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We consider a double single-level quantum dot system with two embedded and nonaligned spin impurities
to manipulate the magnitude and polarization of the electron-spin density. The device is attached to semi-
infinite one-dimensional leads which are treated exactly. We provide a real-time description of the electron-spin
dynamics when a sequence of ultrafast voltage pulses acts on the device. The numerical simulations are carried
out using a spin-generalized modified version of a recently proposed algorithm for the time propagation of
open systems �Kurth et al., Phys. Rev. B 72, 035308 �2005��. Time-dependent spin accumulations and spin
currents are calculated during the entire operating regime, which includes spin-injection and read-out pro-
cesses. The full knowledge of the electron dynamics allows us to engineer the transient responses and improve
the device performance. An approximate rate equation for the electron spin is also derived and used to discuss
the numerical results.
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I. INTRODUCTION

The ability of controlling magnitude and orientation of
electron-spin densities in integrated molecules and quantum
dots �QDs� is of utmost importance to bring quantum com-
putation closer to real life.1–3 The microscopic description of
nanoscale spin devices, e.g., the two quantum-bit gate envis-
aged by Loss and Di Vincenzo,4 constitutes a challenging
problem in the theory of open systems far from a steady
state. Research activities in the emerging field of spin-
dependent transport5 have mainly focused on steady-state
properties. Only very recently the transient dynamics of spin-
polarized currents through QDs has attracted some
attention6–11 partly due to experimental advances in manipu-
lating electronic densities with ultrafast voltage pulses.12–18

This paper goes in the same direction and wants to be a
further step toward the bridging of spin-dependent transport
and fundamental quantum computation. We perform time-
dependent simulations of the charge and spin dynamics of a
nanoscale device in contact with one-dimensional leads. The
semi-infinite leads are treated exactly. The results are ana-
lyzed within the framework of nonequilibrium Green’s func-
tions.

We consider a double QD device to manipulate the spin
orientation of spin-polarized electrons. Both quantum dots
contain a static spin impurity with which the electron spin is
coupled. Possible experimental realizations of such systems
are oxygen vacancies on partially oxidized Si�111� surfaces19

or iron atoms on Si�111� surfaces.20 The exchange coupling
constant is much larger than experimentally accessible Lar-
mor frequencies, a feature that renders the spin impurity a
potentially ultrafast mean to rotate the electron spin.21,22

Model systems of quantum transport through magnetic QDs
have been previously used to study the conductance oscilla-
tions of a local nuclear spin in a magnetic field,23 the gauge-
invariant nature of the charge and spin conductances,24 the

spin-interference and Aharonov-Bohm oscillations in a quan-
tum ring with embedded magnetic impurities,25–27 and the
effects of the entanglement of two spin impurities on the
conductance.28,29

In this paper we focus on the short-time response of the
system when subjected to a sequence of voltage pulses as
illustrated in Fig. 1. The injection of spin-polarized electrons
from the left lead to the first QD �QD1� is followed by a
rotation of the electron spin in QD1. Afterward the electron
spin is transferred from QD1 to the second QD �QD2� and its
polarization is maintained parallel/antiparallel to the spin im-
purity of QD2. Eventually, the electron spin in QD2 is read
out by calculating the spin current at the interface with the
right lead. We provide a time-dependent description of some
crucial processes in the theory of spin transport, namely, the
injection of spins from a lead to a QD and the spin dynamics
of a double QD system weakly coupled to leads. The results
of our analysis include: �1� an overshooting of the spin ac-
cumulation during the spin-injection phase, �2� a consider-
able delay in the spin relaxation for different exchange cou-
plings in QD1 and QD2, and �3� oscillations in the transient
regime whose frequency depends on the bandwidth of the
leads and, therefore, are absent in the commonly used wide-
band limit approximation.

The paper is organized as follows. In Sec. II we present
our model system and introduce the basic notation. A set of
approximate equations to describe different operating pro-
cesses are derived in Sec. III. We obtain a rate equation for
the electron spin of a QD in contact with an electron reser-
voir and identify the mechanisms leading to a deterioration
of the spin polarization and to a damping of the spin magni-
tude. This analysis will then be used to optimize the spin
injection from one of the leads to one of the QDs. We also
investigate the spin transfer between the two QDs for differ-
ent initial orientations of the electron spin. In Sec. IV we use
a spin-generalized modified version of the algorithm of Ref.
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30 �see Appendix B� to perform numerical simulations of the
microscopic electron dynamics of the double QD system.
The results are then interpreted and discussed using the
framework developed in Sec. III. In Sec. V we summarize
the main findings and discuss future directions.

II. MODEL SYSTEM

We consider a basic two spin-impurity model consisting
of two one-dimensional leads coupled to two single-level

�per spin� QDs. QD1 is connected to the left lead �L�, QD2 is
connected to the right lead �R�, and a hopping term accounts
for tunneling of electrons between QD1 and QD2 �see Fig.
1�. The Hamiltonian which describes the system is

H = �
�=L,R

H� + HQD + HT �1�

with H� the Hamiltonian of the isolated leads, HQD the
Hamiltonian of the isolated double QD system, and HT the
tunneling Hamiltonian. The Hamiltonian describing the left
�L� and right �R� leads reads

H� = �
�=↑,↓

�
j=0

�

�Vcj�,�
† cj+1�,� + V�cj+1�,�

† cj�,��

+ �
�=↑,↓

��,��t��
j=0

�

cj�,�
† cj�,� �2�

with �=L ,R. In Eq. �2� the quantity V is the hopping integral
between nearest-neighbor orbitals and ��,��t� is the time-
dependent on-site energy of lead � which, in general, can
depend on spin. For ��,�=0 the energy window of both L and
R continua is �−2�V� ,2�V�� and the half-filled system corre-
sponds to a chemical potential �hf=0. The Hamiltonian of
the double QD system reads

HQD = �
i=1

2 �JiS� i · �
���

di,�
† �� ���di,�� + vi�t��

�

di,�
† di,��

+ �
�

�VQD�t�d1,�
† d2,� + VQD

� �t�d2,�
† d1,�� �3�

with S� i= �sin �i cos �i , sin �isin �i , cos �i� the spin of the im-
purity i=1,2, Ji	0 the corresponding antiferromagnetic ex-
change coupling, and �� = ��x ,�y ,�z� the Pauli matrices. The
interdot tunnel coupling can be tuned by varying the voltage
of a gate placed between the dots as shown in Refs. 12 and
16 and can be decreased to values at which the QDs are
almost isolated. This is modeled by using time-dependent
gate voltages v1�t� and v2�t� and interdot hopping integral
VQD�t�. The first term in Eq. �3� is the Hamiltonian of the two
isolated QDs and can conveniently be rewritten in matrix
form as

�
i=1

2

�di,↑
† ,di,↓

† �	vi + Ji cos �i Jie
i�i sin �i

Jie
−i�i sin �i vi − Ji cos �i


	di,↑

di,↓

 . �4�

From Eq. �4� we see that the isolated QD has two levels at
energy �i,
=vi
Ji. If Ji	 �vi� and ��,�=0 one level is above
�hf while the other is below.

The double QD system is connected to the left and right
leads via the tunneling Hamiltonian

HT = �
�

�VL�t�d1,�
† c0L,� + VL

��t�c0L,�
† d1,��

+ �
�

�VR�t�d2,�
† c0R,� + VR

��t�c0R,�
† d2,�� . �5�

As for the interdot coupling VQD, we allow the hopping in-
tegrals VL�t� and VR�t� to be time dependent.
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FIG. 1. �Color online� Schematic of the double quantum dot
device coupled to leads. At t�T0=0 the system is in equilibrium.
At T0 a spin bias UL,↑ is switched on and, simultaneously, the bar-
rier between QD1 and the left lead is lowered. The injection of
spin-up electrons ends at T1 when the bias is turned off and the
barrier is raised. Now the spin in QD1 rotates until T2 when the
barrier between the dots is lowered and the electron spin is trans-
ferred from QD1 to QD2. At T3 the interdot barrier is raised again
while the barrier between QD2 and the right lead is lowered. Tuning
the electrochemical potential in the right lead UR to be in between
the two levels of QD2, we measure a large �small� spin current if
the electron spin is parallel �antiparallel� to the spin impurity.
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Below we discuss a sequence of operations to manipulate
the orientation of the electron spin in QD2 for a fixed orien-
tation of the spin of the injected electrons. Without loss of
generality we assume that for negative times �t�0�, the
whole system is in equilibrium at chemical potential � and
inverse temperature � �Fig. 1�a��.31 The two QDs are initially
very weakly coupled to the leads �V�V� and between them,
VQDV. Furthermore, the two energy levels of both QD1
and QD2 are much larger than the chemical potential, i.e.,
�i,
��, and the population on the dots is practically zero.
Starting from this configuration we apply a sequence of four
perturbations to: �1� inject spin-up electrons on QD1 �Fig.
1�b��, �2� rotate the electron spin in QD1 �Fig. 1�c��, �3�
transfer the electron spin from QD1 to QD2 �Fig. 1�d��, and
�4� read out the polarization of the electron spin in QD2 �Fig.
1�e��. Due to the wide range of possible time-dependent per-
turbations, we restrict the analysis to piecewise constant �in
time� parameters and obtain a set of approximate equations
to study the four different processes. This study will then
help us in selecting the parameters for target-specific numeri-
cal calculations. Full simulations of the entire sequence will
be shown in Sec. IV.

III. THEORETICAL FRAMEWORK

A. Spin injection and spin readout

At time t=0 we inject spin-up electrons into QD1 by sud-
denly switching on a spin bias32 ��L,��t�=��t�UL,�� and re-
ducing the height of the barrier between lead L and QD1, i.e.,
VL�t�=��−t�V�0�+��t�V�1�. The injection process terminates
by switching off the spin bias and raising the barrier to the
equilibrium value V�0�. There are two different mechanisms
which contaminate the spin-up injection with x and y com-
ponents. The first is the spin precession around the spin im-

purity S�1 while the second is the spin-relaxation due to the
increased electron hopping VL. To tackle this problem we
take advantage of the fact that QD1 and QD2 are, during this
process, weakly linked and we only consider the electron
dynamics on QD1 in contact with the left reservoir, i.e., we
approximate VQD=0. Using the nonequilibrium Green’s
function formalism one finds the following equation for the
lesser Green’s function G���

� on QD1:

i
d

dt
G��t;t� = �HQD1,G��t;t�� + �

0

�

dt̄

���L
��t; t̄�GA�t̄;t� + �L

R�t; t̄�G��t̄;t� + H.c.� ,

�6�

where we use boldface to indicate 2�2 matrices in spin
space and the symbol “�,�” denotes a commutator. In the

above equation HQD1=v1+J1S�1 ·�� is the one-particle Hamil-
tonian of the isolated QD1 while �L is the embedding self-
energy of lead L. We have discarded the integral between 0
and −i� along the imaginary time axis since VL�t�0�=V�0�

V and hence �L�0 in equilibrium.33 The superscripts R/A
in �L and G denote retarded/advanced components. The self-
energy is diagonal in spin space since there is no spin-flip

hopping between lead L and QD1. In terms of one-particle
eigenstates �k�j� and eigenenergies �k of lead L, one finds for
t , t�	0

�L,���
R �t;t�� = �����V

�1��2� d�

2�
e−i��+UL,���t−t���

k

��k�0��2

� − �k + i�
,

�7�

�L,���
� �t;t�� = �����V

�1��2� d�

2�
e−i��+UL,���t−t��if���

�2��
k

��k�0��2��� − �k� . �8�

At low temperatures and low biases, only frequencies close
to the Fermi energy �F are probed. Using the wide-band limit
�WBL� approximation, i.e.,

�
k

��k�0��2��� − �k� � �F �9�

with �F=���F� the local density of states at the interface, we
can approximate Eqs. �7� and �8� as

�L,���
R �t;t�� = −

i

2
�������t − t�� , �10�

�L,���
� �t;t�� = i������ d�

2�
e−i��+UL,���t−t��f���

 − ����
�

2�
e−i�F,��t−t��� 1

t − t�
− i���t − t��� ,

�11�

with �=2��V�1��2�F and �F,�=�F+UL,�. In Eq. �11� we have
further approximated �L

� with its expression at zero tempera-
ture.

Inserting these results into Eq. �6� one obtains

i
d

dt
G��t;t� = �HQD1,G��t;t�� −

i

2
��,G��t;t�� − �

− � �

2�
�

0

t

dt̄
exp�− iEF�t − t̄��

t − t̄
GA�t̄;t� + H.c.� ,

�12�

where the symbol “�,�” denotes the anticommutator and the
matrices are ������=����� and �EF����=�����F,�. From Eq.
�12� we can extract a rate equation for the electron spin

S�1,el�t� � −
i

2
Tr�G��t;t��� � �13�

on QD1. In the WBL approximation the advanced Green’s
function reads

GA�t̄;t� = i��− �t�exp�− i	HQD1 +
i

2
�
�t�

= i��− �t�e−i�v1+ i
2

���t�cos�J1�t�

− i sin�J1�t�S�1 · �� � , �14�
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with �t� t̄− t. Substituting this result into Eq. �12�, multiply-
ing with �� , and tracing over the spin indices we find

d

dt
S�1,el = J1�S�1 ∧ S�1,el� −

�

2
S�1,el −

�

�

��
0

t dt̄

�t
e

�
2

�t cos���+ − v1��t�

��cos��−�t�sin�J1�t�S�1 − sin��−�t�

��cos�J1�t�ẑ − sin�J1�t�ẑ ∧ S�1�� , �15�

with ẑ the unit vector in the z direction and �
=�F,↑
�F,↓. It
is instructive to expand the right-hand side in powers of t. To
first order in t one finds a simplified rate equation for the
electron spin

d

dt
S�1,el = J1�S�1 ∧ S�1,el� −

�

2
S�1,el +

t

�
���−ẑ − J1�S�1� ,

�16�

which is reliable for times t−1�max��− ,J1� /2�. From the
above equation we can identify four different contributions.
The term proportional to ẑ is the spin-injection term and is
responsible for an increase in the electron spin along the z
direction. Such increase is quadratic in time and faster as the
difference �−=UL,↑−UL,↓ becomes larger. The first and the
last terms are responsible for a deterioration of the spin di-
rection due to spin precession �first term� and spin relaxation
�last term�. The latter drives the electron spin toward a con-

figuration antiparallel to the spin impurity S�1. Finally, the
second term is responsible for an overall damping of the spin
magnitude. Going beyond the first order in t �see Eq. �15��,
one observes the appearance of a new relaxation direction,

that is, ẑ∧S�1. This latter result is completely general as it is
only dictated by the symmetry of the system.

We wish to emphasize that the rate Eq. �15� has been
derived under the sole assumption that QD1 is initially iso-
lated and then contacted with lead L. This is the same situa-
tion occurring in the spin read-out phase when the barrier
between the weakly coupled QD2 and lead R is lowered.

Thus, the rate equation for S�2,el during the read-out phase is

identical to Eq. �15� for S�1,el even though the parameters are
different and, more importantly, different initial conditions
must be imposed.

B. Spin rotation and spin transfer

After a time T1 the spin bias is switched off and the hop-
ping VL is again reduced to values much smaller than V. In
this phase QD1 is well isolated and the electron spin pre-

cesses around the spin impurity S�1 according to

d

dt
S�1,el = J1�S�1 ∧ S�1,el�, t 	 T1. �17�

Let us now specialize to the situation illustrated in Fig. 1

with S�1 oriented along the positive x axis and S�2 along the
positive z axis. We recall that the Fermi energy is much

smaller than the energy levels of the two isolated QDs and
hence that the equilibrium electron density is vanishingly
small. For J1��− �see Eq. �16��, we expect an efficient in-
jection of spin-up electrons in QD1 and for J1�� a major
contamination along the y direction. This implies that the

electron spin S�1,el�T1� has a small x component at the end of

the spin-injection process. Since S�1 is parallel to the x axis,

S�1,el�t� rotates in the yz plane for t	T1. We let the system

evolve until a time T2	T1 and we approximate S�1,el�T2�
= (0,S1,el

y �T2� ,S1,el
z �T2�) on the yz plane and S�2,el�T2�=0 �this

latter approximation comes from the fact that VQD and VR are
both much smaller than V for t�T2�.

At t=T2 we transfer the electron spin by lowering the
barrier between QD1 and QD2. This corresponds to an in-
crease in the interdot hopping VQD. Letting ���T2�� be the
evolved many-particle state of the entire system at t=T2, the
density matrix � of the double quantum dot system has ma-
trix elements ���i�,j��= ���T2��dj,��

† di,����T2��. It is conve-
nient to introduce the notation 1= �1,↑�, 2= �1,↓�, 3= �2,↑�,
and 4= �2,↓� for the collective index �i ,��. The density ma-
trix is then represented by the following 4�4 matrix:

� = 2S1,el�T2��
cos2 � −

i

2
sin 2� 0 0

i

2
sin 2� sin2 � 0 0

0 0 0 0

0 0 0 0

� , �18�

with sin 2�=S1,el
y �T2� /S1,el�T2�, cos 2�=S1,el

z �T2� /S1,el�T2�,

and S1,el=�S�1,el ·S�1,el is the spin magnitude. We are interested
in how to choose the angle � in order to maximize the elec-
tron spin of QD2 along the z direction �parallel/antiparallel to

the spin impurity S�2�. For simplicity we take the gate volt-
ages v1=0 and v2=0. Then the isolated double QD system is
described by the 4�4 Hamiltonian matrix

HQD = 	 J1�x VQD12

VQD12 J2�z

 , �19�

with 12 the 2�2 identity matrix. In terms of � and HQD, the
z component S2,el

z of the electron spin on QD2 is given by

S2,el
z �t + T2� =

1

2
Tr��2

z exp�iHQDt�� exp�− iHQDt�� ,

�20�

with the spin operator of QD2

�2
z = 	02 02

02 �z

 , �21�

and 02 the 2�2 null matrix. Substituting � from Eq. �18� we
find
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S2,el
z �t + T2�
S1,el�T2�

=
i

2
sin 2����2

z�t��1,2 − ��2
z�t��2,1�

+ cos2 ���2
z�t��1,1 + sin2 ���2

z�t��2,2, �22�

where we have defined the spin operator in the Heisenberg
representation

�2
z�t� � exp�− iHQDt��2

z exp�iHQDt� . �23�

It is easy to prove that the function O�t�� i
2 ���2

z�t��1,2
− ��2

z�t��2,1� is an odd function of time while ��2
z�t��1,1 and

��2
z�t��2,2 are even functions of time. In Appendix A we fur-

ther prove that

E�t� � ��2
z�t��1,1 = − ��2

z�t��2,2, �24�

which leads to the simple formula

S2,el
z �t + T2� = S1,el�T2��O�t�sin 2� + E�t�cos 2��

= O�t�S1,el
y + E�t�S1,el

z . �25�

The function E�t� can be written as a linear combination
of the cosine functions cos����t� while O�t� as a linear com-
bination of the sine functions sin����t�, where ���=��−��

is the difference between two eigenvalues of HQD. The ei-
genvalues ��, where �=1, . . . ,4, can be calculated analyti-
cally and read

�� = 
�J+
2 + 2VQD

2 
 �J−
4 + 4J+

2VQD
2

2
, �26�

with J

2 =J1

2
J2
2.

As an example, in Fig. 2 we plot the ratio S2,el
z �t

+T2� /S1,el�T2� as a function of time t and initial polarization
� for J1=J2=0.1 and VQD=0.2. We notice that for most po-
larizations, S2,el

z �t+T2� remains smaller than 0.2. Only for
some special value of � the z component of the spin in QD2
reaches a value larger than 0.4. This means that the maxi-
mum efficiency in transferring an electron spin polarized in
the yz plane from QD1 to QD2 with final polarization along
the positive z axis is about 80%–90%.

All above processes can be numerically simulated without
resorting to any of the approximations employed in this sec-
tion. This allows for a more quantitative investigation of the
device performance and it will be the topic of Sec. IV.

IV. NUMERICAL SIMULATIONS AND DISCUSSION

In this section we use a modified version of the algorithm
proposed in Ref. 30 to propagate in time finite systems in
contact with infinitely long leads �see Appendix B� and in-
vestigate the microscopic dynamics of the spin injection, the
spin accumulation, as well as the spin rotation of conducting
electrons scattering against the double QD device of Eq. �3�.
In the following analysis energies are measured in units of V,
times in units of � /V, spins in units of �, and currents in
units of eV /� with e as the electron charge. The full Hamil-
tonian is time independent for negative times and the system
is in equilibrium at zero temperature and Fermi energy �F.31

We start by considering two identical QDs with exchange
coupling J1=J2=0.1 and gate potential v1=v2=0 weakly
coupled to the left and right leads �VL=VR=V�0�=0.01� and
with interdot hopping VQD=0.01. Choosing V�100 meV
the exchange couplings J1 ,J2�10 meV lie in the physical
parameter range22 and the corresponding time unit is � /V
�100 fs, which is appropriate to study ultrafast

dynamics.34,35 The impurity spin S�1 of QD1 is oriented along

the positive x axis while S�2 is oriented along the positive z
axis. The on-site energies of the leads ��,� are initially all
zero.

A. Spin injection

At time t=0 we switch on a spin bias �L,↑�t�=��t�UL,↑ in
lead L for spin-up electrons �UL,↓=0� and increase the hop-
ping VL from V�0� to V�1�.

In Fig. 3 we study the spin-injection process when the
Fermi energy is �F=−0.96 �which corresponds to an initial
electron occupation on QD1 of the order of 10−5� and the
hopping between L and QD1 at positive times is V�1�=0.5.
We calculate the time-dependent expectation value of the

spin of the conducting electrons S�1,el on QD1 for different
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in QD1 versus time for a sudden change in the hopping VL from
V�0�=0.01 to V�1�=0.5 and a simultaneous sudden switching of the
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biases UL,↑. Since UL,↑�1	J1, the rate Eq. �16� is reliable
for times t�2� /UL,↑�2�. In this time window we observe
that the z component S1,el

z increases quadratically in time and
that the rate is larger, the larger the spin bias UL,↑ is, in
agreement with Eq. �16� �we recall that in this case, �−
=UL,↑�. The y component S1,el

y has a trend similar to S1,el
z but

the transient is even smoother. This can be explained by
observing that as the spin-up electrons enter QD1 they un-
dergo a spin rotation due to the spin impurity oriented along
the positive x axis. Taking into account that for small t we
have S1,el

z � t2, from Eq. �16� we see that S1,el
y �J1t3. As the z

component also the x component S1,el
x grows quadratically in

time. From Eq. �16� one finds S1,el
z �t� /S1,el

x �t���− /J1, mean-
ing that to minimize the contamination of spin-up electrons
with an x component it must be �− /J1	1.

We wish to observe that at intermediate biases UL,↑, the
numerical results agree with the rate Eq. �15� only qualita-
tively. The comparison between the time evolutions of the
electron spin in QD1 for UL,↑=0.7,0.9 as obtained with one-
dimensional leads and with leads treated in the WBL ap-
proximation is shown in Fig. 4.

In Fig. 5 we fix the bias for spin-up electrons to be UL,↑
=1.3 and analyze the spin dynamics on QD1 for different
values of V�1�. We first observe that the transient time de-
creases by increasing V�1� and hence �. This is easily under-
stood by noticing that the second term in Eq. �15� yields an
exponential damping of the spin oscillations. The spin oscil-
lations can be observed in the y and z components and are

due to the spin precession around the spin impurity S�1. The
period of the oscillation is T=� /J1 and is independent of
V�1�, as it should. It is also interesting to observe that for
small times, S1,el

z overshoots its steady value and hence more
efficient spin injections may be achieved by properly engi-
neering the transient response. In our case, for an efficient
spin-up injection, only the ratios rxy = �S1,el

x /S1,el
y � and rxz

= �S1,el
x /S1,el

z � must be small at the end of the process since the
y component can be reduced to zero in the second phase

when VLV and S�1,el can precess around the spin impurity.

From Fig. 5 we find that for V�1�=0.2 and at t�10, the ratios
are rxy �0.1 and rxz�0.12 while at the steady state rxy
�0.31 and rxz�1.43.

B. Spin rotation

The injection process terminates after some time T1 by
switching the spin bias off and raising back the barrier be-
tween QD1 and the left lead, i.e., VL�t�=��−t�V�0�

+��t���T1− t�V�1�+��t−T1�V�2�. During the second phase
QD1 is weakly coupled to the environment and the electron

spin precesses around S�1. Let us focus on the situation dis-
cussed above with V�1�=0.2 and let T1=10 be the duration of
the first phase. In Fig. 6 we study the electron spin on QD1
�Figs. 6�a� and 6�b�� and the densities nL,���c0L,�

† c0L,�� on
the first site of the left electrode �Fig. 6�c�� for V�2�=0.01.
The contaminating component S1,el

x ceases to decrease at t
=T1 while the y and z components are well described by
damped cosine functions with a phase lag of � / �4J1� �Fig.
6�a��. Due to the weak contact V�2� the magnitude S1,el

=�S�1,el ·S�1,el of the electron spin changes on a time scale
much longer than the spin-exchange time scale �1 /J1. This

is shown in Fig. 6�b� where the trajectory of S�1,el is projected
onto the yz plane. For times t�T1, the trajectory has a large
radial component while for t	T1, the spin moves along a
spiral trajectory. It is also interesting to look at the densities
on the nearest-neighbor site of QD1 �Fig. 6�c��. During the
first phase �t�T1� a majority of spin-up electrons are trans-
ferred from lead L to QD1 and, as a consequence, nL,↑ de-
creases. On the contrary the density nL,↓ increases due to the
following two-step mechanism. As the spin-up electrons hop
from lead L to QD1, they undergo a spin rotation and acquire
a down component. These electrons have about zero energy
and can easily hop to the left lead where the spin-down band
is filled up to �F+UL,↓=�F=−0.96. At the end of the injec-
tion process the densities change abruptly and approach their
initial value since V�2�=V�0�. The inset of Fig. 6�c� is a mag-
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nification of the curves nL,↑�t� and nL,↓�t� for 25� t�160. A
quantum beating in both densities due to the alignment of the
spin impurity along the x axis is clearly visible. In both cases
two oscillations with frequency ��F
J1�=0.96
0.1 are su-
perimposed to an envelope oscillation of frequency 2J1
=0.2.

The spin rotation phase is further investigated in Fig. 7
where we consider the same system as in Fig. 6 except for

the value of the hopping parameter V�2�=0.06, which is six
times larger �Figs. 7�a� and 7�b��, or the exchange coupling
J2=0.02, which is five times smaller �Figs. 7�c� and 7�d��. In
the first case the x component remains an order of magnitude
smaller than S1,el �see Fig. 7�a�� and eventually approaches a
steady value slightly larger than the initial one �not shown�.
As in Fig. 6 the electron spin is damped in all three direc-

tions but it decays faster. The projection of S�1,el onto the yz
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FIG. 6. �Color online� Electron spin in QD1 and electron density at the left interface during the injection phase �t�T1� and the rotation
phase �t	T1� when T1=10. The equilibrium parameters are the same as in Fig. 5, i.e., J1=J2=0.1 and VL=VR=VQD=V�0� and the Fermi
energy is �F=−0.96. For 0� t�T1 the system is perturbed by a spin bias UL,↑=1.3 and a larger hopping VL=V�1�=0.2. At t=T1 the spin bias

is switched off and the hopping VL is suddenly changed to V�2�=0.01. �a� The three components of S�1,el. �b� The trajectory of the projection

of S�1,el onto the yz plane. �c� Spin-up and -down densities on the first site of the left lead. The inset is a magnification of both densities nL,↑
and nL↓ for times t	25.

0 50 100 150time
-0.2

-0.1

0

0.1

0.2

S
1,

el

-0.2 -0.1 0 0.1 0.2S
z

1,el

-0.2

-0.1

0

0.1

0.2

S
y

1,
el

0 50 100 150time
-0.2

-0.1

0

0.1

0.2

S
1,

el

x
y
z

-0.2 -0.1 0 0.1 0.2S
z

1,el

-0.2

-0.1

0

0.1

0.2

S
y 1,

el

a) b)

c) d)

FIG. 7. �Color online� �a� The three components of S�1,el and �b� the trajectory of the projection of S�1,el onto the yz plane for the same
system as in Fig. 6 except that the hopping parameter V�2�=0.06 is six times larger. �c� and �d� Same as �a� and �b� but with the equilibrium
parameter J2=0.02 and hopping parameter V�2�=0.01.

ULTRAFAST MANIPULATION OF ELECTRON SPINS IN A… PHYSICAL REVIEW B 78, 075425 �2008�

075425-7



plane �Fig. 7�b�� yields a spiral trajectory, which finishes
very close to the origin after a time t�160. On the other
hand, for a smaller coupling J2=J1 /5, we do not appreciate
any damping within the time propagation window t�160.

The y and z components of S�1,el are well described by two
undamped cosine functions with a phase lag of � / �4J1� and
an amplitude which is about ten times larger than �S1,el

x � �see

Fig. 7�c��. In Fig. 7�d� we show the projection of S�1,el onto
the yz plane. The reduced damping is a desirable feature and
has to be attributed to the mismatch of the energy levels in
the two quantum dots: 
J1 in QD1 and 
J2 in QD2.

C. Spin transfer

The rotation of the electron spin in QD1 �t	T1� termi-
nates at t=T2	T1 when the barrier between QD1 and QD2
is lowered and, as a consequence, the interdot hopping in-
creases, i.e., VQD=VQD

�0� ��T2− t�+VQD
�1� ��t−T2�, where VQD

�0�

=0.01. This is the spin transfer phase. In Fig. 8 we plot the

three components of the electron spin in QD2 versus time for
VQD

�1� =0.2 �Figs. 8�a�–8�c�� and VQD
�1� =0.5 �Figs. 8�d�–8�f��.

For times t�T2 the system undergoes the same perturbations
as in Figs. 6 and 7. Here we have considered an exchange
coupling in QD2 of J2=0.05 and a hopping V�2�=0.01. The
frequency of the oscillations is larger, the larger the interdot
coupling is, in agreement with Eq. �26�. The efficiency of the
transfer has been investigated for different times T2 at which
the electron spin in QD1 is polarized along ẑ �T2�36.5,
Figs. 8�a� and 8�d��, 1

�2
�ẑ− ŷ� �T2�40.4, Figs. 8�b� and 8�e��,

and −ŷ �T2�44.3, Figs. 8�c� and 8�f��. For our choice of
parameters the efficiency is higher if the spin in QD1 is
polarized along ẑ.

We also observe that for all three components, the
maxima of the electron spin in QD1 correspond to the
minima of the electron spin in QD2—see Fig. 9 where we

plot S�1,el and S�2,el at T2=36.5 for VQD
�1� =0.2 �Figs. 9�a�–9�c��

and VQD
�1� =0.5 �Figs. 9�d�–9�f��. From Fig. 8�d� and Figs.

9�d�–9�f� one observes that when T2 corresponds to the time

at which S�1,el�T2� is polarized along ẑ, the maxima of S2,el
z are

close to the zeros of S2,el
x and S2,el

y , in agreement with the
analysis of Sec. III B. We define the ratio r�

�S2,el
z /��S2,el

x �2+ �S2,el
y �2. In the propagation window the
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maxima of S2,el
z occur at t=39.32 when r��0.28 and S2,el

z

=0.153, t=95.68 when r��0.26 and S2,el
z =0.152, and t

=151.96 when r��0.24 and S2,el
z =0.151. Taking into ac-

count that S1,el
z �T2�=0.163, the efficiency of the spin transfer

can be up to 90%.

D. Spin readout

At a time t=T3 when S2,el
z has a maximum or a minimum,

the interdot hopping is lowered, i.e., VQD�t�=VQD
�0� ��T2− t�

+VQD
�1� ��t−T2���T3− t�+VQD

�2� ��t−T3� with VQD
�2� V, and the

spin transfer phase ends.
In Fig. 10 we consider the same system parameters and

perturbations of Fig. 9 �with VQD
�1� =0.5� and fix the time T3

=39.32 when S2,el
z has a maximum. At t=T3 the interdot hop-

ping is lowered to VQD
�2� =0.001 and QD2 becomes an almost

isolated system. At this stage the density of spin-up and
-down electrons in QD2 is practically constant as one can see
from the insets of Figs. 10�a� and 10�b�. Shortly after T3 the
read-out phase starts. At t=60 we lower the barrier between
QD2 and lead R and simultaneously switch on a bias UR,↑
=UR,↓=UR=0.96 in the right lead. The electrochemical po-
tential in lead R becomes �R=�F+UR=0 and lies in between
the two energy levels �2,
= 
J2= 
0.05 of the isolated
QD2, with the highest level �2,+ for spin-up electrons and the
lowest level �2,− for spin-down electrons.36 Spin-up electrons
in QD2 have, therefore, energy larger than �R and tunnel to

the lead R. As a consequence the spin-up density decreases
as one can see in Fig. 10�a�. On the contrary, the lowest level
�2,− has energy below �R and a vanishingly small occupa-
tion. Spin-down electrons tunnel from lead R to QD2 and the
density of spin-down electrons increases �see Fig. 10�b��.
This charge transfer generates a right-going spin-up current
IR,↑ and a left-going spin-down current IR,↓ �see Fig. 10�c��,
which results in a large spin current. The spin dynamics in
the xy plane is displayed in Fig. 10�d� where, besides the
monotonically decreasing z component, we plot the x and y

components of S�2,el. Due to the symmetry of the problem,
S2,el

x and S2,el
y oscillate around zero with an exponentially

decreasing amplitude.
The situation corresponding to the antiparallel configura-

tion in QD2 is analyzed in Fig. 11. The difference with the
previous case is that we let the electron spin in QD1 rotate
until it is polarized along the negative z axis. The first time
S1,el

z is minimum occurs at T2=52.05 �see insets in Figs.
11�a� and 11�b��. The spin transfer phase ends at T3=54.84
with an efficiency of about 90%. This can be seen in the inset
of Fig. 11�b� where the spin-down density of QD2 swaps
with that of QD1 in the time window �T2 ,T3�. At t=T3 the
system undergoes the same perturbations considered in Fig.
10. Being the spin-up level of QD2 scarcely populated, the
change in the spin-up density �Fig. 11�a�� and spin-up current
at the right interface �Fig. 11�c�� is very small as compared to
the parallel configuration. A small change is observed for the
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spin-down quantities as well due to a population of about 0.3
in the spin-down level of QD2. Contrary to the parallel con-
figuration set up, the z component S2,el

z is negative when the
read-out phase starts and does not change sign �see Fig.
11�d��.

The spin current Ispin�t�� IR,↓�t�− IR,↑�t� during the read-
out phase �t	60� is displayed in the inset of Fig. 12 for the
parallel and antiparallel configurations analyzed in Figs. 10
and 11. One observes an exponential decay with superim-
posed oscillations of frequency ��F+UR
J2�=0.05 as ex-
pected. However, a closer inspection reveals a richer struc-
ture. In Fig. 12 we show the discrete Fourier transform of
Ispin�t� with t in the range of �65,640�. Besides the peak at
�=0.05, there exist an extra peak at frequency �= �2−�F�
�2.96 and an asymmetric peak structure at frequency �
= ��F+2��1.04. The extra transient frequencies are due to
the finite bandwidth of the leads since the energies +2 and −2
�in units of V� correspond the top and the bottom of the right
band, respectively.

In conclusion, we have shown how to propagate in time a
spinful open quantum system subjected to arbitrary time- and
spin-dependent perturbations. The semi-infinite nature of the
leads has been exactly accounted for. Full simulations of the
microscopic charge and spin transient dynamics of a double
quantum dot in its operating regime have been presented.
Figure 13 summarizes how the device works by displaying
the spin currents at the left and right interfaces during the
entire sequence of voltage pulses. Different processing of the
injected spin-up current results in different spin currents at
the right interface.

V. SUMMARY AND OUTLOOK

In the last few years we have witnessed an increasing
interest on transient responses in quantum transport mainly
due to their potential relevancy in molecular electronics, a
field where molecular devices will possibly operate under
nonsteady-state conditions. The main difficulty in the study
of the short-time response of open quantum systems stems
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from the macroscopic size of the leads. Several approaches
have been proposed to tackle this problem. Treating the leads
in the WBL approximation allows for obtaining a simple
integral equation for currents, densities, etc.,37–40 but lacks
retardation effects. One-dimensional leads have been ap-
proximately treated within a Wigner-function approach41,42

or by including only a finite number of lead unit cells.43–45

Only recently it became possible to deal with the semi-
infinite nature of the leads using a scheme based on wave-
function propagation30 or, alternatively, other algorithms
based on solving the Dyson-Keldysh equations in the time
domain.46–50 Few attempts to include electron-correlation51,52

as well as electron-nuclear interactions53,54 in the transient
regime have also been made.

In this work we have used a modified version of the
propagation algorithm of Ref. 30 �see Appendix B� and gen-
eralized it to include the spin degrees of freedom. We have
proposed a double quantum dot system to manipulate the
charge and the spin of the electrons. Numerical simulations
of the entire operating regime have been provided. These
include some of the crucial steps in the theory of quantum
computation, e.g., the injection of spins and their readout.

The transient electron dynamics when a device is per-
turbed by ultrafast voltage pulses is not only relevant to our
microscopic understanding but an exploitable feature to im-
prove the device performance. This has been explicitly
shown in Sec. IV: the efficiency of the spin injection can be
much higher during the transient than at the steady state. We
also have found that for a given height of the barriers be-
tween lead L and QD1, QD1 and QD2, and QD2 and lead R,
the damping of the spin magnitude during the rotation phase
is much smaller for different exchange couplings, i.e., J1
�J2, than for J1=J2. This means that the spin relaxation can
be substantially delayed using different quantum dots.

Using the nonequilibrium Green’s function formalism in
the WBL approximation, we have obtained a rate equation
for both the spin-injection and spin read-out processes. For
short times the rate equation becomes remarkably transparent

and permits us to identify the mechanisms leading to a re-
laxation of the spin magnitude and to a deterioration of the
spin polarization. Going beyond the WBL approximation re-
sults in a richer structure of the transient responses as tran-
sitions between the Fermi energy and the bottom/top of the
band occur as well.

As shown in Sec. IV, the possibility of simulating opera-
tional sequences, e.g., that of Fig. 1, allows for a real-time
study of fundamental processes not accessible otherwise.
Much more work is, however, needed before a systematic
comparison with experimental data can be made. Accounting
for intradot and possibly interdot electron-electron interac-
tions is of crucial importance for describing, e.g., the Cou-
lomb blockade or the Kondo regimes. The complications
here stem from the necessity of including electron correla-
tions in a time-dependent conserving manner, a progress
which can be made either within the framework of many-
body theory55 or within one-particle frameworks, e.g., time-
dependent density-functional theory �TDDFT�.56–58 Develop-
ments in the former direction have been made in steady-state
situations by treating the correlation at the GW level.59–62

Another fundamental issue to be pursued is the extension
to three-dimensional leads. This would allow for a proper
treatment of the long-range Coulomb potential as well as for
a realistic description of the atomistic structure of the tunnel-
ing barriers.

Finally, the recent experimental advances in attaching
quantum dots to superconducting leads63 prompt for a gen-
eralization of the propagation algorithm to leads described
by, e.g., BCS-type models. Such development will give us
access to a completely new phenomenology due to the com-
petition between the pairing interaction and the spin-flip in-
teractions, a topic not yet explored in the transient regime.
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APPENDIX A: PROOF OF EQ. (24)

The result in Eq. �24� is a consequence of the relative

orientation of the spin impurity S�1 with respect to S�2. By
definition the quantity ��2

z�t��1,1 is the �1,1� matrix element
of the product of three matrices

��2
z�t��1,1 = �e−it	 J1�x VQD12

VQD12 J2�z

	02 02

02 �z

eit	 J1�x VQD12

VQD12 J2�z

�

1,1
.

�A1�

Consider the unitary operator U=UgUzUx which consists of a
rotation of both spin impurities around the x axis by an angle
�,

Ux = 	exp�− i��x/2� 02

02 exp�− i��x/2�

 ,

followed by a rotation around the z axis by an angle �,
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FIG. 13. �Color online� Spin current at the left and right inter-
faces for the parallel and antiparallel configurations of Fig. 10 and
Fig. 11, respectively. For the parallel configuration T0=0, T1

=10.0, T2=36.5, and T3=39.32, while for the antiparallel configu-
ration T0=0, T1=10.0, T2=52.05, and T3=54.84.
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Uz = 	exp�− i��z/2� 02

02 exp�− i��z/2�

 ,

and followed by a gauge transformation which changes the
sign of the fermion operators on QD2,

Ug = 	12 02

02 − 12

 .

Insertions of the identity matrix U†U in Eq. �A1� gives

��2
z�t��1,1 = �U†Ue−it	 J1�x VQD12

VQD12 J2�z

U†U	02 02

02 �z



�U†Ueit	 J1�x VQD12

VQD12 J2�z

U†U�

1,1

= − �eit	 J1�x VQD12

VQD12 J2�z



�	02 02

02 �z

e−it	 J1�x VQD12

VQD12 J2�z

�

2,2

= − ��2
z�− t��2,2. �A2�

Taking into account that ��2
z�t��1,1, ��2

z�t��2,2 are even func-
tions of t, Eq. �24� follows.

APPENDIX B: PROPAGATION ALGORITHM

Let H�t�=��H��t�+���H�C
0 +HC�

0 �+HC�t� be the one-
particle Hamiltonian of a system which consists of �
=1,2 , . . . ,N electrodes in contact with a central region C.
We assume that the time dependence of

H��t� = 	H�,↑
0 0

0 H�,↓
0 
 + 	U�,↑�t� 0

0 U�,↓�t�

 = H�

0 + U��t�

�B1�

is a uniform spin-dependent and time-dependent shift while
the time dependence of HC has no restrictions. We denote
with ���� the projection of a generic wave function ��� on
electrode � and with ��C� the projection of ��� onto region C.
The time-dependent Schrödinger equation reads

i
d

dt
����t�� = H��t�����t�� + H�C

0 ��C�t�� , �B2�

i
d

dt
��C�t�� = HC�t���C�t�� + �

�

HC�
0 ����t�� . �B3�

Performing the gauge transformation

����t�� = exp�− i�
0

t

d�U���������t�� , �B4�

and ��C�t��= ��C�t��, Eqs. �B2� and �B3� become

i
d

dt
����t�� = H�

0 ����t�� + H�C�t���C�t�� , �B5�

i
d

dt
��C�t�� = HC�t���C�t�� + �

�

HC��t�����t�� , �B6�

with HC��t�=HC�
0 exp�−i�0

t d�U����� and H�C�t�= �HC��t��†.
The effect of the gauge transformation is to transfer the time
dependence from the Hamiltonian describing the bulk elec-
trodes to the Hamiltonian describing the contacts between
the electrodes and region C. The gauge-transformed
Schrödinger equation is used to calculate the time-evolved
state ���tm=m�t������m�� by using the Cayley method

�1 + i�Hg
�m�����m+1�� = �1 − i�Hg

�m�����m�� , �B7�

where �=�t /2, Hg
�m�= 1

2 �Hg�tm+1�+Hg�tm��, and Hg�t�
=��H�

0 +���H�C�t�+HC��t��+HC�t� is the gauge-
transformed Hamiltonian. The interface Hamiltonian H�C is
spin diagonal provided that region C includes the first few
atomic layers of electrode �. In this case the projection of
Eq. �B7� onto different subregions leads to a close recursive
relation for the amplitudes ��C

�m�� of the wave function in
region C �the steps are similar to those of Ref. 30�,

��C
�m+1�� =

1 − i�Heff
�m�

1 + i�Heff
�m� ��C

�m�� + �S�m�� − �M�m�� , �B8�

where the source term �S�m�� and the memory term �M�m��
read

�S�m�� =
− 2i�

1 + i�Heff
�m��

�

z�
�m�HC�

0 �1 − i�H�
0�m

�1 + i�H�
0�m+1 ���

�0�� ,

�B9�

�M�m�� =
�2

1 + i�Heff
�m��

�
�
j=0

m−1

z�
�m��Q�

�j� + Q�
�j+1��

�z̄�
�m−1−j����C

�m−j�� + ��C
�m−1−j��� . �B10�

In the above equations we have used the following defini-
tions:

z�
�m� =

exp�− i�
0

tm+1

d�U����� + exp�− i�
0

tm

d�U�����
2

,

�B11�

Q�
�m� = HC�

0 �1 − i�H�
0�m

�1 + i�H�
0�m+1H�C

0 , �B12�

Heff
�m� = HC

�m� − i��
�

z�
�m�Q�

�0�z̄�
�m�. �B13�

The recursive relation in Eq. �B8� is written in terms of ma-
trices and vectors with the same dimension of the central
region, i.e., the infinitely large electrodes have been embed-
ded in an effective equation of finite dimension. We defer the
reader to Ref. 30 for the description of how to calculate the
matrices Q�

�m� and the source term �S�m��.
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