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We use a recently developed self-consistent GW approximation to perform first-principles calculations of the
conduction-band spin splitting in GaAs under �110� strain. The spin-orbit interaction is taken into account as a
perturbation to the scalar relativistic Hamiltonian. These are the calculations of conduction-band spin splitting
under deformation based on a quasiparticle approach and, because the self-consistent GW scheme accurately
reproduces the relevant band parameters, it is expected to be a reliable predictor of spin splittings. We also
discuss the spin-relaxation time under �110� strain and show that it exhibits an in-plane anisotropy, which can
be exploited to obtain the magnitude and sign of the conduction-band spin splitting experimentally.
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I. INTRODUCTION

The increasing prospect of utilizing spin electronics with
conventional semiconductors calls for quantitative predic-
tions of the spin relaxation of electrons in these materials.1,2

In semiconductors without inversion symmetry, the spin-
relaxation rate is related to the relativistic splitting in the
conduction band; an effect that also induces spin precession,
and is relevant for spin transport and injection.3–6 In zinc-
blende semiconductors, which are the most promising for
spintronic applications, it is widely accepted that
D’yakonov-Perel’ �DP� �Ref. 7� is the dominant spin-
relaxation mechanism. Generally speaking, this mechanism
is present when the spin degeneracy of the conduction band
is lifted. The spin splitting can be viewed as a k-dependent
effective magnetic field Beff�k�, which, under certain scatter-
ing conditions, relaxes the average spin of the ensemble. The
strength of the effective field depends on the material. In the
general form we can add this field to the Hamiltonian as an
effective Zeeman term H�k�= �1 /2�� ·�, where ��k� �with
the dimensions of energy� is proportional to Beff�k�. In the
zinc-blende crystal structure, there is no inversion symmetry;
this leads to an � field with components8,9

�D
i = 2�ki�ki+1

2 − ki+2
2 � , �1�

where i=x , i+1=y , i+2=z, the indices obey a cyclic rela-
tionship �i+3= i�, and � is a constant that depends on the
bulk properties of the material. This effective field was first
introduced by Dresselhaus.8 In uniaxially deformed crystals
there is an additional effective field:10–13

�stress
i = C��i,i+1ki+1 − �i,i+2ki+2� + Bki��i−2,i−2 − �i−1,i−1� ,

�2�

where �ij is the strain tensor, and C and B are material-
dependent constants. The first part of the effective field origi-
nates from off-diagonal components of the strain tensor
while the second part originates from diagonal ones. The
second part appears only due to the spin-orbit mixing of p
and d states, and therefore should be much weaker than the

first part.14 However a numerical estimation of B has not yet
been performed probably because of uncertainties concern-
ing the �12 states.

The data for the values of �, C, and B in various zinc-
blende semiconductors are very sparse. The most studied
case is GaAs. However, the experimental data for � show a
wide range of values between 11.0 and 34.5 eV Å3.15 Theo-
retical calculations of this parameter also show a wide range
of predicted values. Calculations based on k ·p method pre-
dict a value between 25 and 30 eV Å3.15 However, a first-
principles calculation by Cardona et al.16 predicted a value of
15 eV Å3. Our recent first-principles calculation17 predicted
a value of 8.5 eV Å3, a lot smaller than the commonly cited
value of 27.5 eV Å3. Recently, Krich and Halperin18 used a
semiclassical approach to estimate the effect of �D on the
mean and variance of the conductance in closed quantum
dots, and compared the results of their model with the ex-
periment in Ref. 19. They were able to reach a good agree-
ment only when they used our value of �, suggesting that the
value of � in GaAs must be around 9 eV Å3.

Also our current knowledge of C and B in GaAs is far
from being satisfactory. The magnitude of C was estimated
experimentally in Refs. 20 and 21 to be 8.1�2.5 and
3.9 eV Å, respectively. The values of C calculated with lin-
ear combination of atomic orbitals �LCAO� and pseudopo-
tentials are 3.75 and 11.24 eV Å, respectively.16 The calcu-
lations are able to define also the sign of C; in Ref. 16 it was
found to be opposite to that of �.22 No other attempt has been
made to calculate the sign of C since. To our knowledge the
magnitude and sign of B has not been estimated experimen-
tally or theoretically so far. D’yakonov et al.10 showed that
the spin-relaxation time has a very weak dependence on ap-
plied pressure upon application of �100� strain, possibly in-
dicating that the magnitude of B is negligibly small.

In this work we use a recently developed ab initio method
based on the GW approximation to predict these parameters
for GaAs. We will try to answer the important questions
about the strengths and signs of the spin splittings caused by
the two mechanisms: Eqs. �1� and �2�.
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II. METHOD

The GW approximation can be viewed as the first term in
the expansion of the nonlocal energy dependent self-energy
��r ,r� ,�� in the screened Coulomb interaction W. From a
more physical point of view, it can be interpreted as a dy-
namically screened Hartree-Fock approximation plus a Cou-
lomb hole contribution.23 It is also a prescription for map-
ping the noninteracting Green function to the dressed one,
G0→G. In the quasiparticle self-consistent GW �QSGW�
method, a prescription is given on how to map G to a new
noninteracting Green function G→G0. This is used for the
input to the next iteration; we repeat the procedure G0→G
→G0→ . . . until convergence is reached. Thus QSGW is a
self-consistent perturbation theory where the self-consistency
condition is constructed to minimize the size of the pertur-
bation. QSGW is parameter-free, independent of basis set,
and of the local density approximation �LDA�.24 The method
is described in great detail in Refs. 24 and 25. It has been
shown that QSGW reliably describes the band structure in a
wide range of materials.17,26–28

The QSGW method in the current implementation uses
the full potential linear muffin tin orbital �FP-LMTO�
method29,30 so we make no approximations for the shape of
the crystal potential. The smoothed LMTO basis includes
orbitals with l	 lmax=5, and both 3d and 4d are included in
the basis. 4d are added in the form of local orbitals25—an
orbital strictly confined to the augmentation sphere, which
has no envelope function at all. As QSGW gives the self-
consistent solution at the scalar relativistic level, we add the
spin-orbit operator, HSO, as a perturbation �it is not included
in the self-consistency cycle�.

It has also been shown that the QSGW method systemati-
cally overestimates the fundamental band gap in semicon-
ductors by an amount of a few tenths of an electron volt,
independent of the magnitude of the gap.26 This error is re-
lated to the fact that the vertex correction is not taken into
account in the method and, when taken into account, a nearly
perfect agreement with experiment is achieved.31 Here, in
order to obtain highly accurate results with less computa-
tional effort, we take a simple but somewhat heuristic ap-
proach to correct the error. We considered a “hybridized”
QSGW+LDA Hamiltonian with

H
 + HSO = HLDA + �1 − 
���̃ − Vxc
LDA� + HSO. �3�

In Ref. 17 we found that, for all III-V and II-VI semiconduc-
tors studied, a value of 
�0.2 gives excellent agreement of
calculated band gap and other important band parameters
with experiment.

All band parameters presented in Table I, except C and B,
are calculated for the undistorted lattice structure. All signs
are presented with the convention that the anion is at the
origin and cation at �0.25,0.25,0.25�. We see that overall the
QSGW is in good agreement with experiment but the hybrid-
ized QSGW+LDA Hamiltonian is in even better agreement.
For C and B we calculate self-consistently the self-energy
and charge density under the corresponding deformation. We

found that if instead we use the self-consistent self-energy of
the undistorted structure, the value of C differs from that
presented in Table I by �5%. In these calculations the
atomic positions were allowed to relax within LDA in order
to account for the displacement of the anion and cation sub-
lattices relative to each other. For a pure shear deformation in
the �111� direction, this displacement can be viewed as a
length change �l of the �111� bond described by the internal
strain parameter �, �l=3�1−��� /�4. Our calculated value of
� is 0.53, in good agreement with previous calculations33,34

We apply two different deformations; the first of which is
described by the following strain tensor:

 = ��1 � 0

� �1 0

0 0 �2
� , �4�

where �1=0.0025186, �2=−0.0049628, and �=0.0074814.
This tensor conserves the volume and induces the B related
term in �stress

i . To separate this term from the C related term,
we also performed a calculation with a deformation de-
scribed by the following strain tensor:

TABLE I. Important band parameters for GaAs. E0=E��6
c�

−E��8
v� and E0�=E��7

c�−E��8
v� are the energies of the first two con-

duction bands at the � point. �SO and �SO� are the spin-orbit split-
tings between �8 and �7 for valence and conduction bands, respec-
tively. mc

� /m is the conduction-band effective mass at �. Energies
are in electron volts, � is in eV Å3, and C and B are in eV Å. An
asterisk in front of the value indicates that this is a calculated value
from another theoretical method.

QSGW+LDA QSGW Expt

E0 1.52 1.80 1.52a

E0�−E0 2.89 2.81 3.08a

�SO 0.336 0.341a

�SO� 0.174

mc
� /m 0.069 0.076 0.067a

� +8.5 +6.4 11.0–34.5b

C +6.81 +5.39 3.9,c 4.0,d 5.3,e 8.1�2.5,f
�−3.74,g �−11.2,h �2.0,i

�5.0,j �4.9k

B +2.13 +1.7

aFrom Ref. 32.
bFrom Ref. 15.
cFrom Table IX of Ref. 16, where only the absolute value is re-
ported.
dFrom Ref. 14, where only the absolute value is reported.
eFrom Refs. 11 and 21, where only the absolute value is reported.
fFrom Ref. 20, where only the absolute value is reported.
gCalculated with pseudopotentials from Table IX of Ref. 16.
hCalculated with LCAO from Table IX of Ref. 16.
iCalculated with pseudopotentials from Ref. 14.
jCalculated with LCAO from Ref. 14.
kCalculated with the three-band k ·p method from Ref. 11.
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 = �0 � 0

� 0 0

0 0 0
� . �5�

This strain tensor conserves the volume only to first order of
deformation but only the first term �C related� is present in
�stress

i .

III. RESULTS

A. Spin splittings

In Fig. 1 we show the k dependence of the conduction-
band splitting along �010� for the case of hybridized and
QSGW calculations. Figure 1�a� shows the energy dispersion
around the � point for the case of the hybridized Hamil-
tonian and the deformation given by Eq. �4�. Along the �010�
direction, �D

i vanishes and the dispersion is given by

E��k� = �2k2/2meff � 1/2	A	k , �6�

where

	A	 = ��C��2 + B2��2 − �1�2, �7�

and the strain components were introduced in Sec. II. Corre-
spondingly, the conduction-band minimum shifts to

k� = � meff/2�2	A	 . �8�

In Figs. 1�b� and 1�c�, we show the magnitude of the splitting
along the �010� direction for the case of hybridized and
QSGW Hamiltonians, respectively. The red �gray� lines are
for strain given by Eq. �4� and black lines for strain given by
Eq. �5�. The slope of the red line is equal to

s1 = ��C��2 + B2��2 − �1�2, �9�

while the slope of the black line is equal to

s2 = 	C		�	 . �10�

Hence

	C	 = s2/	�	 , �11�

and

	B	 = �s1
2 − s2

2/	�2 − �1	 . �12�

The magnitudes of C and B, extracted with this procedure,
are given in Table I. As it was pointed out in Ref. 35, this
procedure is accurate only to the leading order of k and 
because it ignores the presence of quadratic terms that in
principle are allowed by symmetry, and therefore can be
present in the ab initio spin splitting but are absent in the
Hamiltonian �Eq. �2��. However, unlike the LDA calculations
of Ref. 35, we did not detect any significant contribution to
the spin splitting near the � point from those higher order
terms. Considering the severe underestimation of GaAs band
gap by LDA,36 we suspect that such terms may be important
for narrow gap semiconductors and/or higher strains, and
will be investigated in future studies of such cases. As ex-
pected, in the case of the hybridized method, the magnitudes
of C and B are slightly larger than in the QSGW because the
hybridized band structure has a smaller band gap. However,
the ratio of C /B remains nearly constant; it is equal to 3.197
in the hybridized method and 3.171 in QSGW. The magni-
tude of C is in good agreement with experiments in both the
QSGW and the hybridized methods but the latter should be
trusted more due to better agreement of the other band pa-
rameters with experimental values. We also note that in the
experimental determination of C, the B terms were consid-
ered to be negligible. This corresponds to extracting the
value of C directly from s1; according to our calculations,
this would yield an inaccurate value of C=7.14 eV Å with
an error of 5%, much less than the experimental error in Ref.
20.

The �D
i is highly anisotropic and completely vanishes in

certain directions but is present for a general direction. It is
therefore interesting to compare �D

i with �stress
i . We start by

comparing C to �. When we apply deformation �Eq. �5��, the
dispersion along the �110� direction is

E�k� = �2k2/2meff � 1/4��k3 + C�k� . �13�

Thus the Dresselhaus and the stress terms can either add or
subtract, depending on the relative sign of C� and �. If they
subtract the splitting will be zero at krev=�C /���, i.e., the
spin splitting reverses its sign at krev. In Table I it is seen that
�C /�=0.895 Å−1, which means that, for the deformation
�Eq. �5��, the spin splitting along �110� will change sign at
krev=0.077 Å−1. As shown in Fig. 2, � can be either negative
or positive; therefore such cancellation will always occur de-
pending on the sign of the C ·� ·k product. For example, if
k�0, whether it occurs for ��0 or ��0 depends on the sign
of C. In Ref. 17 we determined the sign of � according to
conventions in Ref. 16. Here we will determine the sign of C
relative to the sign of � by simply plotting �E along �110�
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FIG. 1. �Color online� �a� The shift of the conduction-band
minimum away from the � point in GaAs under deformation, given
by Eq. �4� �hybridized method�. �b� The magnitude of the
conduction-band splitting along the �010� direction for the case of
the hybridized Hamiltonian: red �gray� line with strain given by Eq.
�4� and black line with strain given by Eq. �5�. �c� is the same as �b�
but for QSGW Hamiltonian.
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for positive and negative �. In Fig. 3 we show such plot for
the deformation �Eq. �5�� with positive and negative �. The
splitting is linear only in the vicinity of the � point; when
away from the � point, the cubic term is clearly visible. For
��0 the two contributions add �Fig. 3�a�� but for ��0, they
oppose each other �Fig. 3�b��; for k�0.074 Å−1, the cubic
term dominates and the splitting becomes positive. It is clear
that C and � have the same sign �according to the convention
used here, they are both positive�. The sign of B is defined in
a similar way. We apply the deformation:

� = ��1 0 0

0 �1 0

0 0 �2
� , �14�

so that �2=−2�1. Then the splitting along the �110� direction
is �E� ��k3+ ��1−�2�Bk�. If �E crosses zero for ��1−�2�
�0 then B and � have opposite signs, otherwise B and �
have the same sign. As can be seen in Fig. 4 we find that
B�0.

B. Spin relaxation

After having reliably determined the values of material
parameters that dictate the spin-relaxation rate in GaAs, it
will be interesting to estimate the spin-relaxation time for a
deformation similar to the one given by Eq. �4�. In the Ap-
pendix we have derived the average spin-relaxation time
when both �D and �stress are present:

1

��,1
= �l
1

3
��C��2 + �B���2�

m2

�2 �v2�p�E��

+
32

105
�2m6

�6 �v6�p�E�� +
2

3
�lBC���

m2

�2 �v2�p�E�� ,

�15�

1

��,2
= �l
1

3
��C��2 + �B���2�

m2

�2 �v2�p�E��

+
32

105
�2m6

�6 �v6�p�E�� −
2

3
�lBC���

m2

�2 �v2�p�E�� ,

�16�

1

��

= �l
2

3
��C��2 + �B���2�

m2

�2 �v2�p�E��

+
32

105
�2m6

�6 �v6�p�E�� , �17�

where �p�E� is the momentum scattering time for an electron
with energy E, v its velocity, � denotes an axis parallel to the
vector N= �0,0 ,1�, and � perpendicular to it. Namely,

�� ,1� and �� ,2� are the axes along the �11̄0� and �110�
crystal directions, respectively. We see that there is an in-
plane anisotropy induced by the simultaneous presence of �
and ��=�1−�2 strain components �a similar anisotropy was
observed for the circular piezobirefringence and
confinement-induced circular birefringence in GaAs37�. We
can write the strain tensor �Eq. �14�� in these axes: �=�i,j�ij
with �1,1=��110�=�1+�, �2,2=��11̄0�=�1−�, and �3,3=��001�
=�2. If we apply a uniaxial pressure �stress�, p, along �110�
in this system of coordinates, then using the compliance con-
stants S11, S12, and S44, we find ��110�= �S11+S12+S44 /2�p /2,
��11̄0�= �S11+S12−S44 /2�p /2, and ��001�=2S12p /2, hence, ��
= �S11−S12�p /2 and �= �1 /2�S44p /2. According to Eqs. �15�
and �16�, the difference between the inverse of the spin-

relaxation time along �11̄0� and �110� is equal to

������
������
������
������
������

������
������
������
������
������

Y Y

X X

ε < 0 ε > 0

FIG. 2. �Color online� The left panel represents the applied de-
formation for ��0 and the right panel for ��0.
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FIG. 3. �a� The conduction-band splitting along the �110� direc-
tion for the case of hybridized Hamiltonian, applied strain �Eq. �5��
for ��0. �c� is the same as �a� but for ��0.
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FIG. 4. �a� The conduction-band splitting along the �110� direc-
tion for the case of hybridized Hamiltonian, under deformation �Eq.
�14�� with ��1−�2��0. �b� is the same as �a� but for ��1−�2��0.
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1

��,1
−

1

��,2
=

BC

6
�l

m2

�2 �v2�p�E��S44�S11 − S12�p2. �18�

Hence, an experimental setup similar to the one described
above should be able to measure a linear increase in the
difference �Eq. �18�� with the square of applied pressure. The
rate of increase should be proportional to BC. In the experi-
ment of Ref. 10 the authors measured the increase in the
spin-relaxation time with applied pressure along �100�. Such
strain will only induce the B terms in Eqs. �15�–�17�. If we
assume that the applied strain is large enough to ignore the
Dresselhaus term, then the spin-relaxation time should be
isotropic and should increase linearly with the square of ap-
plied strain. However, unlike the experimental setup pro-
posed here, the rate of increase is proportional to B2. The
experiment proposed here is independent of Dresselhaus
terms no matter how small is the deformation, also the linear
increase is proportional to CB instead of B2 hence it may be
easier to detect. Provided that the orientation of the As-Ga
bond has been previously determined, this experiment can be
used to find the sign of B relative to that of C from the sign
of the difference �Eq. �18��.

IV. CONCLUSION

We have presented first-principles calculations of the
magnitude and sign of bulk constants that govern the DP spin
scattering in GaAs under strain. We find that both C and B
have the same sign as �. Our value of C is in good agreement
with experiments. We have derived an expression for the
spin-relaxation time of electrons under a strain given by Eq.
�4� and showed that the in-plane spin relaxation is aniso-
tropic in this case. We proposed an experiment that can ex-
ploit this anisotropy to deduce the magnitude and sign of B.
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APPENDIX: SPIN SCATTERING RATE

The momentum dependent spin-relaxation-time tensor is
defined as

1

�i,i�k�
= �l�p�E���2 − �i

2� , �A1�

and

1

�i,j�k�
= �l�p�E���i� j� �i � j� . �A2�

Here i=x ,y ,z and the overbar denotes averaging over all
directions of k. �p�E� is the momentum scattering time for an
electron with energy E and

�l =

�
−1

+1

��cos ���1 − Pl�cos ��� d cos �

�
−1

+1

��cos ���1 − cos �� d cos �

, �A3�

where ��cos �� is the electron-scattering cross section and Pl
the Legendre polynomials. Here it is assumed that the elec-
tron scattering is elastic, the electron energy spectrum is iso-
tropic, and the scattering cross section ��k ,k�� depends only
on the scattering angle �. � is the total effective field and in
our case we can write

� = �D + �stress �A4�

with the components, as given in Eqs. �1� and �2�. We apply
a strain similar to that of tensor Eq. �4� with the constraint
�2=−2�1 so as to conserve the volume. Then

� �stress
x = C�ky + B��kx,

�stress
y = − �C�kx + B��ky� ,

�stress
z = 0,

� �A5�

where ��= ��1−�2�. To facilitate the discussion, let us write
also explicitly the components of the Dresselhaus field:

��D
x = 2�kx�ky

2 − kz
2� ,

�D
y = 2�ky�kz

2 − kx
2� ,

�D
z = 2�kz�kx

2 − ky
2� .
� �A6�

Then we can write

�x
2 = ��stress

x �2 + ��D
x �2 + 2�stress

x �D
x . �A7�

The first integral on the right-hand side �RHS� is

��stress
x �2 = �C��2ky

2 + �B���2kx
2 + �2CB����kxky

=
1

3
��C�� + �B���2�k2. �A8�

The second integral on the RHS is

��D
x �2 = 4�2kx

2�ky
2 − kz

2�2 = �2k6 16

105
. �A9�

The third integral on the RHS is

�stress
x �D

x = �C���kxky�ky
2 − kz

2� + �B����kx
2�ky

2 − kz
2� = 0.

So we get

�x
2 =

1

3
��C��2 + �B���2�k2 + �2k6 16

105
. �A10�

In a similar way we obtain �y
2=�x

2 and

�z
2 = �2k6 16

105
. �A11�

For the off-diagonal components, we get
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�x�y = �y�x = �D
x �D

y + �D
x �stress

y + �stress
x �D

y + �stress
x �stress

y .

�A12�

The first three integrals on the RHS are equal to zero. With
the form of strain field given by Eq. �A5�, the last term can
be written as

�stress
x �stress

y = − �C��2kykx + �B���2kxky − CB����kx
2 + ky

2�

= −
2

3
CB���k2. �A13�

All other �i� j are equal to zero. Therefore according to Eqs.
�1� and �2� for the spin-relaxation time of an electron with
energy E, we find

1

�x,x�k�
=

1

�y,y�k�

= �l�p�E�
1

3
��C��2 + �B���2�k2 + �2k6 32

105
 ,

�A14�

1

�z,z�k�
= �l�p�E�
2

3
��C��2 + �B���2�k2 + �2k6 32

105
 ,

�A15�

1

�x,y�k�
=

1

�y,x�k�
= − �l�p�E�

2

3
�BC����k2. �A16�

Then the average spin-relaxation time is

1

�x,x
=

1

�y,y
= �l
1

3
��C��2 + �B���2�

m2

�2 �v2�p�E��

+
32

105
�2m6

�6 �v6�p�E�� , �A17�

1

�z,z
= �l
2

3
��C��2 + �B���2�

m2

�2 �v2�p�E��

+
32

105
�2m6

�6 �v6�p�E�� , �A18�

1

�x,y
=

1

�y,x
= −

2

3
�lBC���

m2

�2 �v2�p�E�� , �A19�

where v=�k /m and the brackets � � denote averaging over
energies. For example, for the Maxwell distribution,
�v2r�p�E��= �

kBT

m �r�2r+1� ! !�p.
By transforming the above tensor to the principal system

of coordinates, we obtain

1

��,1
= �l
1

3
��C��2 + �B���2�

m2

�2 �v2�p�E��

+
32

105
�2m6

�6 �v6�p�E�� +
2

3
�lBC���

m2

�2 �v2�p�E�� ,

�A20�

1

��,2
= �l
1

3
��C��2 + �B���2�

m2

�2 �v2�p�E��

+
32

105
�2m6

�6 �v6�p�E�� −
2

3
�lBC���

m2

�2 �v2�p�E�� ,

�A21�

1

��

= �l
2

3
��C��2 + �B���2�

m2

�2 �v2�p�E��

+
32

105
�2m6

�6 �v6�p�E�� , �A22�

where � denotes axis parallel to the vector N= �0,0 ,1� and �
denotes axis perpendicular to it. Namely, �� ,1� and �� ,2�
are the axes along the �11̄0� and �110� crystal directions,
respectively. Equations �A20� and �A21� signal an in-plane
anisotropy induced by the simultaneous presence of � and
��.
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