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We study the problem of Coulomb field-induced charging of the ground state in a system of two-dimensional
�2D� massive Dirac particles—gapped graphene. As in its 3D QED counterpart, the critical Coulomb coupling
is renormalized to higher values compared to the massless case. We find that in gapped graphene, a different
supercritical regime is possible, where the screening charge is comparable to the impurity charge; thus, leading
to suppression of the Coulomb field at nanometer scales. We corroborate this with a numerical solution of the
tight-binding problem on the honeycomb lattice.
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I. INTRODUCTION

The successful experimental isolation of a single plane of
sp2 carbon atoms �graphene� has stirred our deepest assump-
tions about condensed-matter systems.1–3 Not only is
graphene unique in the realm of solid state, but it also has a
vast potential as a test ground for many of the remarkable
predictions of quantum electrodynamics �QED�.4,5 One re-
markable characteristic of graphene is that its electronic
properties can be tailored in many different ways, either by
applying transverse electric and magnetic fields, by changing
its geometry, or by modifying the substrate where graphene
is deposited or grown.3

In fact, while graphene deposited in SiO2 is well de-
scribed by the two-dimensional �2D� massless Dirac
equation,1 graphene grown on SiC can be described in terms
of massive 2D Dirac electrons.6 Substrate induced potentials
can break symmetries of the honeycomb lattice and generate
gaps in the electronic spectrum. Hence, by suitable choice of
substrates, one can tune the “rest mass” of the “relativistic”
particles and explore phenomena beyond the ones character-
istic of the massless case. Furthermore, the electronic prop-
erties of devices, such as carrier mobility, depend strongly on
how the electronic degrees of freedom �massive or massless�
interact with impurities. Of particular importance are charged
impurities that naturally appear either on the substrate, on
top of graphene, or between the substrate and graphene.
Charged impurities play an important role in the transport
characteristics of graphene deposited in SiO2 �Refs. 7–9� and
should play an important role in epitaxial graphene as well.10

In this paper we explore the nontrivial restructuring and
charging of the vacuum that occur in the presence of a su-
percritical Coulomb center11,12 if the system is described by a
“massive” spectrum. The problem of an unscreened Cou-
lomb impurity in undoped graphene has recently received
considerable attention.13–18 This is justified since, on the one
hand, the vanishing density of states �DOS� at the Fermi
energy of undoped graphene and the absence of backscatter-
ing suppress screening.19 In addition, the Coulomb problem
in graphene is the condensed-matter analog of supercritical
nuclei �Z��1� in QED whose rich and fundamental phe-
nomena remain elusive to experimental testing.12,13,15 We
show here that this analogy achieves its fullest in gapped
graphene, where one can resolve the incremental charging of

the vacuum with strong implications for the screening of the
Coulomb center.

The rest of this paper is organized as follows. In Sec. II
we introduce our model and in Sec. III its properties in the
massless limit are reviewed. In Sec. IV the behavior of dis-
crete energy levels in the massive case is discussed. We ex-
amine in detail the structure of the critical wave function and
the corresponding renormalization of the critical Coulomb
coupling in Sec. V. In Sec. VI we study the behavior of the
vacuum charge across the critical point. Section VII contains
the corresponding results for a finite-size system �where the
energy gap is due to the finite size only�. Section VIII con-
tains a discussion of our results and conclusions.

II. MODEL

To address the Coulomb problem in graphene, we resort
to the single-valley effective Dirac description of the electron
dynamics. We start from the tight-binding Hamiltonian de-
scribing electrons in a honeycomb lattice and in the presence
of a Coulomb center of strength Z. In addition, we assign a
different local energy to each sublattice. The resulting
Hamiltonian is

H = t�
i

�ai
†bi + H.c.� − Ze2�

i
�ai

†ai

ri
A +

bi
†bi

ri
B �

+
�

2 �
i

ai
†ai −

�

2 �
i

bi
†bi. �1�

In the above equation, the sums run over unit cells and the
operators ai�bi� pertain to the A�B� sublattice. This system
exhibits a band gap of � and, if undoped, has an insulating
ground state with the Fermi level in the gap. Just as in its
gapless counterpart, low-energy excitations can be addressed
within an effective-mass approximation, consisting of a k ·p
expansion around the K and K� points in the Brillouin zone.
The resulting effective Hamiltonian leads to the Dirac equa-
tion in 2D under a Coulomb field,

�− i�vF� · �−
Ze2

r
+ mvF

2�z���r� = ���r� , �2�

where the wave function ��r� has a spinor structure that
carries the amplitude of the wave function on each sublattice,
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��r� = �	A�r�
	B�r�

� . �3�

vF=3ta / �2�� is the Fermi velocity in graphene and a is the
C-C distance. It is convenient to introduce g as the dimen-
sionless coupling to the external Coulomb field g�Z� and
��e2 / ��vF� is the “fine-structure” constant of graphene.
The gap in the spectrum is induced by the term proportional
to �z, akin to a relativistic rest mass. The mass m is related to
the local energy mismatch in the tight-binding formulation
through �=2mvF

2 . To avoid a too cumbersome notation,
throughout the paper we shall take a system of units in which
�=vF=1. Without loss of generality, the impurity will be
considered attractive �g�0� and the C-C distance �a
	1.42 Å� will be used as the length unit.

In parallel with the exact analytical solution of Eq. �2�, we
solve the tight-binding problem of Eq. �1� exactly via direct
numerical diagonalization on the lattice. This exact solution
provides an important control of the validity of the Dirac
approach and the results of the two approaches will be fre-
quently compared.

III. COULOMB IMPURITIES IN MASSLESS GRAPHENE

Before delving into the details of the supercritical regime
in the massive case, a brief overview of the main physics
seen in the massless problem is pertinent.13–15 When m=0,
Eq. �2� separates in cylindrical coordinates20 and can be sub-
sequently mapped into the radial Schrödinger equation of the
usual Coulomb problem in three dimensions �3D�.15 One de-
cisive peculiarity of this mapping is that, although the radial
equation is formally the same as the radial equation in the
Schrödinger Coulomb problem, the angular-momentum
quantum number appears replaced by an “effective angular
momentum” equal to l=
j2−g2. Here, j is the quantum num-
ber associated with the total angular-momentum operator

Jz = Lz +
1

2
�z, �4�

and takes the values j= 
1 /2, 
3 /2, . . . . The radial solu-
tions are thus expressed in terms of the Coulomb
functions15,21 Fl(−g sign��� , ���r) and Gl(−g sign��� , ���r) .
Given that, as usual, l determines the asymptotic power-law
behavior of the wave functions,

Fl�r 	 0� � rl+1, Gl�r 	 0� � r−l,

it is evident that g=gc=1 /2 is a singular point for the lowest
total angular-momentum channel �j= 
1 /2�. Below gc the
space of solutions is constrained by the requirement of regu-
larity at the origin, as usual, and this selects Fl�r� as the
regular solution. But above gc, l becomes imaginary and any
linear combination of the solutions �Fl ,Gl� becomes square
integrable at the origin. At the same time, one sees from the
above asymptotics that the solutions oscillate endlessly when
r→0 as � expi log�r��. This is a signature of the “fall to the
center” characteristic of highly singular potentials.22 In fact,
the supercritical regime can be intuitively understood from a
classical perspective; consideration of the classical equations

of motion for the Dirac Hamiltonian shows that, for a given
angular momentum, there will be a critical coupling above
which the classical orbits spiral and fall onto the potential
source.13 The potential has become too singular and there are
no closed nor scattering orbits.

It is known that, in this case, the quantum-mechanical
problem becomes uniquely defined only after an additional
boundary condition is introduced, reflecting the physical cut-
off of the potential at short distances.11,23 For graphene the
natural cutoff is the lattice spacing a. This regularization of
the potential at short distances permits the exact solution to
be extended to the supercritical regime �g�gc�, which
�among other effects� is characterized by the presence of
marked resonances in the spectral density of the hole
channel.15 Such spectral features are analogous to the posi-
tron resonances expected for a supercritical nucleus in
QED.12 But a fundamental difference exists between the two
cases; whereas in QED, due to the finite mass, the emergence
of positron resonances is an incremental process �as a func-
tion of g�—in massless graphene an infinite number of them
instantly appears at g=gc. Semiclassical considerations illus-
trate how these resonances emerge from an infinite number
of quasi-bound-states embedded in the lower continuum.13

Adding to these spectral peculiarities, the induced electronic
charge behaves rather differently on the two sides of the
critical point being localized close to the impurity for g
�gc and otherwise decays algebraically13,15 as 1 /r2.

An important question is how will these nonperturbative
effects contribute to screen the impurity potential. Adding to
the ever present virtual vacuum polarization arising from vir-
tual excitations,18 in the supercritical regime one expects
those quasilocalized states to partially screen the Coulomb
center. It was argued, on the basis of a self-consistent treat-
ment, that the impurity charge at large distances is screened
down to its critical value Zc=1 / �2�� for any g�gc.

13 We
will show that in the massive case of interest here, the situ-
ation is conceptually different and a different regime can be
reached where the polarization charge is comparable to the
bare charge Z. This leads to a strong tendency to neutraliza-
tion of the impurity potential at a length scale set by the
Compton wavelength in graphene. We examine in detail the
conditions for this to occur.

IV. MASSIVE DIRAC FERMIONS IN GRAPHENE

The emergence of resonant solutions described above is
best appreciated when the system acquires a mass and the
electron dispersion becomes �2=k2+m2. This mass can arise
physically from sublattice symmetry breaking,6 from spin-
orbit coupling, or from reduced dimensionality, as in a finite-
size mesoscopic sample. The one-particle solution for the
massive case is straightforward and is discussed, for in-
stance, in Refs. 14 and 24. The fundamental difference that a
finite mass brings to the Coulomb problem is the immediate
appearance of bound solutions corresponding to the hydro-
genlike fine-structure spectrum in 2D,

�n,j = m sign�g�
n + 
j2 − g2


g2 + �n + 
j2 − g2�2
. �5�

In the above equation n is the principal quantum number and
j is the total angular-momentum quantum number defined
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above. These states reside in the gap −m���m and are
described by wave functions that decay exponentially for
distances larger than the “Bohr” radius a0=C / �Z��, where
C=� / �mvF� is the “Compton” wavelength in graphene. For
an attractive potential the lowest bound state �n=0, j=1 /2�
has an energy given by

�0 = m
1 − �2g�2, �6�

and hence reaches zero singularly at g=gc—becoming
imaginary beyond this coupling strength. Similarly to what
we have discussed regarding the massless case, this imagi-
nary energy reflects the fact that a description of a point
nucleus is impossible for g�gc. A physical regularization
procedure, where one cuts the potential off at small r, relaxes
this constraint and the bound levels are then allowed to sink
further12,25 through negative energies until the point �=−m is
reached. The diving of the bound solutions with increasing
coupling is schematically depicted in Fig. 1�a�. The vicinity
of this point where the lowest bound state is about to merge
�or has just merged� with the continuum is the focus of all
our subsequent discussion.

V. CRITICAL WAVE FUNCTION AND CRITICAL
COUPLING RENORMALIZATION

Given that in a regularized Coulomb potential the bound
levels are allowed to dive into negative energies, the rel-
evance is transferred from the particular coupling g=gc
=1 /2 to the value g̃c at which �0=−m. Necessarily g̃c�gc
and the critical coupling is thus renormalized to higher val-
ues. This is one of the immediate consequences of the pres-
ence of a gap. The merging of the bound solution with the
continuum is nonetheless peculiar and, hence, it is worth
careful consideration. We begin with a semiclassical argu-
ment. The first important thing to notice is that the merging
state does not become completely delocalized, as one would
expect in typical Schrödinger problems, but remains local-
ized as it dives into the lower continuum. This is somewhat
counter intuitive and is best appreciated by considering the
problem semiclassically within WKB. An alternative to the
full WKB approximation is to consider the classical relativ-
istic momentum

p�r�2 = � − U�r��2 − m2, �7�

where U�r� is the Coulomb potential. With this definition, the
radial momentum pr is written as

pr�r�2 = k2 + 2g�/r + �g2 − �2�/r2, �8�

with � as the classical effective angular momentum and k2

=�2−m2. The solid line in Fig. 1�b� shows the profile of
pr�r�2 slightly after the merging has taken place. There is a
classically forbidden region p�r�2�0� between r− and r+
and the long-range Coulomb tail implies that r+�r−. In fact,
precisely at �0=−m we have r+=� and the barrier is infinite.
Close to the critical point we can write �0	−m−��g− g̃c�
and examine the penetrability of this barrier within WKB. It
reads

w = e−2Scl = exp�−
2�mg̃c


2�m
g − g̃c
� , �9�

and becomes exponentially small as g→ g̃c
+. Such wide bar-

rier �absent when �0	 +m� ensures that the state remains
appreciably localized even after merging into the lower con-
tinuum.

We now turn to the exact quantum-mechanical solution of
Eq. �2� for the particular regularization of the Coulomb po-
tential described by25

V�r� = �− g/r , r � a

− g/a , r � a
� . �10�

This regularization represents the physical situation in which
there is a Coulomb impurity at the center of a hexagon in the
honeycomb lattice. In this case the lattice parameter a is the
closest distance that an electron hopping among carbon sites
can be from the potential source. It is also a good approxi-
mation for an impurity placed slightly above the graphene
plane. Cylindrical symmetry is preserved by this regulariza-
tion and Eq. �2� naturally separates in cylindrical coordi-
nates. We define the radial spinor components as �j
= 
1 /2, 
3 /2, . . .�

� j�r,�� =
1

r
� e−i�j−1/2��A�r�

ie−i�j+1/2��B�r�
� , �11�

after which the radial equations for Eq. �2� become �r�a�

(a) (b)

FIG. 1. �Color online� �a� Schematic depiction
of the change of bound levels Eq. �5�� with in-
creasing coupling. The dashed line represents the
evolution of �0 for a point nucleus and the solid
one is for a regularized potential. �Adapted from
Ref. 26.� �b� Effective semiclassical momentum
of Eq. �8� when �0�−m and g� g̃c �solid� or g
� g̃c �dashed�.

SUPERCRITICAL COULOMB IMPURITIES IN GAPPED… PHYSICAL REVIEW B 78, 085101 �2008�

085101-3



��� +
g

r
− m� − ��r +

j

r
�

��r −
j

r
� �� +

g

r
+ m� ��A�r�

B�r� � = 0. �12�

We will be interested in the states at the threshold with en-
ergy �=−m. In that case, the equation for the A�r� compo-
nent reads �r�a�

r2
„

rA�r�…� + �g2 − j2 +

1

4
− 2gmr�
rA�r� = 0, �13�

whose solution is given in terms of the modified Bessel func-
tions I��z� and K��z�. By imposing a vanishing boundary
condition at infinity, one obtains �N is a normalization con-
stant�,

A�r� = NKi��
8gmr� , �14a�

where �=2
g2− j2. We note that this solution has the same
form as the corresponding spinor component in the 3D QED
problem.11,25 The B component follows directly from Eq.
�12�,

B�r� =
N
g
�� j +

i�

2
�Ki��
8gmr� + 
2gmrKi�−1�
8gmr�� .

�14b�

The solutions �14a� and �14b� pertain to the region r�a,
where the potential �10� has the Coulomb form. For dis-
tances smaller than the regularization distance, the solution
for the radial spinor components of Eq. �11� is given in terms
of cylindrical waves,

�A�r�
B�r� � = N�
r� gJj−1/2�k̃r�

k̃aJj+1/2�k̃r�
� , �15�

where we have introduced k̃a=
g2−2mga. The solutions
�14a�, �14b�, and �15� are at energy �=−m and need to be
matched at r=a,

��A��g�
B��g�

��
r=a

= ��A��g�
B��g�

��
r=a

. �16�

This completes the determination of the critical spinor wave
function �c�r�. Since the Dirac �2� is of the first order in the
gradient operator, one is required to match only the spinor
components �and not, additionally, their derivatives as would
be the case for the Schrodinger equation� and this is enough
to guarantee the continuity of the probability current density
across the region r=a. The matching procedure generates a
transcendental equation for g, with an infinite number of so-
lutions, on account of the oscillating character of the func-
tions Ki��z�. For each angular momentum j, the multiple so-
lutions correspond to the values of g for which the higher
bound states �i.e., those levels having the same j symmetry�
reach the continuum. To determine g̃c we concentrate on the
s level �j=1 /2� and solve Eq. �16�. Its smallest solution for g
yields g̃c, the renormalized critical coupling. A plot of g̃c as a
function of ma is shown in Fig. 2. It can be seen that the
departure of g̃c from the value gc=1 /2 is singular at the

origin, which means that even an arbitrarily small mass
causes a significant change in the critical coupling. In the
figure we also point out �dashed lines� the value of g̃c
	0.949 that corresponds to a gapped graphene spectrum
with �=2mvF

2 =0.2t �in units of the tight-binding hopping
parameter�. We have chosen this value for illustration pur-
poses �to be discussed later�. The critical probability ampli-
tude, defined in terms of the critical wave function as ��r�
=�c

†�r��c�r�, is shown in the inset. The crux of our argu-
ment resides in the fact that �c is clearly localized, as can be
inspected from the asymptotic behavior of ��r� for r�1 /m,

��r� = �c
†�r��c�r� � r−1/2 exp�− 2
8mg̃cr� . �17�

Restoring the units, the Compton wavelength emerges as the
characteristic localization length mr→mvFr /�=r /C.

In order to ascertain the validity of these results in the
context of the original tight-binding problem, we explicitly
compare the above with the exact numerical solution in the
honeycomb lattice. Of particular interest are the renormaliza-
tion of the critical coupling and the character of the diving
states. In Fig. 3 we present the exact tight-binding spectrum
for a Coulomb center in the honeycomb lattice with a sub-
lattice energy mismatch �energy gap� of �=0.2t. Inspection
of the main panel reveals several features, among which, �i�
the lowest positive level �which corresponds to �0� immedi-
ately detaches from the continuum and sinks rapidly, fol-
lowed by other states at higher g; �ii� the level �0 reaches −m
at g=0.83 and touches the lower continuum at g=0.87,
which is in very good agreement with the result g̃c	0.9
predicted in Fig. 2 from the solution of the Dirac equation;27

�iii� as g increases past g̃c this level sinks further, as is evi-
dent from the level avoidances highlighted by the dashed/
shaded region; and �iv� the critical wave function �shown in
the inset� is highly concentrated around the origin, as ex-

FIG. 2. �Color online� Critical coupling g̃c as a function of the
mass/gap obtained from the solution of Eq. �16�. The top horizontal
axis shows ma in the units natural for the tight-binding calculation
ma→a /C=� / �3t�. The inset shows the probability density asso-
ciated with the critical wave function at �=−m cf. Eq. �17��.
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pected from the foregoing—namely Eq. �17�. The lowest
bound level in Fig. 3 is doubly degenerate. This is expected
since although the lowest bound solution of the Dirac Eq. �6�
is nondegenerate, there is a valley degeneracy to account for
in the Dirac description.

While the continuum solutions are sensitive to the finite
size of the numerical system,27 one does not expect the low-
est bound solution to be markedly sensitive for the sizes used
in this calculation. Hence, we can extrapolate the trajectory
of the lowest bound state in Fig. 3 to the thermodynamic
limit. In that case, the critical coupling in the lattice would be
at 	0.83, which is smaller than the value g̃c=0.949, and
indicates that the effective cutoff distance for the regulariza-
tion �10� is slightly smaller than a.

VI. VACUUM POLARIZATION AND VACUUM CHARGING

It is clear, either from Eq. �17� or from the exact results in
the lattice Fig. 3�inset��, that the merging state has a local-
ized character. The characteristic length scale C is related to
the gap through C /a=3t /�. For the gap �=0.26 eV �re-
ported in Ref. 6� this corresponds to C	30a. However, the
size of the merging bound state, measured as the average
radius and calculated by using the critical wave functions, is
smaller �r�=13.9a. Beyond this scale, the impurity potential
is screened by essentially one charge unit times the product
of the spin and valley degeneracies �N=4�. Of course this
screening is meaningful only in a very diluted impurity con-
figuration �ni�1012 cm−2 for the quoted experimental gap�.

We can appreciate this more clearly by studying the in-
duced charge, defined as

���r� = �
E�EF

�E
†�r��E�r� − �

E�−m

�E
0†�r��E

0�r� , �18�

where �E�r� are the continuum wave functions in the pres-
ence of the potential and �E

0�r� stand for the continuum wave

functions in the absence of potential. We work with a con-
stant number of electrons as the potential is turned on and,
hence, EF�−m in general.28 We also need to consider the
intermediate situation in which there is a bound state just
about to merge with the lower band. The continuum wave
functions in this case are labeled as �E

c �r�. For the sake of the
argument, assume that there is only one bound state that we
denote by �c�r� and, furthermore, let us accept that we can
project everything onto the states E�m. In other words, we
accept that the states E�m approximately form a complete
set in each circumstance,

�
E�−m

�E
0†�r��E

0�r�� 	 ��r − r�� , �19a�

�
E�−m

�E
†�r��E�r�� 	 ��r − r�� , �19b�

�
E�−m

�E
c†�r��E

c �r�� + �c
†�r��c�r�� 	 ��r − r�� . �19c�

From these relations it follows that above g̃c, when one state
has dived onto the continuum, the induced charge at constant
density defined in Eq. �18� can be approximated as

���r� 	 ��c�r��2 + ��pol�r� − ��−m
c �r��2, �20�

where ��pol�r� represents the polarization charge caused by
the deformation of the continuum wave functions only,

��pol�r� = �
E�−m

��E
c �r��2 − ��E

0�r��2, �21�

with

� ��pol�r�dr = 0,

and �−m
c �r� represents the topmost plane wave that appears

because we keep the number of electrons constant as g is
varied. Expression �20� is valid for one bound level merging
into the continuum but can be generalized for the additional
subsequent divings.

The result �20� shows that, although after the merging
there is �strictly� no localized state, the total induced charge
�20� remains essentially determined by the profile of the
critical state �c�r� plus the background polarization charge.
The last term in Eq. �20� is a phase-shifted wave and, thus, it
is the smallest and negligible contribution to ���r�. The con-
stant number of electrons and the fact that all states are nor-
malized evidently implies that the integral of ���r� over the
entire volume vanishes. This allows for the definition of
Q�R� �the total charge inside a radius r=R�,

Q�R� = N�
�r��R

���r�dr . �22�

Here N represents the degeneracies of the problem; N
=4�spin�valley� for the solution of the single-valley Dirac
equation and N=2 �spin� for the numerical solution in the
honeycomb lattice. This function Q�R� will rise quickly at
small R, rapidly attaining a maximum on account of the lo-

FIG. 3. �Color online� Low-energy close-up of the exact energy
spectrum �En� as a function of the coupling g for the tight-binding
problem �1�. The inset contains the exact numerical wave function
�c�r�, with the dashed line marking C for this gap. The sublattice
gap is �=0.2t and a lattice of 1242 sites with a central impurity has
been used.
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calized profile of �c�r�.29 Q�R� then returns slowly to zero as
R is increased further because of the normalization of the
states and the fact that we work at a constant number of
electrons. The maximum in Q�R� �which we designate as
Qmax� is thus a measure of the amount of charge pulled to the
vicinity of the impurity, which is our quantity of interest. For
g� g̃c, the only contribution to Q�R� comes from the polar-
ization charge ��pol�r�; but whenever a new level dives, a
contribution of the type ��c�r��2 adds to the total induced
charge and one should observe discontinuous jumps in Qmax
with increasing g.

Once again this expectation is confronted with exact re-
sults on the lattice. We compute Eq. �18� numerically using
the exact wave functions of the tight-binding model. In Fig.
4�a� we plot the resulting Qmax. Up to g	0.9 the only con-
tribution comes from ��pol and the variation of Qmax is
smooth. At the point where in Fig. 3 the first level merges
with the continuum, the first discontinuity occurs in Qmax,
which jumps by roughly four units �N�1=4�, just as ex-
pected. Also as expected, this charge is concentrated within a

region of radius �C. Therefore, the approximations used to
obtain expression �20� are legitimate and the induced charge
beyond g̃c is mostly determined by the profile of the critical
states.

This is the precise analog of the quantum electrodynamics
�QED� prediction for the charging of the vacuum. In a super-
heavy nucleus with high enough Z, the hydrogenlike bound
levels can merge with the positron continuum. When that
happens, the Schwinger mechanism of electron-positron cre-
ation becomes spontaneous since the bound level has be-
come degenerate with the positron states and consequently
there is no energy cost involved in creating an electron-
positron pair. The electron occupies the bound level close to
the nucleus while the positron escapes to infinity.12 Since the
positron continuum constitutes the vacuum of QED, the
spontaneous creation of an electron in a level below −m
leads to a restructuring of the vacuum that acquires a charge
Q=−2e.30 The curve in Fig. 4�a� mimics entirely the QED
prediction found in Fig. 1.5 of Ref. 12. The striking differ-
ence rests in the magnitude of the effect. In QED, due to the
smallness of the real fine-structure constant ��QED	1 /137�,
the nuclear charge required to reach the critical regime is
very large �Zc	170� and the jumps in the polarization
charge lead to an effective atomic number Zeff=Zc−Q, with
Q�Zc �a very small correction�.

In graphene, for estimate purposes, we assume a SiC sub-
strate �with dielectric constant �	10� as used in Ref. 6 lead-
ing to �	0.4. For the gap �=0.26 eV seen in this experi-
ment, we obtain gc= �Z��c=0.84 and, consequently, the
critical valence is Zc	2.1. This means that, according to our
discussion, impurities with valence Z�2 are expected to be
completely screened beyond the scale �r�=13.9a�2 nm,
since at this distance the amount of accumulated charge in
the vacuum is Q=4 and, thus, Zeff�r� �r��=Z−Q�0. In fact,
for Z�4 overscreening takes place and we expect many-
body interactions to be important, effectively removing the
overscreening tendency; however, such calculations are very
complex and beyond the scope of this work. In addition, we
note that substrates with smaller dielectric constants lead to
higher values of Z� and are, in principle, capable of reducing
the valences Z needed to observe the effect to Z=1,2.

Electron-electron interactions can also lead to a change of
the critical coupling. Estimated perturbatively ���1� this
change is �gc��gc, which would not affect significantly the
physics discussed here �but would clearly affect the precise
value of Zc for a given ��. We recall also that the above
theory assumes the chemical potential to be at �=−m, while
the experiments of Ref. 6 in fact have �� +m. Tuning the
Fermi level to the gap via chemical doping or gating and
varying � by changing the substrate’s dielectric constant
would provide a possible way of exploring our predictions
experimentally.

VII. VACUUM CHARGING IN A FINITE SYSTEM

The discrete eigenstates of a finite graphene sheet and the
fact that the density of states �DOS� vanishes at the Dirac
point lead to another realization of a gapped spectrum and
the question of whether the effects discussed above carry to
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FIG. 4. �Color online� �a� Plot of Qmax �the amount of charge
pulled to the vicinity of the impurity� �see text� versus g from the
exact numerical diagonalization of the tight-binding problem �Fig.
3�. The steps signal the incremental diving of bound levels into the
lower continuum. The distances at which Q�R�=Qmax are indicated
for the first two steps. �b� The same finite system without an explicit
gap ��=0�. In both cases the system has 124�124 carbon sites and
linear dimensions of 107a�186a. The insets amplify the low-g
region, which is compared with the RPA result for m=0: Q�R�
= �

2 g��r��R��r�dr= �

2 g �dashed line�.
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this case arises naturally. We have diagonalized the same
lattices as above, this time without any sublattice mismatch
�i.e., �=0 or m=0�, corresponding to the massless Dirac
problem on a finite system. In this case we found that the gap
induced by the finite size of the system is �	0.06t, C
�50a, and �r��21a. This leads to a renormalized g̃c
	0.76, representing a 50% increase with respect to gc just
from the fact that, although massless, the system is con-
strained to a finite size. For brevity we show only the inte-
grated polarization charge Qmax in Fig. 4�b�. The curve of
Qmax displays the characteristic step discontinuity at 0.7�g
�0.8, which is in agreement with the estimate for g̃c. Of
course, in this case the situation is peculiar since the effec-
tive C is tied to the linear size of the system L and the gap
is now ��L−1. Consequently C—although still a fraction of
L—grows with the system size. Nevertheless, most impor-
tantly, the picture of vacuum charging discussed above re-
mains valid, with the vacuum charge residing at a distance
�r��21a significantly smaller than the linear size L�107a.
Thus, the vacuum charging can be potentially observed in
mesoscopic samples as well.

VIII. DISCUSSION AND CONCLUSIONS

The fact that gapped graphene is described in terms of
massive Dirac quasiparticles makes it a rather unique solid-
state system. We have seen, in particular, that effects of su-
percritical vacuum charging are expected when undoped
graphene is exposed to low-valence charged impurities.

One of the key steps in our calculation is the explicit
regularization of the potential �10� that allows the diving of
the bound levels into the lower continuum. Since an impurity
located slightly out of the plane would still lead to a regular-
ized Coulomb potential, our results are not altered qualita-
tively because details of the regularized potential at short
distances are not important.11 At the quantitative level, the
regularization distance determines the renormalization of g̃c.
Since the typical distances to the plane expected for chemi-
sorbed impurities in graphene are still in the subnanometer
range,9 we do not expect a prohibitive increase in g̃c nor,
consequently, in Zc. Therefore, the charged impurity does not
need to be embedded in the graphene plane and can be sim-
ply adsorbed to its surface.

The theory predicts a strong tendency toward screening of
the external Coulomb potential on nanometer scales, with the
actual values depending on the details of the particular situ-
ation �notably the magnitude of the gap�. We mention also

that, despite our initial assumption of attractive impurities
�g�0�, this is only for convenience. The particle-hole sym-
metry of the problem ensures that the results remain valid for
repulsive charges �negative ions�, in which case, the �posi-
tron� bound levels merge with the upper continuum of states
at precisely the same critical couplings.

Whereas in gapless graphene, the supercritical regime is
characterized by an infinite number of resonances in the hole
�positron� channel,13,15 the phenomenon of vacuum polariza-
tion in gapped graphene is an incremental process. Each
level dives at successively higher values of the coupling g
=Z�, leading to the step-wise shape of the curves of Qmax
shown in Fig. 4. This translates to a quite dissimilar screen-
ing of the supercritical impurity in the massless and massive
cases; for the latter we can have complete screening at very
short distances in a system with no carriers.

Finally, the estimates of the critical valence Zc	2 made
in this paper are based on the specific parameters of the
epitaxial samples used in Ref. 6 �to wit the gap � and the
dielectric constant of the substrate�. The supercritical regime
is determined by Z�� g̃c to which several players contribute:
Z itself, the dielectric medium �via ��, the mass/gap, and the
regularization distance �via g̃c�. Some of these are more man-
ageable to experimental control than others. Encouraging ex-
periments are emerging that seek control over some of them.
In Ref. 9 controlled doping with monovalent ions was
achieved and presumably the same could be done with diva-
lent alkaline ions. In Ref. 31 the fine-structure constant � in
exfoliated graphene could be controlled through changes in
the dielectric environment. And in Ref. 32 a gap was found
for graphene flakes on Ni surfaces.

The charging of the vacuum in the presence of a strong
Coulomb center is a long-standing prediction of QED in
strong fields that remains unconfirmed through a direct ex-
periment. This is an obvious consequence of the difficulties
imposed by the nuclear charge of Z	170 required to reach
the supercritical regime in QED. Our calculations suggest
that, under the conditions discussed, the analogous effect
might be observable in a solid-state context with low-valence
ions.
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