂ex�r� =
�− e�2

m
�
c,v

âv
†âc�v

��r��c�r� + H . c . , �A9�

	̂ex�r� = �− e��
c,v

âv
†âc�v

��r��c�r� + H . c . , �A10�

These operators are also represented in terms of exciton op-

erators 	b̂�� in the same form as the polarization density �30�,

Îex�r� = �
�

I��r�b̂� + H . c . , �A11�

N̂ex�r� = �
�

N��r�b̂� + H . c . , �A12�

	̂ex�r� = �
�

	��r�b̂� + H . c. �A13�

Instead of evaluating the expansion coefficient of each op-
erator, we describe them in terms of P��r�, the coefficient of
polarization density �30�. From relations

	̂ex�r� = − � · P̂ex�r� , �A14�

Ĵex�r� =
�

�t
P̂ex�r� =

1

i�

P̂ex�r�,Ĥ� , �A15�

and considering weak exciton-photon interaction, i.e., Ĥ

� Ĥmat and Ĵex�r�� Îex�r�, we can represent the above coef-
ficients as

I��r� = − i��P��r� , �A16�

N��r� = �− e/m�	��r� , �A17�

	��r� = − � · P��r� , �A18�

where �� is the eigenfrequency of excitons. Using the above
operators �A11�–�A13�, the excitonic current density and
Coulomb potential of the polarization charge density are, re-
spectively, represented as

Ĵex�r� = Îex�r� − N̂ex�r�A�r� , �A19�

�̂ex�r� =� dr�
	̂ex�r��

4
�0�r − r��
. �A20�

In order to evaluate coefficients �A16�–�A18�, we derive
the representation of P��r� from the microscopic description
of the polarization density. Averaging the polarization at lat-
tice point R0 over a unit cell, the polarization density is
represented as

Pcp�R0� �
1



�




dr�
i

qir��R0 + r − ri� , �A21�

where the integration is over the unit cell and 
 is its vol-
ume. Explicitly indicating the lattice point and the electron
states as �� ,R� and assuming their wave function as an Wan-
nier function w��r−R�, we obtain the second-quantized form
of the polarization density as

P̂ex�R0� = �
c,v,R,R�

âv,R0+R�
† âc,R0+R+R�

1



�




drwv
��r − R��

��− e�rwc�r − R − R�� + H . c. �A22�

We expand this in terms of the exciton operators,

b̂�,m � �
c,v,R0,R

��,c,v,R
� Gm,R0

� âv,R0

† âc,R0+R, �A23�

where � and ��,c,v,R, respectively, denote the quantum num-
ber and the wave function of the relative motion of excitons
and m and Gm,R0

are those of the center-of-mass motion.
From the completeness of the wave functions, we can repre-
sent the electron-hole operator set as

âv,R0

† âc,R0+R = �
�,m

��,c,v,RGm,R0
b̂�,m. �A24�

Using this relation, we can expand Eq. �A22� in terms of the
exciton operators,

P̂ex�R0� = �
�,m

P�,m�R0�b̂�,m + H . c . , �A25�

where the expansion coefficient is represented as

P�,m�R0� � �
c,v,R,R�

Gm,R0+R���,c,v,R

�
1



�




drwv
��r − R���− e�rwc�r − R − R�� .

�A26�

Assuming that the spatial variation of the center-of-mass
wave function is negligible within the extent of the electron-
hole relative motion, we can consider Gm,R0+R��Gm,R0

. Fur-
ther, by expanding the integration range to the entire crystal
region by iterating R�, we obtain
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P�,m�R0� � Gm,R0 �
c,v,R

��,c,v,R

�
1



� drwv

��r��− e�rwc�r − R� . �A27�

Here, we assume the wave functions to be smooth with re-
spect to the spatial position, i.e., Gm�R0�=Gm,R0

/�
 and
��,c,v�R�=��,c,v,R /�
, and we then obtain the expansion
coefficient of polarization density �A25� as

P�,m�R0� = P�Gm�R0� , �A28�

where

P� � �
c,v,R

��,c,v�R�� drwv
��r��− e�rwc�r − R�

�A29�

is the transition dipole moment of exciton band �, and its
absolute value is related to the LT splitting of the exciton
eigenenergy as �LT

� = �P��2 /�0�bg.

APPENDIX B: DERIVATION OF HAMILTONIAN

As a model of the background system, we adopt the sys-
tem discussed by SW,7 i.e., polarizable harmonic oscillators
interacting with the radiation field and the reserver oscilla-
tors. Considering the charged particles of Appendix A, the
total Lagrangian is represented as

L = �
i
�1

2
miṙi

2 − V�ri�� +� drL , �B1�

where V�ri� is the one-body potential of the particles and L
is the Lagrangian density depending on the spatial position,

L =
1

2
�0E2 −

1

2�0
B2 +

1

2
	Ẋ2 −

1

2
	�0

2X2

− ��bg + �cp��	bg + 	cp� + A�− �Ẋ + Jcp� +
1

2
	�

0

�

d�Ẏ�
2

−
1

2
	�

0

�

d��2Y�
2 − �

0

�

d�v�X · Ẏ�. �B2�

We omit the descriptions of the position dependences.

E=−Ȧ−��bg−��cp is the electric field, and B=��A is the
magnetic induction. X�r� is the amplitude of polarizable har-
monic oscillators with density 	�r� and eigenfrequency
�0�r�. These oscillators describe the background medium in
our QED theory. The polarization density, charge density,
and current density of the background are, respectively, rep-

resented as −�X, 	bg=� · ��X�, and −�Ẋ with a position-
dependent coefficient ��r�. The background Coulomb poten-
tial is represented as

�bg =� dr�
	bg�

4
�0�r − r��
=� dr�

�� · ���X��
4
�0�r − r��

�B3�

and is related to the longitudinal component of the polariza-
tion as

��bg = −
1

�0

�X�L. �B4�

Further, it satisfies the Poisson equation,

�2�bg = −
	bg

�0
= −

1

�0
� · ��X� . �B5�

The damping in the background system is described by a
reservoir of oscillators interacting with the polarizable ones.
Y��r� is the amplitude of the oscillators with frequency �,
and v��r� represents the coupling strength.

From Lagrangian �B1�, the canonical momenta of the
above variables are derived as

� �
�L

�Ȧ
= �0Ȧ , �B6a�

P �
�L

�Ẋ
= 	Ẋ − �A , �B6b�

Q� �
�L

�Ẏ�

= 	Ẏ� − v�X , �B6c�

pi �
�L

� ṙi

= miṙi + qiA�ri� . �B6d�

Since A and ���bg+�cp� are perpendicular to each other,
from the Poisson equation 
Eq. �B5�� and �2�cp=−	cp /�0,
the first term of Eq. �B2� is rewritten as

� dr
�0

2
E2 =� dr��2

2�0
+

1

2
��bg + �cp��	bg + 	bg�� .

�B7�

Then, after a straightforward calculation, we obtain the
Hamiltonian as

H = Hem + �
i
� 1

2mi
	pi − qiA�ri��2 + V�ri��

+� dr�1

2
�cp	cp + �bg	cp� , �B8�

where Hem describes the complete Hamiltonian discussed by
SW,7 representing the radiation field and background dielec-
trics with local susceptibility,

Hem =� dr� �2

2�0
+

1

2�0
�� � A�2 +

P2

2	
+

	�̃0
2

2
X2

+ �
0

�

d�
Q�

2

2	
+ �

0

�

d�
	�2

2
Y�

2 +
�

	
P · A +

�2

2	
A2

+ �
0

�

d�
v�

	
X · Q� +

1

2
�bg	bg� . �B9�

The first two terms represent the radiation energy, the third
term the kinetic energy of the oscillators, and the fourth the
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potential. The seventh and eighth terms represent the inter-
action between the oscillators and the radiation field. The
eigenfrequency of the oscillators shown in the fourth term of
Eq. �B9� is modified as

�̃0
2 � �0

2 +
1

	
�

0

�

d�v�
2 , �B10�

due to the interaction with the reservoir oscillators, which is
described as the ninth term. The energy of the reservoir is
represented by the fifth and sixth terms. The last term repre-
sents the Coulomb interaction between the induced charges
of the background.

The second term of Eq. �B8�, the kinetic energy of the
charged particles, is expanded with the expression �B6d� of
their momentum as

�
i

1

2mi

pi − qiA�ri��2 = �

i

1

2mi
pi

2 − �
i

qi

2mi

pi · A�ri�

+ A�ri� · pi� + �
i

qi
2

2mi
A2�ri� .

�B11�

The first term represents the kinetic energy without the ra-
diation contribution, and the other terms represent the inter-
action between the charged particles and the radiation field.
Here, using the variables defined in Eqs. �A4� and �A5�, we
can rewrite Hamiltonian �B8� as

H = Hem + �
i
� 1

2mi
pi

2 + V�ri�� +
1

2
� dr�cp	cp +� dr�bg	cp

−� dr�Icp · A −
1

2
NcpA

2� . �B12�

Expanding these terms with field operator �A7�, we obtain
the first three terms of interaction Hamiltonian �5� from the
exciton-associated components of the last three terms of Eq.
�B12�, i.e., the terms proportional to av

†ac or ac
†av but not to

ac
†ac� or av

†av�, which are negligible under the weak excita-
tion regime. On the other hand, as mentioned in Sec. III, we
put the exchange interaction between electrons and holes
into Hint. It is obtained by expanding the fourth term of Eq.
�B12�,

1

2
� dr�cp	cp → ¯ + �

c,v,c�,v�

ac
†avav�

† ac�� drdr�

�
e2�c

��r��v�r��v�
� �r���c��r��

4
�0�r − r��
. �B13�

When we assume commutation relations �8a� and �8b� of the
exciton operators, we can find that the Coulomb interaction
between the excitonic charges themselves

1

2
� drdr�

	ex�r�	ex�r��
4
�0�r − r��

�B14�

gives exchange expression �B13� with a constant energy term
by expanding 	ex�r� using Eq. �A10�. While all the other

terms �¯� in Eq. �B13� and the second and third terms of
Eq. �B12� should belong to Hmat, instead of discussing them
in detail, we treat the matter Hamiltonian as Eq. �7� for a
simple description of the linear optical process of excitons
with nonradiative relaxation and put the contribution of
charged particles except the focusing excitonic modes into
Hem as a part of nonresonant backgrounds.

APPENDIX C: EXTENSION OF MAXWELL WAVE
EQUATION

In this appendix, we extend the Maxwell wave equation
discussed by SW �Ref. 7� to enable the consideration of the
exciton-induced polarization with nonlocal susceptibility. We
derive the Heisenberg equations of the system variables and
momenta from background Hamiltonian �B9� and interaction
term �5�. The commutation relations of the variables are


A�r�,��r��� = i��T�r − r�� , �C1�


X�r�,P�r��� = i���r − r��1 , �C2�


Y��r�,Q���r��� = i���� − �����r − r��1 , �C3�

where �T�r−r�� is the Dirac delta function extracting the
transverse component,

�T�r − r�� � 1��r − r�� +
����

4
�r − r��
. �C4�

We obtain the motion equations of the radiation field as

Ȧ =
1

�0
� , �C5�

�̇ =
1

�0
�2A − ��

	
�P + �A��

T
+ Jex T, �C6�

where

Jex T�r� � � dr�T�r − r�� · Jex�r�� �C7�

is the transverse component of the current density �A19�. The
equations of the polarizable oscillators are

Ẋ =
1

	
�P + �A� , �C8�

Ṗ = − 	�̃0
2X −

�

�0

�X�L −

1

	
�

0

�

d�v�Q� + � � �ex,

�C9�

and those of the reservoir oscillators are obtained as

Ẏ� =
1

	
�Q� + v�X� , �C10�

Q̇� = − 	�2Y�. �C11�
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From Eqs. �C5�, �C6�, and �C8�, we obtain the Maxwell
wave equation for the vector potential,

�2A −
1

c2Ä = �0
�Ẋ�T − �0Jex T, �C12�

which has a transverse component of the excitonic current
density as compared to the same type of equation in the
study by SW.7 Using the relation between the longitudinal
components of excitonic variables

Jex L�r� = Ṗex L�r� = �0 � �̇ex�r� �C13�

and that for the polarizable oscillators �B4�, we can rewrite
Eq. �C12� as a wave equation for electric field 
Eq. �10��,

� � � � E +
1

c2 Ë = �0�Ẍ − �0J̇ex. �C14�

On the other hand, from Eqs. �C8� and �C9�, we obtain a
differential equation of the polarizable oscillators,

	Ẍ + 	�̃0
2X = �Ȧ −

�

�0

�X�L + � � �ex −

1

	
�

0

�

d�v�Q�.

�C15�

Next, we rewrite the above motion equations in time do-
main into those for the forward Laplace transform of the
variables,


̄�p� � �
0

�

dte−pt
�t� , �C16a�

and for the backward Laplace transform,


̌�p� � �
0

�

dte−pt
�− t� . �C16b�

From their motion equations, we derive those for the
positive-frequency Fourier transform,


̂+��� =
1

2



̄�− i� + �� + 
̌�i� + ��� . �C17�

This Laplace transformation technique is essential to derive

the representations of noise operators Ĵ0�r ,�� and D̂����
and is useful for verifying their complex-frequency relations
�14� and �35� and to derive commutation relations �15�, �36�,
and �37� as SW,7 although we introduce the latter from the
fluctuation dissipation theorem.

The forward Laplace transform of the electric field 
Eq.
�10�� is represented as

Ē�p� = − pĀ�p� +
1

�0

�X̄�p��L − ��̄ex�p� + A�0� .

�C18�

From Eqs. �C14� and �C15�, we obtain a wave equation for
the transform as

� � � � Ē�p� +
p2

c2 �̄�p�Ē�p� = − �0pJ̄�p� − �0pJ̄ex�p�

−
p

c2 � �ex�0� , �C19�

where �̄�p�=1+ �̄�p� is the background dielectric function,
and the susceptibility is represented as

�̄�p� =
�2

�0	�p2 + �̃0
2 −

1

	2�
0

�

d�
�2v�

2

p2 + �2�−1

. �C20�

The operator on the RHS of Eq. �C19� is

J̄�p� = −
1

�0p
� � � � A�0� − �0p�̄�p�A�0� + ��0�

+ ��1 −
�0	

�2 p2�̄�p��X�0� − 
�X�0��L −
�0

�
p�̄�p�P�0�

−
�0

�
p�̄�p��

0

�

d�
v�

p2 + �2��2Y��0� −
p

	
Q��0�� ,

�C21�

which is just the one shown in Eq. �27� of the study by SW
�Ref. 7� and depends only on the system variables and mo-
menta in the background. On the other hand, the backward
Laplace transform of the electric field is represented as

Ě�p� = pǍ�p� +
1

�0

�X̌�p��L − ��̌ex�p� − A�0� ,

�C22�

and a wave equation is obtained as

� � � � Ě�p� +
p2

c2 �̄�p�Ě�p�

= �0pJ̌�p� + �0pJ̌ex�p� −
p

c2 � �ex�0� , �C23�

where the operator on the RHS is also independent of the
variables associated with the excitons,

J̌�p� = −
1

�0p
� � � � A�0� − �0p�̄�p�A�0� − ��0�

− ��1 −
�0	

�2 p2�̄�p��X�0� + 
�X�0��L −
�0

�
p�̄�p�P�0�

−
�0

�
p�̄�p��

0

�

d�
v�

p2 + �2��2Y��0� +
p

	
Q��0�� .

�C24�

From the forward and backward Laplace transforms
�C19� and �C23� of the Maxwell wave equation, we obtain
that for the positive-frequency Fourier component of the
electric field as
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� � � � Ê+�r,�� −
�2

c2 �bg�r,��Ê+�r,��

= i�0�
Ĵ0�r,�� + Ĵex
+ �r,��� , �C25�

where �bg�r ,��= �̄�r ,−i�+�� is the background dielectric
function. The noise current-density operator in our system is
represented as

Ĵ0�r,�� = Ĵ�r,�� −
i�2


c2 Im
�bg�r,���

�� dr�G��r,r�,�� · 
J̌ex�r�,i� + ��

− �0���ex�r�,0�� , �C26�

where G�r ,r ,�� is the Green’s tensor satisfying Eq. �16�,
and

Ĵ�r,�� =
1

2


J̄�r,− i� + �� + J̌�r,i� + ���

−
i�2


c2 Im
�bg�r,���� dr�G��r,r�,�� · J̌�r�,i� + ��

�C27�

is the same operator shown in Eq. �45� of the study by SW.7

Because of the relation

Ĵex�r,�� = − i�P̂ex�r,�� , �C28�

we can rewrite Eq. �C25� into Eq. �11�.

APPENDIX D: DERIVATION OF EXCITONS’ MOTION
EQUATION

In Appendix C, we derive the Maxwell wave equation
considering the excitons. In this appendix, we derive the mo-
tion equation of excitons and rewrite it in the � representa-
tion.

From matter Hamiltonian �7� and interaction Hamiltonian
�5�, neglecting the radiation contribution of the current den-
sity Nex�r�A2�r� /2 under weak excitation, we obtain the
Heisenberg equation of excitons as

i�
�

�t
b��t� = ���b��t� −� dr
I�

� �r� · A�r,t� − 	�
� �r���r,t��

+ �
0

�

d

g��
�d��
,t� + g�
� �
�d�

† �
,t�� ,

�D1�

where ��r���bg�r�+�ex�r� is the complete Coulomb poten-
tial. Using relations �A16� and �A18� between I��r�, 	��r�,
and P��r� and Laplace transforms �C18� and �C22� of the
electric field, the forward and backward Laplace transforms
of Eq. �D1� are, respectively, derived under ���� as

���� − �� − i��b̄��− i� + ��

= − i�b��0� +� drP�
� �r� · 
Ē�r,− i� + �� − A�r,0��

− �
0

�

d

g��
�d̄��
,− i� + ��

+ g�
� �
�d̄�

† �
,− i� + ��� , �D2a�

���� − �� + i��b̌��i� + ��

= i�b��0� +� drP�
� �r� · 
Ě�r,i� + �� + A�r,0��

− �
0

�

d

g��
�ď��
,i� + �� + g�
� �
�ď�

† �
,i� + ��� .

�D2b�

On the other hand, we obtain the motion equation of reser-
voir oscillators,

i�
�

�t
d��
,t� = �
d��
,t� + g�

� �
�
b��t� + b�
† �t�� ,

�D3�

and its Laplace transforms,

��
 − �� − i��d̄��
,− i� + ��

= − i�d��
,0� − g�
� �
�
b̄��− i� + �� + b̄�

† �− i� + ��� ,

�D4a�

��
 − �� + i��ď��
,i� + ��

= i�d��
,0� − g�
� �
�
b̌��i� + �� + b̌�

† �i� + ��� .

�D4b�

Substituting Eqs. �D4� into Eqs. �D2a� and �D2b�, we obtain


��� − �� − i�����/2�b̄��− i� + ��

+ 
− i�����/2�b̄�
† �− i� + �� − D̄��− i� + ��

= − i�b��0� +� drP�
� �r� · 
Ē�r,− i� + �� − A�r,0�� ,

�D5a�


��� − �� + i��
� ���/2�b̌��i� + ��

+ 
i��
� ���/2�b̌�

† �i� + �� − Ď��i� + ��

= i�b��0� +� drP�
� �r� · 
Ě�r,i� + �� + A�r,0�� ,

�D5b�

where the operators on the left-hand side �LHS� are defined
as
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D̄��− i� + �� � �
0

�

d

ig��
�


 − � − i�
d��
,0�

− �
0

�

d

ig�

� �
�

 + � + i�

d�
† �
,0� , �D6a�

Ď��i� + �� � − �
0

�

d

ig��
�


 − � + i�
d��
,0�

+ �
0

�

d

ig�

� �
�

 + � − i�

d�
† �
,0� , �D6b�

and the relaxation width is represented as

i�����
2

� �
0

�

d
� �g��
��2

�
 − �� − i�
+

�g��
��2

�
 + �� + i�
� .

�D7�

Because of this definition, ����� satisfies Eq. �34�. By add-
ing Eqs. �D5a� and �D5b�, we obtain motion equation 
Eq.
�33�� of excitons and the fluctuation operator defined as

D̂���� �
1

2


D̄��− i� + �� + Ď��i� + ���

−
i Re
������

2


b̌��i� + �� + b̌�

† �i� + ��� .

�D8�

Since there exist the relations b̌��i�+��= 	b̌�
† �−i��+���†,

D̄��−i�+��= 	D̄��i��+���†, Ď��i�+��= 	Ď��−i��+���†,

and Eq. �34�, D̂���� satisfies Eq. �35�.

APPENDIX E: EVALUATION OF COMMUTATION
RELATIONS

In this appendix, we present a detailed calculation of the

commutation relations of the noise current density Ĵ0��r ,��,
exciton operators b̂����, and electric field Ê�r ,��.

First, we evaluate the commutation relations of Ĵ0��r ,��
defined in Eq. �46�. From fundamental commutation rela-
tions �15�, �36�, and �37�, we obtain


Ĵ0��r,��,	Ĵ0��r�,�����†� = ��� − ���
�0��2

i2


�bg�r,�� − �bg

� �r,���1 + ��� − ���
��2

i2

�
�
�P��r�

P�
� �r� �t

W����i Re
������

��1 1

1 1
�W�

�t����P�
� �r��

P��r��
� . �E1�

Here, a part of the last term is represented as

W����i Re
�������1 1

1 1
�W�

�t��� = W����
S�
�t��� − S�����W�

�t��� = W���� − W�
�t��� , �E2�

and we can verify that Eq. �E1� becomes Eq. �48�.
Next, we verify excitons’ commutation relations �64a� and �64b�. Commutator �64a� is evaluated as


b̂����,	b̂��������†� = ��� − ���
− �

i2

�
�,��

	W�,����	A�,����� − A��,�
� ��� − i Re
��������,���W��,��

� ���

+ W�,����	B�,����� − B��,��− �� − i Re
��������,���Z��,��
� ��� + Z�,����	B�,��

� �− �� − B��,�
� ���

+ i Re
���− �����,���W��,��
� ��� + Z�,����	A�,��

� �− �� − A��,��− �� + i Re
���− �����,���Z��,��
� ���� .

�E3�

We can rewrite this as


b̂����,	b̂��������†� = ��� − ���
− �

i2

�
�,��

	
W�,����S�,����� + Z�,����T�,��
� �− ���W��,��

� ���

− W�,����
W��,��
� ���S��,�

� ��� + Z��,��
� ���T��,��− ��� + 
W�,����T�,����� + Z�,����S�,��

� �− ���Z��,��
� ���

− Z�,����
W��,��
� ���T��,�

� ��� + Z��,��
� ���S��,��− ���� . �E4�

Here, using relation �59� between the coefficient matrix for the self-consistent equation set and its inverse matrix, we can
obtain Eq. �64a� from Eq. �E4�. By the same procedure, commutator �64b� is evaluated as
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b̂����, b̂���− ���� = ��� − ���
− �

i2

�
�,��

	
W�,����T�,����� + Z�,����S�,��
� �− ���W��,���− ��

− W�,����
W��,���− ��T��,��− �� + Z��,���− ��S��,�
� ����

+ 
W�,����S�,����� + Z�,����T�,��
� �− ���Z��,���− ��

− Z�,����
W��,���− ��S��,��− �� + Z��,���− ��T��,�
� ����� , �E5�

and we obtain Eq. �64b� using Eq. �59�.
Finally, we verify commutation relation �65� of the electric field. The commutator is expanded as


Ê+�r,��,Ê−�r�,���� = 
Ê0
+�r,��,Ê0

−�r�,���� + �
��

	
Ê0
+�r,��,	b̂��������†�E��

� �r�,��� + 
Ê0
+�r,��, b̂���− ����E���r�,− ����

+ �
�

	E��r,��
b̂����,Ê0
−�r�,���� + E�

� �r,− ��
	b̂��− ����†,Ê0
−�r�,�����

+ �
�,��

	E��r,��
b̂����,	b̂��������†� + E�
� �r,− ��
	b̂��− ����†,	b̂��������†��E��

� �r�,���

+ �
�,��

	E��r,��
b̂����, b̂���− ���� + E�
� �r,− ��
	b̂��− ����†, b̂���− �����E���r�,− ��� . �E6�

Using Eqs. �64a�, �64b�, and �25� and the following equa-
tions, we can obtain Eq. �65�. Hence,


Ê0
+�r,��,	b̂��������†�

= ��� − ���
�

i2

�
�

	
E��r,�� − F�
� �r,���W��,�

� ���

+ 
F��r,�� − E�
� �r,���Z��,�

� ���� , �E7�


Ê0
+�r,��, b̂���− ����

= ��� − ���
�

i2

�
�

	
E�
� �r,− ��

− F��r,− ���W��,��− ��

+ 
F�
� �r,− �� − E��r,− ���Z��,��− ��� , �E8�


b̂����,Ê0
−�r�,����

= ��� − ���
�

i2

�
��

	W�,�����
F���r�,�� − E��
� �r�,���

+ Z�,�����
E���r�,�� − F��
� �r�,���� , �E9�


	b̂��− ����†,Ê0
−�r�,����

= ��� − ���
�

i2

�
��

	W�,��
� �− ��

�
F��
� �r�,− �� − E���r�,− ���

+ Z�,��
� �− ��
E��

� �r�,− �� − F���r�,− ���� .

�E10�

APPENDIX F: VERIFICATION OF GREEN’S TENSOR
FOR NONLOCAL SYSTEM

In this appendix, we verify that Gren�r ,r� ,�� defined in
Eq. �66� satisfies wave equation 
Eq. �50��. Here, we define

operator L̂ that operates on the arbitrary vector f�r� as

L̂f�r� � � � � � f�r� −
�2

c2 �bg�r,��f�r�

−
�2

c2� dr��ex�r,r�,��f�r�� . �F1�

First of all, applying L̂ into G�r ,r ,��, we obtain

L̂G�r,r�,�� = ��r − r�� − �
�
�P��r�

P�
� �r� �t

W� �����F��r�,��

E��r�,�� � .

�F2�

On the other hand, E��r ,�� becomes

L̂E��r,�� = �0�2P��r� + �0�2�
�
�P��r�

P�
� �r� �t

W� ����

�� A�,����

B�,�
� �− �� � . �F3�

Here, because of definition �39� of S� ����, there exists the
following relation:
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P��r� = �P��r�

P�
� �r� �t�1

0
� = �P��r�

P�
� �r� �t

W� ����

����� − �� − i�����/2
− i�����/2 � . �F4�

Therefore, Eq. �F3� is rewritten as

L̂E��r,�� = �0�2�
�
�P��r�

P�
��r� �t

W� ����� S�,����
T�,�

� �− �� � .

�F5�

By the same procedure, we obtain

L̂E�
� �r,− �� = �0�2�

�
�P��r�

P�
��r� �t

W� ����� T�,����
S�,�

� �− �� � .

�F6�

Then, the additional terms in Eq. �66� become

L̂
1

�0�2 �
�,��


E��r,��W�,�����F���r�,��

+ E�
� �r,− ��Z�,��

� �− ��E��
� �r�,− ���

= �
�,��,�

�P��r�

P�
��r� � t

W� ����� S�,����
T�,�

� �− ��
T�,����

S�,�
� �− �� �

�� W�,�����

Z�,��
� �− �� �F���r�,��

= �
�
�P��r�

P�
� �r� � t

W� �����F��r�,��

0
� , �F7�

L̂
1

�0�2 �
�,��


E��r,��Z�,�����E���r�,��

+ E�
� �r,− ��W�,��

� �− ��F��
� �r�,− ���

= �
�,��,�

�P��r�

P�
��r� � t

W� ����� S�,����
T�,�

� �− ��
T�,����

S�,�
� �− �� �

�� Z�,�����

W�,��
� �− �� �E���r�,��

= �
�
�P��r�

P�
� �r� � t

W� ����� 0

E��r�,�� � . �F8�

Adding Eqs. �F2�, �F7�, and �F8�, we can find that
Gren�r ,r� ,�� satisfies Eq. �50�.

APPENDIX G: EQUAL-TIME COMMUTATION
RELATIONS

In order to verify the validity of introduced commutation
relations �15�, �36�, and �37�, we calculate the equal-time
commutation relations from those in the � representation.

The commutation relations of equal-time Heisenberg opera-
tors should keep the form of those as the Schrödinger opera-
tors. This means that relations


b��t�,b��
† �t�� = ��,��, �G1�


b��t�,b���t�� = 0, �G2�


Pex�r,t�,Pex�r�,t�� = 0 , �G3�


E�r,t�,E�r�,t�� = 0 �G4�

should be derived from the commutation relations of the
Fourier-transformed Heisenberg operators. Moreover, from
Eqs. �10� and �C5�, the electric field is represented as

�0E�r,t� = − ��r,t� − �0 � ��r,t� , �G5�

and since ��r , t� and A�r , t� satisfy commutation relation
�C1�, the following relation should also be derived:


�0E�r,t�,A�r�,t�� = i��T�r − r�� . �G6�

For local dielectric media, the same type of calculation has
been performed by Knöll, Scheel, and Welsch �KSW�.13

From the time representation of the exciton operator

b��t� = �
−�

�

d�b̂����e−i�t �G7�

and commutation relations �64a� and �64b� for the � repre-
sentation, the equal-time ones are written as


b��t�,b��
† �t�� =

�

i2

�

−�

�

d�
W�,����� − W��,�
� ���� ,

�G8�


b��t�,b���t�� =
�

i2

�

−�

�

d�
Z�,����� − Z��,�
� �− ��� .

�G9�

In the limit of ���→�, as indicated in Appendix A.1 of the
study by KSW,13 it is known that �bg�r ,��→1 and

lim
���→�

�2

c2 G�r,r�,�� = − ��r − r��1 . �G10�

Then, due to the orthogonality of P��r�, as shown in Eq.
�31�, and the relation with LT splitting �LT

�

= �P��2 /�bg�����0, the limits of correction terms �55� and
�56� are

lim
���→�

A�,����� =
1

�0
� drP�

� �r� · P���r� , �G11�

=��,���bg�����LT
� , �G12�

lim
���→�

B�,����� = ��,���bg�����LT
� ei2�, �G13�

where � is the phase of P�. On the other hand, the limit of
the nonradiative width ����� defined in Eq. �D7� is �����
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→ +0. Therefore, the coefficient matrix of the self-consistent
equation set �57� becomes block diagonal with respect to the
exciton states as

lim
���→�

S�,����� = ��,��
��� + �bg�����LT
� − �� − i�� ,

�G14�

lim
���→�

T�,����� = ��,���bg�����LT
� ei2�. �G15�

The inverse of this matrix gives the limits of W�,����� and
Z�,�����, and it is also diagonal with respect to the exciton
states. As mentioned in Sec. VIII, since they have no pole in
the upper half of the complex � plane, the integration over
the real axis is evaluated as

�
−�

�

d�W�,����� =
i


�
��,��, �G16a�

�
−�

�

d�Z�,����� = 0. �G16b�

We can find that these reproduce commutation relations �G1�
and �G2� from Eqs.�G8� and �G9�.

Next, we verify commutation relation �G3� of the exci-
tonic polarization Pex�r , t�. From Eq. �41�, the time represen-
tation can be written as

Pex�r,t� = �
0

�

d�
P̂ex
+ �r,��e−i�t + P̂ex

− �r,��ei�t� ,

�G17�

=�
−�

�

d�P̂ex
+ �r,��e−i�t = �

−�

�

d�P̂ex
− �r,��ei�t. �G18�

Since we have already derived Eqs. �G16a� and �G16b�, the
equal-time commutator becomes


Pex�r,t�,Pex�r�,t�� = �
−�

�

d��
−�

�

d��e−i�t
P̂ex
+ �r,��,P̂ex

−

��r�,����ei��t = �
�


P��r�P�
� �r��

− P�
� �r�P��r��� . �G19�

This is also obtained from Eqs. �30� and �G1� directly. From
Eq. �G19�, we can reproduce equal-time commutation rela-
tion �G3�,


Pex�r,t�,Pex�r�,t���,�� = �
�


P�
� �r�	P�

���r���� − c . c.� ,

�G20�

=�
�



0�Pex
� �r����
��Pex

���r���0� − c . c.� , �G21�

=
0�
Pex
� �r�,Pex

���r����0� = 0, �G22�

where � ,��=x ,y ,z, ���=b�
† �0�, and �0� indicates the ground

state of the medium.
Next, we verify relation �G4� of the electric-field operator.

Since the time representation of the electric field is also writ-
ten in the same form as Eq. �G18�, we can evaluate its equal-
time commutator as


E�r,t�,E�r�,t�� = �
−�

�

d�
�0��2

i2


Gren�r,r�,��

− Gren
�t �r�,r,��� . �G23�

Since G�r ,r� ,�� becomes Eq. �G10� in the limit of ���
→�, from Eqs. �61� and �62�, we can obtain

lim
���→�

E��r,�� = − P��r�/�0, �G24�

lim
���→�

F��r,�� = − P�
� �r�/�0. �G25�

By the same procedure used to derive Eqs. �G16a� and
�G16b�, the integration of Eq. �66� becomes

�
−�

�

d�
��0�2

i2

Gren�r,r�,�� = �

−�

�

d�
��0�2

i2

G�r,r�,��

+
1

2�0
2�

�


P��r�P�
� �r��

− P�
� �r�P��r��� . �G26�

Therefore, Eq. �G23� is evaluated as


E�r,t�,E�r�,t�� = �
−�

�

d�
��0�2

i2


G�r,r�,�� − G��r,r�,���

+
1

�0
2�

�


P��r�P�
� �r�� − P�

� �r�P��r��� .

�G27�

The first two terms are zero as indicated by SW �Ref. 7� or as
calculated by KSW,13 and the other terms are also zero, as
discussed above. Then, equal-time commutation relation
�G4� is reproduced.

Last, we verify relation �G6�. As discussed in Appendix
A.2 of the study by KSW,13 we can write the time represen-
tation of the vector potential as

A�r,t� = lim
�→0
�

�

�

d�� ds� e−i�t

i�
Ê+�s,�� + H . c.� · �T�s − r� ,

�G28�

=P�
−�

�

d�
e−i�t

i�
� dsÊ+�s,�� · �T�s − r� , �G29�
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=− P�
−�

�

d�
ei�t

i�
� dsÊ−�s,�� · �T�s − r� , �G30�

where P indicates the principal-value integration. From this
representation, the commutator between the electric field and
the vector potential becomes


�0E�r,t�,A�r�,t��

= P�
−�

�

d�
�0�0��

2

� ds
Gren�r,s,�� − Gren

�t �s,r,���

· �T�s − r�� . �G31�

First, in the limit of ���→�, Gren��� /� becomes zero be-
cause of factor �−1 as compared to the above discussion. On
the other hand, in the limit of ���→0, due to the equation
shown in the study by KSW,13

lim
���→0

�2

c2� dsG�r,s,�� · �T�s − r�� = 0 , �G32�

the following limits are also zeros,

lim
���→0

�2

c2� ds�T�s − r�� · E��s,��

= lim
���→0

�2

c2� ds�T�s − r�� · F��s,�� = 0 . �G33�

From these results, we can find that the last four terms of Eq.
�66�, the representation of Gren�r ,r� ,��, do not contribute to
the result of commutator �G31�, and it becomes


�0E�r,t�,A�r�,t��

= P�
−�

�

d�
�0�0��

2

� ds
G�r,s,�� − G��r,s,���

· �T�s − r�� . �G34�

This reproduces equal-time commutation relation �G6� as
verified by KSW.13
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