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We studied the semiconductor response with respect to high intensity resonant excitation on short-time scale
when the contribution of the Fermi statistics of the electrons and holes prevails. We studied both the single- and
double-pulse excitations. For the latter case we considered the time evolution of the multiwave mixing exciton
polarization. The main difference between the excitation by a single pulse or by two noncollinear pulses is that
the Rabi oscillations of the multiwave mixing response are characterized by two harmonics. Analyzing the
operator dynamics governed by the external excitation we found that there are three invariant spin classes,
which do not mix with the evolution of the system. Two classes correspond to the bright exciton states and one
contains all dark states. We found that the dynamics of the classes are described by six frequencies and the
Rabi frequencies are only two of them �one for each bright class�. We discuss the effect of the dispersion of the
electrons and holes and the Coulomb interaction describing the semiconductor by the semiconductor Bloch
equation �SBE�. We show that if initially the system is in the ground state then the SBE preserves the invariant
spin classes, thus proving the absence of the dark excitons in the framework of this description. We found that
due to the mass difference between holes of different kind additional Rabi frequencies, two of those present in
the operator dynamics should appear in the evolution of the exciton polarization.
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I. INTRODUCTION

One of the main tools of probing the complex character of
the many-body correlations and interactions in semiconduc-
tors is the multiwave mixing �MWM� response. The MWM
polarization in optically excited semiconductors produces the
signal in directions that are prohibited in the linear regime
because of momentum conservation, thus giving access to
the semiconductor many-body excitations. The typical ex-
ample is the four-wave mixing spectroscopy.1,2 Recently also
wave mixing of higher orders started to draw attention.3–5 A
great success in understanding the mechanism of the forma-
tion of the nonlinear response in general was achieved in
relatively low-field limit using the perturbation theory with
respect to the external field.6–12 Perturbational description,
however, is not suitable for investigating the coherent recon-
struction of the spectrum such as in the case of Rabi oscilla-
tions. For a qualitative analysis of such phenomena, few-
level quantum models have been used.13–15 This approach,
however, misses the important property of the excitations in
semiconductors. These excitations constitute a quantum field
rather than a canonical quantum-mechanical system. The
system supports infinitely many states, unless of course the
spectrum has truly discrete component that is when the ex-
citations are localized such as in quantum dots. Thus a de-
scription nonperturbative with respect to the external field
must deal with many-body aspects of the dynamics of the
system.4 In order to treat this problem, a variety of methods
based on derivation of respective closed equations of motion
was developed.2,16–21 Unfortunately, the dynamical equations
turn out to be very complex owing to the Coulomb interac-
tion, which is shown to be crucially important at relatively
long-time scales.22,23 Therefore, one has to resort to numeri-
cal calculations when investigating the dynamics of the ex-
citon polarization. The numerical simulations proved to de-
scribe successfully the dynamics,14,19,24 but they are difficult

to apply for studying the detailed effect of different contri-
butions to the dynamics and its dependence on parameters of
the system. As a result, the theory of the semiconductor re-
sponse suffers from a lack of exact results obtained in con-
trollable approximations which would guide the respective
numerical, theoretical, and experimental studies.

At short-time scales, however, one can rely on significant
simplification of the dynamics of the system due to negli-
gible phase change during the optical excitation. Effectively,
the system follows the external field, which is illustrated best
by a simple dynamical model,

Ṗ�t� = − i���P�t���P�t� + E�t� , �1�

with ��P� being a real positive function. If initially the sys-
tem is at rest P�0�=0, we can present the time dependence
P�t� in the form,

P�t� = �
0

t

dt� exp�− i�
t�

t

dt����P�t�����E�t�� . �2�

This representation is convenient for comparing the re-
sponses of the system with respect to the �-functional exci-
tation E�t�=���t+0� and to the excitation with the piece-
wise constant amplitude E�t�=� /T, where T is the duration
of the forced regime. As follows from Eq. �2�, in the case of
the � pulse immediately after the excitation is switched off
one has P�t�=�. For the excitation with constant amplitude
Eq. �2� yields an estimate maximally different from the
�-pulse case in the form P�T�=��1−e−i�mT� / i�mT, where
�m=sup0�P����P�. Thus if the excitation pulse is shorter
than the time scale determined by �m, i.e., if �mT�1, then
the response with respect to the constant pulse of finite du-
ration differs up to quadratic terms from the �-pulse response
only by the phase factor e−i�mT/2.

An immediate application of this consideration to the evo-
lution of the exciton polarization in optically excited semi-
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conductors is prevented by the more complex character of
the polarization dynamics, namely, by the field induced cou-
pling between the polarization and the charge densities. In
order to see the principal differences introduced by this cou-
pling, we consider a model

Ṗ�t� = − i�P�t� − iE�t�n�t� − iE�t� ,

ṅ�t� = i�n�t� − iE�t�P�t� . �3�

Straightforward substitution of the �-shaped pulse into this
equation obviously fails since now the amplitudes in front of
the � function in the coupling terms are given by the quan-
tities n�t� and P�t�, which experience discontinuity at exactly
the point of singularity of the � function. Therefore, we need
to consider the case of the external pulse of finite duration.
For the pulse with piece-wise constant amplitude E=� /T, as
in the previous example, Eq. �3� with the initial conditions
P�0�=0, n�0�=0 is solved for t�T by

P�t� = − i
2�

�T
sin��t/2��sin��t/2� − i

�

�
cos��t/2�� ,

n�t� = −
�2

�2T2 �1 − cos��t�� , �4�

where �2=�2 /4+E2. It is seen that in the limit of the exci-
tation pulses, which are short compared to the typical dy-
namical time scale �T�1, one has to distinguish the cases
of weak and strong excitations �T /��1 and �T /��1, re-
spectively. In the first case up to the quadratic terms �2T2,
the response P�T� looks like the one of the system where P
and n are decoupled with respect to �-pulse excitation. This
illustrates the relation with the �-functional approximation
popular in studying the nonlinear optical response by using
perturbational approach, which corresponds to weak scatter-
ing.

In the limit of strong external field when �T�1 while �
�1, the evolution of the system is significantly different.
Neglecting the terms quadratic in �T /�, we obtain that the
evolution of the system is similar to the one we have in the
case �=0 �i.e., Rabi flopping� with the only difference that
P�t� acquires a �small� imaginary part. Applying now the
similar idea for estimating a phase shift as for the analysis of
Eq. �1�, we can see that the conclusion about small perturba-
tions vanishing with T→0 holds also in the case of
P-dependent frequency and renormalized coupling E→E
+	��P� , �n��.

These results serve as a general background for the analy-
sis of the basic features of the immediate response of a semi-
conductor excited by short pulses of high intensity. In this
regime, while taking exactly into account the many-body ef-
fects due to the fermion nature of the electrons and holes,
one can neglect the Coulomb interaction and still be able to
provide a qualitative description. From this perspective, the
roles played by statistics and interactions are clearly differ-
ent. The statistics impose instantaneous constraints on the
dynamics. Interactions, in turn, need time to develop their
effect.

Explicitly the possibility to neglect the Coulomb interac-
tion in the semiconductor Bloch equation �SBE� was shown
for the two-band model in Ref. 25. In Ref. 23, the numerical
investigation of the coupled Maxwell-Bloch equations in
multiple quantum well structures has shown that neglecting
the Coulomb interaction at a short-time scale a few Rabi
flops can be reproduced with good accuracy. The case of
very short excitation of very high intensity was studied in
Ref. 26 from the perspective of the carrier-wave Rabi
flopping.27–29 It was demonstrated that even the spectrum of
the emitted radiation is approximated remarkably well by the
free-carrier model, which corresponds to neglecting the Cou-
lomb interaction in the SBE. It should be noted, however,
that this extreme limit should be considered with care be-
cause of the failure of the rotating wave approximation.27,30

In the present paper, we extend the consideration of the
semiconductor response with respect to the short intensive
excitation taking into account multiple hole states in the va-
lence band and the formation of the MWM response. The
structure of the paper is as follows. In Sec. II we consider the
limiting case when the effect of the internal dynamics can be
completely neglected, which corresponds to the cases �=0
in the examples considered above. We obtain classes of state
related to the spin selection rules and the respective spectrum
of the Rabi frequencies. In Sec. III we discuss the effect of
the internal dynamics and the Coulomb interaction.

II. RABI OSCILLATIONS

We consider the dynamics of excitation of a semiconduc-
tor quantum well during the action of an ultrashort pulse of
high intensity, so that the period of the Rabi oscillations is
smaller than the typical time scales determined by the inter-
nal dynamics. We consider the question of validity of this
approximation in Sec. III. We assume that the pulse is tuned
to resonance with the exciton levels lying below the band
edge and that the envelope of the pulse is constant while the
field is on. By means of a canonical transformation, the har-
monic time dependence of the excitation field can be ex-
cluded �see e.g., Ref. 31� so that in the rotating wave ap-
proximation the transformed Hamiltonian becomes time
independent. For the description of the semiconductor dy-
namics, one can use the SBE accounting for degenerate va-
lence bands.18,22,32 Having the dynamical equations at hand,
one can work out the short-time approximation similarly to
how it was done in Sec I. However, in the short-time ap-
proximation, it is more convenient to study directly the ex-
citon polarization. In the coherent regime it is defined as
P
= 	��t��B
���t�
, where ���t�
 is the state of the semicon-
ductor, 
 denotes the whole set of relevant quantum numbers
describing the specific exciton �bound or unbound� state, and
B
 is the exciton annihilation operator defined as 	0�B


= 	
�. In terms of the electron and hole operators, the exciton
operator B
 is presented as

B
 =� dxdy�

� �x,y�cs


�x�v
�y� , �5�

where �
�x ,y� is the exciton wave functions, v
�y� de-
stroys a hole in the valence band with the spin state 
 at the
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point with the coordinate y, and cs

�x� destroys an electron

in the conduction band with the spin state s
 at point x.
Neglecting the Coulomb interaction and the effect of slow

internal dynamics determined by small detuning �
 means
the semiconductor Hamiltonian is approximated by the
Hamiltonian of light-matter interaction He. In the rotating
wave and dipole approximations, the interaction Hamiltonian
has the form,2,33,34

He = �



�B
�

� �t� + B


†�
�t�� , �6�

where �
�t� is a piece-wise constant function of time, �
=0
when the field is off and �
=�dxd
 ·E�x��


� �x ,x�, with E�x�
being the envelope of the external field, when the excitation
is on. Here we have introduced d
 as the respective matrix
elements of the dipole moment, which are assumed to be
independent on both the electromagnetic field momentum
and its angle of incidence.33 Thus, in this approximation one
has ���t�
=exp�−iHet��0
 �throughout the paper, we write
formulas using units with �=1� and accordingly

P
�t� = �
n

�it�n

n!
	�He,�He, . . . �He,B
� . . .��
 , �7�

where 	. . .
	0� . . . �0
. We calculate this series using the ob-
servation that commuting �B
 ,B�

†� with He we arrive at an
operator, which can be presented in a form similar to Eq. �5�.
We employ this observation introducing operators,

M�n� = �
,s
� dxdy�U,s

�n��x,y�v
†�x�cs

†�y�

+ D,s
�n��x,y�cs�y�v�x�� , �8�

which are related to each other through repetitive commuta-
tion with He, namely, M�n+1�= �He , �He ,M�n���. With the “ini-
tial condition” M�0�=B
, the operators M�n� represent the
even terms in series �7�. These terms themselves do not con-
tribute into P
 since 	M�n�
=0, which in turn follows from
c�0
=0 and 	0�c†=0. After commuting with H, however, they
produce c-number terms A�n�= 	�H ,M�n��
 resulting in

P
�t� = i�
n=0

�

�− 1�n t2n+1

�2n + 1�!
A�n�. �9�

In order to simplify the expressions, we assume below
that the quantum well can be approximated by a two-
dimensional �2D� plane. In this case, the exciton states are
characterized by the spin states of the electron and hole con-
stituting the exciton, the center of mass momentum in the
plane of the well K, and other quantum numbers n
 so that
�

= �
 ,s
 ,K
 ,n

.

Using the relation between M�n+1� and M�n�, we find

U,s
�n+1��x,y� = �

�,s�

�U�,s
�n� �x,y�E,s��x�E�,s�

� �x�

+ U,s�
�n� �x,y�E�,s�y�E�,s�

� �y�

− 2D�,s�
�n� �y,x�E,s��x�E�,s�y�� ,

D,s
�n+1��x,y� = �

�,s�

�D�,s
�n� �x,y�E,s�

� �x�E�,s��x�

+ D,s�
�n� �x,y�E�,s

� �y�E�,s��y�

− 2U�,s�
�n� �y,x�E,s�

� �x�E�,s
� �y�� , �10�

where E,s�x�=d,sEs−�x�. In terms of the kernels of the
operators M�n�, the coefficients A�n� are expressed as A�n�

=�dxA�n��x� with

A�n��x� = �
,s

�E,s
� �x�U,s

�n��x,x� − E,s�x�D,s
�n��x,x�� . �11�

Some general results can be obtained directly from Eqs.
�10� and �11�. First, the polarization of dark excitons �states
with helicity 0 and �2� is zero. Second, if the excitation
pulse is circularly polarized then the summation over the
spin indices in Eqs. �10� and �11� reduces to the single terms
with the electron and hole spins determined by s
 and 
,
respectively. If the excitation pulse is linearly polarized, then
only the electron spin is fixed to s
 and as a result different
electron-hole states get coupled.18 The summation over the
hole spins, as will be explicitly demonstrated below, is lim-
ited to such values that meet the condition −
� �2,0 ,
−2�. For example, if 
=3 /2 �heavy holes� then  can take
values 3 /2 and −1 /2 �light hole�.

It follows from Eqs. �10� and �11� that A�n+1��x�
=�


2 �x�A�n��x�, where

�

2 �x� = 4 �

=
,̄


�E,s

�x��2, �12�

with ̄
 being the second value satisfying the spin selection
rule as discussed above. Applying these results to Eq. �9� we
find the general representation, which is valid for an excita-
tion pulse with an arbitrary spatial profile in the plane of the
quantum well,

P
�t� = − i� dx
1

�
�x�
E
�x��


� �x,x�sin��
�x�t� . �13�

This result can be generalized for the more general case,
when the envelope amplitude of the external field is not a
piece-wise constant but can be presented as E�x , t�
= f�t�E�x�. We note that the Hamiltonians He��t�= f�t�He
taken at different instants t1 and t2 commute with each other.
Therefore, the line of arguments used above can be repeated
with the substitution,

t → �
0

t

dt�f�t�� . �14�

It can be easily seen that the expression for the exciton po-
larization P
�t� remains essentially the same,

P
�t� = − i� dx
1

�
�x,t�
E
�x,t��


� �x,x�sin��
�x,t�� ,

�15�

where E
�x , t� and �
�x , t� are defined by the same expres-
sions as above but with the time-dependent envelope func-

RABI OSCILLATIONS IN SEMICONDUCTOR MULTIWAVE… PHYSICAL REVIEW B 78, 075206 �2008�

075206-3



tion of the external field, i.e., they differ from E
�x� and
�
�x� by the factor f�t�. The phases

�
�x,t� = �
0

t

dt��
�x,t� , �16�

have the meaning of the pulse areas. Since such generaliza-
tion does not add to the physical picture but complicates the
discussion of the time dependence, in what follows we will
consider only the case of piece-wise constant amplitude of
the external excitation.

A. Single-pulse response

First we briefly discuss the case when the excitation is a
single plane wave E�x�= �E+ê++E−ê−�eiK0·x. In this case,
�
�x� does not depend on the coordinate and the integration
in Eq. �13� can be easily performed taking into account that
�


� �x ,y�=e−IK
·R
�

� �x−y�, where R
 is the coordinate of

the center of mass of the exciton and �

� �x−y� is its relative

wave function. For example, for �h+ ,1s� exciton polariza-
tion, we obtain

Ph+,K�t� = − i��K − K0�dh+E+�h+
� �0�

1

�h+
sin��h+t� ,

�17�

where �h+
� �0� is the value of the exciton wave function at the

origin, which in the 2D approximation is �h+
� �0�=rh+

−1�2 /�,
with rh+ being the respective exciton Bohr radius and

�h+ = 2��dh+E+�2 + �dl−E−�2. �18�

Equation �17� presents the Rabi oscillations of the exciton
polarization. It is interesting to note that this result explicitly
shows the statistical origin of the Rabi oscillations. Follow-
ing the same line of arguments, one can show that the oscil-
lations would be absent and the exciton polarization would
increase monotonously with time if the exciton operators had
obeyed bosonic commutation relations or if the electrons and
holes were bosons. Indeed, let, for example, the exciton op-
erators be bosonic then all terms in Eq. �7� with n�1 turn to
zero leaving P
� t.

Because of the coupling between different exciton states,
the evolution of the exciton polarization is characterized by
two Rabi frequencies �h+=�l− and �h−=�l+
=2��dh−E−�2+ �dl+E+�2. The ratio between these frequencies is
shown in Fig. 1 as a function of E+ /E−, where �for calcula-
tions� we have taken35 dh /dl=�3.

The effect of sharing the Rabi frequency leads to the same
time dependence of the heavy- and light-hole contributions
into the signal with fixed helicity if the excitation is linearly
polarized. If, however, the external field has elliptic polariza-
tion these contributions oscillate with different frequencies
leading to beatings and to a nontrivial time dependence of
the polarization state of the signal.

B. Operator equations of motion

Before we proceed, we would like to discuss in details the
spin selection rules noticed above from the perspective of the

operator equations of motion. For this we consider an opera-
tor of the form

F̂�t;x,y� = f1,2
�t�v1

† �x�v2
�y� + gs1,s2

�t�cs1

† �x�cs2
�y�

+ �,s
�1��t�v

†�x�cs
†�y� + �,s

�2��t�cs�y�v�x�

+ A�t���x − y� , �19�

where the sum is taken over all spin indices. The amplitudes

in this expression are chosen in such a way that F̂�t ;x ,y� is

the Heisenberg representation of the operator F̂�0;x ,y� de-
fined by the light-matter Hamiltonian,

F̂�t;x,y� = eiHetF̂�0;x,y�e−iHet. �20�

The last term in Eq. �19� determines the average value

	F̂�t ;x ,y�
 and for the case of the exciton polarization was
considered above. For the purpose of our discussion, it suf-
fices to consider the dynamical equations for the time-
dependent amplitudes g1,2

�t� and so on for the case of x
=y and spatially independent external field E,s. From the

Heisenberg equation of motion −iḞ̂= �He , F̂�, we find �see
Appendix A�

ḟ s1,s2
= iE�,s1

��,s2

�2� − i��,s1

�1� E�,s2

� ,

ġ1,2
= iE1,s��2,s�

�2� − i�1,s�
�1� E2,s�

� ,

�̇,s
�1� = − iE,s�fs,s� − iE�,sg,�,

�̇,s
�2� = iE,s�

� fs�,s + iE�,s
� g�,, �21�

where the summation over the dashed spin variables is im-
plied. With the respective initial conditions, these equations
define the Heisenberg representation of the operator

F̂�0;x ,y�. For example, if all amplitudes but �,s
�1� are initially

zero, then this would be the representation of the interband
polarization creation operator and so on. It should be noted
that no restrictions on the amplitudes being “bright” or
“dark” are imposed in Eq. �21�. Thus this is a system with

FIG. 1. The ratio of two Rabi frequencies �h+ /�h− as a function
of ellipticity of the excitation pulse E+ /E−. The ratio varies from
�dl /dh� to �dh /dl�. For calculations, the ratio of heavy- and light-hole
dipole moments is taken dh /dl=�3.
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respect to 36 unknowns and, counting degeneracy, has as
many characteristic frequencies. The actual number of differ-
ent frequencies, however, turns out to be much smaller.

Taking the derivative of the last pair of equations with
respect to time, we obtain the closed system

�̈,s
�1� = − E,s�E�,s�

�
��,s

�1� − �,s�
�1� E�,s�

� E�,s + 2E,s���,s�
�2� E�,s,

�̈,s
�2� = − E,s�

� E�,s���,s
�2� − �,s�

�2� E�,s�
� E�,s + 2E,s�

�
��,s�

�1� E�,s
� ,

�22�

where again the summation over dashed spin indices is per-
formed. Taking the complex conjugation of these equations,
we obtain the same system but with respect to ���2��

,��1��
�.

Because of this symmetry the solutions of Eq. �22� are di-
vided into two classes ��2�=��1��

and ��2�=−��1��
, which

correspond to A and B irreducible representations of the
group Z2, respectively. Additional simplifications come from
the structure of the coupling induced by the external field.
Having in mind the successive application for the dynamics
determined by the SBE, we consider the additional symme-
tries on a general ground. Due to the electric dipole selection
rules, only four elements of E,s are nonzero,

E,s = �
Eh− 0

0 El−

El+ 0

0 Eh+

� , �23�

where the columns are enumerated by the electron-spin pro-
jections 1 /2, −1 /2, and rows denote different hole spins
3 /2, . . . ,−3 /2. We denote by VE the vector space consisting
of the elements of form �23� but without any relation be-
tween the nonzero elements, that is, the four-dimensional
subspace of the interband polarizations. For two elements u
and v�VE, we consider f =vTu where the composition is the
usual matrix multiplication of two �rectangular� matrices,

fs1,s2
= �

�

v�,s1
u�,s2

. �24�

The space spanned by such elements will be called Ve. This
is a 2D subspace of the four-dimensional space of the elec-
tron densities. Using Eq. �23� in �24� one can see that in the
basis of the electron-hole spins, Ve consists of diagonal 2
�2 matrices. Finally, for the elements u and v we consider
g=vuT, which are the matrices with the matrix elements,

g1,2
= �

s�

v,s�u2,s�. �25�

We will call the respective linear vector space Vh, which �as
can be easily checked� is eight-dimensional subspace of the
16-dimensional space of the hole-hole correlation functions.

The elements of Ve and Vh can be considered as operators
acting on the electron and the hole spin variables, respec-
tively. The important properties of these operators is that
their action is reducible, namely, Ve leaves the spin state
intact and Vh mixes only states within the groups �3 /2,
−1 /2� and �−3 /2,1 /2� but not from the different groups. As

a result when Ve and Vh act on VE �from the left and from the
right, respectively�, they leave VE intact.

Using these results, we obtain the modes of system �22�.
These modes are naturally classified by the invariant spin
classes, which do not mix during the evolution, and by the
irreducible representations of the group Z2. Inspecting Eq.
�22� one can see that the spin classes in the spin space of the
electron-hole polarizations are C1= ��−3 /2,−1 /2� , �1 /2,
−1 /2�� or �h+ , l−�, C2= ��3 /2,1 /2� , �−1 /2,1 /2�� and C3
= ��3 /2,−1 /2� , �1 /2,1 /2� , �−1 /2,−1 /2� , �−3 /2,1 /2��. The
first two classes correspond to the bright exciton operators;
the last class contains the dark excitons.

1. Bright exciton classes C1,2

In each class both states have the same projection of the
electron spin, s=1 /2 for C1 and s=−1 /2 for C2, while the
hole spin can take two values. If we need to distinguish these
values we will denote them  and ̄. In order to find the
modes one can present �,s

�1��t�=�,s
�1� sin��t� in Eq. �22�.

Studying the resulting system of homogeneous equations,
one finds the frequencies and �non-normalized� eigenvectors
of the modes,

�2 = 4�s
2, �,s

�1� = E,s, �B�

�2 = �s
2, �,s

�1� =
1

E,s
, �̄,s

�1� = −
1

Ē,s
, �A,B�

�2 = 0, �,s
�1� = E,s, �A� , �26�

where �s
2= �E,s�2+ �Ē,s�2 �4�s

2 coincides with the frequency
defined in Eq. �12�� and A and B denote the even and odd
irreducible representations, respectively. Using these solu-
tions in the first two equations of Eq. �21�, we find the elec-
tron and hole densities coupled to the respective interband
polarization operators. One can immediately see that these
densities belong to Ve and Vh, respectively.

As immediately follows from Eqs. �11� and �A2�, only B
solutions can contribute into the average value of the exciton
polarization since for the symmetric solutions both terms un-
der the integral in Eq. �A2� cancel each other. Moreover, for
the B solutions with the frequencies �2=�s

2, the sum
�,s

�1�E,s+�̄,s
�1�Ē,s vanishes, which leaves the only solution

with �2=4�s
2 in accordance with Eq. �13�.

2. Dark exciton class C3

The dark exciton operators are specified by the amplitudes
in the complement to VE, i.e., in the four-dimensional sub-
space spanned by such elements that have zeros instead of
nonzero elements in Eq. �23� and vice versa. The states are
naturally enumerated by the hole spin state  and for each
amplitude �,s there is a correspondent component of the
excitation field obtained by inversion of the electron spin E,s̄
with s̄−s. The frequencies and nonzero components of dif-
ferent modes are found to be
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�2 = �1/2
2 , �3/2,−1/2

�1� = −
1

E3/2,1/2
,

�−1/2,−1/2
�1� =

1

E−1/2,1/2
, �A,B�

�2 = �−1/2
2 , �1/2,1/2

�1� = −
1

E1/2,−1/2
,

�−3/2,1/2
�1� =

1

E−3/2,−1/2
, �A,B�

�2 = ��1/2 � �−1/2�2, �3/2,−1/2
�1� = �−1/2,−1/2

�1�

= � �1/2, �−3/2,1/2
�1� = �1/2,1/2

�1� = � �−1/2, �A� ,

�2 = ��1/2 � �−1/2�2, �3/2,−1/2
�1� = �−1/2,−1/2

�1�

= � �1/2, �−3/2,1/2
�1� = �1/2,1/2

�1� = � �−1/2 . �B�
�27�

Since for each �,s in this class the respective components of
the external field are zeros, i.e., E,s=0, the dark exciton

amplitudes �according to Eq. �A2�� do not contribute to Ȧ�t�.
Thus the average value of the dark exciton polarization

equals to its initial value F̂,s�t�= F̂,s�0�, where F̂,s�0�
�v

†cs
† with  and s from C3. If the initial state of the system

is vacuum then 	F̂,s�t�
=0—confirming the result about ab-
sent polarization of the dark excitons.

3. Operator dynamics

The frequencies found �2=4�s
2 ,�s

2 , ��s��s̄�2 define all
the frequencies introduced into the dynamics due to the in-
teraction with the external field as defined by Eq. �21�. The
remaining eight frequencies can be shown to be zero. Four
solutions �two for each class C1 and C2� corresponding to the
zero frequency are presented in Eq. �26� and the remaining
four can be found from the first two equations of Eq. �21�.
Since Eq. �21� has the form of a Schrödinger equation with a
Hermitian Hamiltonian, the solutions corresponding to �
=0 are not secular solutions but rather invariants, that is they
correspond to operators, which are invariant with respect to
action of the external field. For example �as follows from Eq.
�26��, for the exciton polarization such operators are
�,sE,sv

†cs
†+H.c., where the spin summation is restricted to

a particular class C1 or C2.
In the short-time limit only frequencies 4�s

2 contribute to
the Rabi oscillations of the exciton polarization. However, as
will be demonstrated later, the slow dynamics also lead to
admixture of other frequencies.

C. Multiwave mixing response

A more complex situation arises when the excitation pulse
consists of two plane waves with noncollinear wave vectors
E�K�=E�1���K−K1�+E�2���K−K2�. This corresponds to the
standard problem of excitation by two pulses with zero delay
between them. Factoring out the exponential factor corre-

sponding to the first pulse, we can rewrite Eq. �13� as

� dxeik·xF�x� , �28�

where F�x� is a periodic function F�x+�K / �2��K2��
=F�x� with �K=K2−K1. Thus, integration over x yields the
exciton polarization in the form,

P
�t� = �
m=−�

�

P

�m��t���K
 − K1 − m�K� , �29�

where P

�m��t� are the amplitudes of multiwave mixing

�MWM� polarizations. The amplitudes P

�0��t� and P


�1��t� cor-
respond to the polarization along the directions of linear re-
sponse K1 and K2, respectively. For m=−1,2 one has four-
wave mixing polarization, m=−2,3 correspond to six-wave
mixing, and so on. Performing the Fourier transform of the
periodic factor F�x�, we derive the integral representation for
the amplitudes of MWM polarization,

P

�m��t� = −

i�

� �0�
2�

�
0

2�

d�e−im�
E
�1� + E
�2�ei�

��

�1� + �


�2�ei��

�sin���

�1� + �


�2�ei��t� , �30�

where E
�i�=d
E

�i� and the frequencies �


�1,2� are defined as
the amplitudes of �
�x� corresponding to different pulses
�


�i�=2���E,s

�i� �2.

In Fig. 2, we show the numerical evaluations of Eq. �30�
for different ratios between the amplitudes of the plane
waves constituting the excitation along one of the forward
and four-wave mixing directions. The initial stage of the dy-
namics for t→0 can be obtained directly from series �9� in
the form �for m�0�,

P

�m��t� = i

�− 1�m�

� �0�

�2m − 1�!
E
�2�

	

�	
t�2m−1, �31�

where 	
=��

�1��


�2�.
The evolution of the exciton polarization in the opposite

limit t→� is found from integral representation �30� using
the stationary phase method,

P

�m��t� = − i

�

� �0�

�2�	

2 t
�sign�E
�1� − E
�2���− 1�m

�E
�1� − E
�2��
���


�1� − �

�2��

�sin���

�1� − �


�2��t +
�

4 �
+

E
�1� + E
�2�

��

�1� + �


�2�sin���

�1� + �


�2��t −
�

4 �� . �32�

It shows that in this limit, the P

�m��t� demonstrates power

decay �t−1/2 and is essentially a superposition of two har-
monics with frequencies ��


�1���

�2��. Of course, the limit t

→� should not be taken too literally, since in this limit the
main assumption �
t�1 is no longer valid and the effect of
desynchronization of the MWM polarization of high orders
�see below� becomes important. However, if �


�1� and �

�2�

are not too close then after just a few oscillations the depen-
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dence P

�m��t� is satisfactorily approximated by its asymptotic

form. For example, the complex behavior of the exciton po-
larization shown in Fig. 2�b� is a result of existence of two
harmonics with the frequencies ��


�1���

�2��, which exist if

�

�1���


�2�.
If �


�1�=�

�2�=�
 then the slow harmonic vanishes. In-

deed, in this case �as follows from Eq. �30��, MWM polar-
izations can be presented in the form,

P

�m��t� = i�− 1�m�


� �0��E
�2�

�


J2m−1�2�
t�

− �E
�1� − E
�2���
0

t

dt�J2m�2�
t��� , �33�

where Jm�t� are the Bessel functions of the first kind. This
solution asymptotically oscillates with the frequency 2�
,
which is consistent with the simple picture of the Rabi fre-
quency renormalized due to doubling the external field.

The interesting difference between the cases of the single-
pulse and two-pulses excitations is that the latter asymptoti-
cally decays in time �t−1/2. It can be understood taking into
account the dynamical origin of the formation of the MWM
polarization. As follows from Eq. �30�, the MWM polariza-
tions P


�m��t� satisfy the equation of motion of a classical
tight-binding model,

− P̈

�m��t� = �̃


2 P

�m��t� + 	


2 P

�m+1��t� + 	


2 P

�m−1��t� , �34�

where �̃

2 =�


�1�2
+�


�2�2
. Equation �34� is supplemented by

the initial conditions P

�m��0�0 for all m and Ṗ


�m��0�=0 for

all m except m=0,1 for which one has Ṗ

�0��0�=−iE�1��


� �0�
and Ṗ


�1��0�=−iE�2��

� �0�. This representation allows one to

estimate the effect of the dependence of the exciton energy
on the in-plane momentum. It leads to the modification of the

“eigenfrequency” �̃

2 by the term ��m�K�2 /2m
. Even if

��K�2 /2m
��̃
, this contribution becomes essential for
MWM exciton polarizations of significantly high orders.
However, for the most important case of MWM polarizations
of low orders on the time scale of few Rabi flops, the effect

of the correction due to the exciton dispersion can be ne-
glected.

It follows from representation �34� that initially the exci-
tation is localized at the sites m=0,1 �the directions of linear
response�. With time the energy spreads along the chain
thanks to the coupling �	


2 between different sites. In terms
of the MWM polarization, the dynamics of this spreading
corresponds to excitation MWM polarizations of higher and
higher orders. The dynamical model described by Eq. �34�
has the first integral,

�
m

��Ṗ

�m��t��2 + �̃


2 �P

�m��t��2 + 	


2 P

�m��

�t��P

�m−1��t�

+ P

�m+1��t��� = ��
�0��2��E
�1��2 + �E
�2��2� . �35�

From this perspective, it is clear that the decay of the Rabi
oscillations is the consequence of spreading the excitation
among MWM polarizations of different orders.

III. EFFECT OF INTERNAL DYNAMICS AND THE
COULOMB INTERACTION

In Sec. II we have studied in details the dynamics of the
exciton polarization in the short-time limit, when the main
contribution into dynamics comes from the interaction with
the external field. Here, we consider the effect of the internal
semiconductor dynamics and study how the results of Sec. II
appear in the framework of a more general description. We
approach this problem describing the dynamics of the inter-
band polarizations p,s�x1 ,x2�= 	cs�x2�v�x1�
, the electron-
electron es1,s2

�x1 ,x2�= 	cs1

† �x1�cs2
�x2�
 and the hole-hole

h1,2
�x1 ,x2�= 	v1

† �x1�v2
�x2�
 correlation functions by the

semiconductor Bloch equation �see Appendix B�.
First we notice that the most significant contribution of

the full dynamics would be the production of the response,
which was absent in the approximation used in Sec. II. This
would be generating the interband polarization correspond-
ing to dark states �class C3�. It can be proven, however, that
the dynamics described by Eq. �B5� does not support excita-
tion of the dark states. Indeed, integrating both sides of the

FIG. 2. �Color online� The exciton polarization in the case when the excitation consists of two plane waves with noncollinear wave
vectors. The solid and dashed lines show the response in the forward �m=1� and the four-wave mixing �m=2� directions for �a� �


�1� /�

�2�=1

and �b� �

�1� /�


�2�=2. The effective time is defined as t̃=�

�2�t.
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dynamical equations with respect to time in the interval
�0,�t� with �t→0, one can see that initially the spin state of
the interband polarization belongs to VE while the electron
and hole correlation functions are zero and, hence, belong to
Ve and Vh, respectively. Next, considering the integral over
the interval �t , t+�t� one can see that if at instant t the state
of the system, i.e., p, h, and e belongs to VE, Vh, and Ve,
respectively; then so does the state at t+�t. It should be
noted, thereby, that in quantum wells the valence-band mix-
ing does not lead to a violation of invariance of the spin
classes, since the Hamiltonian describing the mixing is an
element of Vh. Thus, if initially the system is in the ground
state then the interband polarization corresponding only to
the bright states will be produced at least as long as the SBE
and the approximation of angular independence of the dipole
moment hold. In order to describe the dynamical coupling
between the bright and dark excitons, one has to study a
generalization of the SBE that contains higher-order correla-
tion functions besides single-particle ones that are considered
here. For example, the pair of two bright excitons can trans-
form into the pair of dark excitons through carrier exchange
�see, e.g., Ref. 36�. However, the SBE, truncated at the
single-particle level does not take carrier exchange between
two excitons into account, which is a genuine two-particle
correlation. In order to account for this carrier exchange, one
would need to truncate the SBE at higher order, i.e., take
higher-order correlation functions into account. However, the
analysis of this generalization of the SBE is beyond the
scope of this paper.

As the next step, we consider the limit of very short-time
response such that following the analysis of the simple
model �3� the contribution of the kinetic-energy terms can be
neglected, while other terms including nonlinear are kept.
The solution found in Sec. II �Eq. �13�� suggests the inter-
band polarization in the form p�x ,y����x−y�. Substituting
this ansatz into Eq. �B5� with neglected kinetic-energy terms
and introducing a cutoff of the Coulomb potential, such that
V�0�=V0��, one arrives at the system of equations inde-
pendent of V0, which is structurally similar to Eq. �A2� and
which yields the same result for the exciton polarization as
Eq. �13�. The cancelation of the terms proportional to the
Coulomb potential is particularly evident from the represen-
tation of the SBE in form �B3�.

This consideration shows that the most significant correc-
tion to the approximate solution results from the kinetic-
energy terms rather than from the Coulomb interaction—as
one might expect considering that the Coulomb interaction is
responsible for the nonlinear terms in the SBE.

We would like to emphasize at this point that the quantity
of our main interest is the exciton polarization P
 since these
are the excitons that constitute true single-particle semicon-
ductor states. As follows from Eq. �5�, P
 is related to the
interband polarization p,s through

P
 =� dxdy�

� �x,y�p
,s


�y,x� . �36�

For bound exciton states, this naturally introduces a charac-
teristic spatial scale; the exciton Bohr radius rB. This circum-

stance, together with the assumption that the typical spatial
variation of the external excitation in the plane of the quan-
tum well is small compared to the Bohr radius K1,2rB�1,
allows one to simplify the SBE using the parametric approxi-
mation. For this we introduce R= �x+y� /2 and r=x−y. Next
we notice that �in the case of single-pulse or two-pulse exci-
tations� the solutions of the SBE are invariant with respect to
either infinitesimal or finite �by �K / �2��K2�� translations in
R plane. Having in mind the consecutive convolution of the
solutions with the exciton wave function, we can neglect the
terms ��KrB and leave only the dependence on R as a
parameter.2,18,32 Thus, assuming for simplicity that K1=0, we
approximate Eq. �B5� by

iṗ,s�r,R� = K̃,s�p� + E,s�R���r�

−� dr��Ẽ�,s�r�,R�h�,�r� − r,R�

− Ẽ,s��r�,R�es�,s�r� + r,R�� ,

− iės1,s2
�r,R� = K̂s1,s2

�e� +� dr��Ẽ�,s1

� �r�,R�p�,s2
�r� + r,R�

− Ẽ�,s2
�r�,R�p�,s1

� �r� − r,R�� ,

− iḣ1,2
�r,R� = K̂1,2

�h�

+� dr��Ẽ1,s�
� �r�,R�p2,s��− r − r�,R�

− Ẽ2,s��r�,R�p1,s�
� �r + r�,R�� . �37�

Here Ẽ,s�r ,R�=E,s�R���r�−V�r�p,s�r ,R� and the inte-
grodifferential operators in Eq. �B7� are substituted by

Ĥs1,s�fs� = �−
1

2ms1

�2

�r2 + Hs1� fs1
�r,R�

−� dr�V�r��es1,s��r�,R�fs��r − r�,R� ,

Ĥ1,�f� = −
1

2m1,�

�2

�r2 f��r,R� + H1
f1

�r,R�

−� dr�V�r��h1,��r�,R�f��r − r�,R� .

�38�

System �37� in the short-time limit �when all terms in the
right-hand side but those depending on the external field are
neglected� reproduces the results obtained in the Sec. II from
Eq. �7�. In particular the MWM response is obtained by the
Fourier transform over the parameter R similarly to Eq. �30�.
In what follows, we will use Eq. �37� in even simpler form
assuming the single-pulse excitation only and thus omitting
the dependence on R. It suffices for our purpose of discus-
sion of the effect of the internal dynamics and the Coulomb
interaction. We also omit the off-diagonal elements of the
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holes Hamiltonian Ĥ1,2
describing the mixing of the va-

lence bands. Thus, we characterize these bands by mhh and
mlh that is by the masses of the heavy and light holes, re-
spectively.

Considering the terms besides the kinetic energy in the
right-hand side of these equations as sources, the responses
are governed by the free-particle propagators for the correla-
tion functions and the Coulomb propagator for the interband
polarization. The fundamental property of these propagators
is that �in the short-time limit t→0� they turn to spatial �
functions owing to fast spatial oscillations of the kernel,

K�r1,r2;t� =� m

2�it
exp�im�r1 − r2�2/2t� . �39�

In order to evaluate the parameter m, we take into account
that the evolution of the semiconductor—initially being in
the ground state—is spanned by the spin classes C1,2. Thus
for the electron correlation function m=�, so that the propa-
gator remains local. For the hole correlation functions, this
parameter is finite for the off-diagonal elements m=m�

= �mlh
−1−mhh

−1�−1. For the interband polarization in the short-
time limit, the Coulomb propagator can be approximated by
the free-particle propagator37,38 with m�mxh= �me

−1+mhh�−1

and m�mxl= �me
−1+mlh�−1, where mx are the excitons’ re-

duced masses and me is the electron mass. The effect of the
dispersion of the electrons and holes on the exciton polariza-
tion is expressed as a distortion of the exciton wave function
under the action of the free-particle propagators. The time
scale, at which the distortion becomes essential, can be esti-
mated as the time required for the initial � shape of the
kernel to acquire the width of the order of the exciton Bohr
radius. This leads to the estimate

tc �
mrB

2

4�
. �40�

The numerical value of the typical time scale for GaAs is
determined by mhh=0.45m0, mlh=0.082m0, m=m�, and rB
=rxh=�b /2mxhe2, where m0 is the electron mass in empty
space and �b=13 is the background dielectric function. Using
these values in Eq. �40� we find tc�20 fs. Thus, for pulses
with duration shorter than 20 fs and the intensity sufficiently
high to produce several Rabi flops, the approximation used
in the Sec. II should be satisfactory. However, as will be
shown below, the exciton polarizations corresponding to the
states in the discrete spectrum are even less sensitive to the
deviation of the dynamics from its short-time limit.

First we discuss the general effect of the electron-hole
dispersion on the Rabi oscillations. For this we consider the
case of excitation by a single circularly polarized pulse of
high intensity. For such excitation, we neglect the contribu-
tion of the nonlinear Coulomb terms �see below� and addi-
tionally simplify the internal dynamics assuming the effects
of the detuning and the energy offsets to be small at the time
scales under consideration. Since in this case the transla-
tional invariance in the plane of the quantum well is restored,
it is more convenient to solve Eq. �37�—rewriting it in the
momentum representation.2,18,32 The Laplace transformation
p���=�0

�p�t�e−�tdt of the solution is found to be

p,s��,k� = − i
E,s

�2��2 ·
� − i�,s�k�

���2 + �,s
2 �k� + �,s

2 �
, �41�

where �,s�k�=k2 /2mx and �,s
2 =4��E,s�2+ �Ē,s�2� with ̄

being the hole spin state complimentary to  in the respec-
tive spin class. In the case under consideration, because of
circular polarization of the excitation pulse, only interband
polarization corresponding to the same helicity is created,
thus, if E,s�0 then Ē,s=0 and vice versa. We, however,
write down the “full” expression for �,s in order to show
the relation with Eq. �12�. The poles of the right-hand side of
Eq. �41� determine the characteristic frequencies yielding the
time dependence in the form

p,s�t,k� = − i
E,s

�2��2�̃,s�k�
�sin��̃,s�k�t�

− 2i
�,s�k�

�̃,s�k�
sin2���̃,s�k�t/2��� ,

es,s�t,k� = h,�t,k� =
4�E�,s

2

�2��2�̃,s
2 �k�

sin2��̃,s�k�t/2� ,

�42�

where �̃,s�k�=��,s
2 +�,s�k�2. It is interesting to note the

similarity to the simple dynamical models discussed in Sec. I
�see Eq. �42��.

The exciton polarization is found by convoluting Eq. �42�
with the exciton wave function �,s�k�=2�2�r,s�1
+k2r,s

2 �−3/2 according to Eq. �36�. In Fig. 3 we plot the time
dependence of the exciton polarization for different intensi-
ties of the external excitation. Since the exciton wave func-
tion is mostly localized inside the region k�1 /rB and by the
assumption �,s�1 /rB���,s, this convolution does not lead
to appearance of additional frequencies, thus the oscillations
of the exciton polarization are characterized by a slightly
modified Rabi frequency �,s.

There are two significant corrections to the picture of the
oscillations obtained in the Sec. II. First, there is slower than
exponential decay due to dephasing of the components cor-
responding to different k. The decay can be estimated—
considering the long time asymptotic t→�. Since the phase
in Eq. �42� reaches its stationary points at the ends of the k
interval, i.e., at k=0, it implies the asymptotic power decay
of the amplitude as 1 / t independent on the intensity of the
excitation. The second modification is related to the second
term in the brackets in Eq. �42� �Fig. 3�b��. This term has the
form of oscillations with the Rabi frequency �,s near a con-
stant level, which position strongly depends on the intensity
of the excitation for �,s�2�,s�1 /rB� and slowly decays
toward zero for higher values of the Rabi frequency as
shown in Fig. 4.

Solutions �42� allow us to estimate the effect of the Cou-
lomb interaction and to show that the contribution of the
nonlinear terms into the right-hand side of equations of mo-
tion �37� vanishes with increasing the intensity of the exci-
tation. Physically this is supported by �first� the observation
that the interband polarization and the single-particle corre-
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lation functions, as functions of the external excitation, are
limited from above and, hence, the nonlinear terms are
scaled as the exciton binding energy,25 while the other terms
increase with increasing the intensity of the external field.
Second, one can also apply the result obtained from Eq. �B3�
about vanishing the nonlinear terms in the limit of
�-functional profile of the interband polarization and the
single-particle correlation functions. As follows from Eq.
�42�, with increasing the intensity of the excitation the spatial
distribution of p,s, h, and es,s narrows with the character-
istic width �1 /k�, where k�=�2mx�,s.

There are different ways to estimate the contribution of
the nonlinear Coulomb terms into the dynamics. In order to
illustrate the application of the physical ideas mentioned
above, we consider the contribution into the right-hand side
of the equation of motion for the interband polarization com-
ing from the term written in the second line in Eq. �B3�. In
the simplest case of a single-pulse excitation, this term yields
an addition to the equation with respect to p,s�t ,k� in the
form

�S,s�k� =� dk�V�k − k���p,s�k��n�k� − p,s�k�n�k��� ,

�43�

where n�x�=es,s�x�+h,�x� and we have taken into account
that the dynamics is restricted to a particular spin class. We

illustrate the typical line of calculations leaving only the first
term in the expression for p,s�k� and approximating the os-
cillating terms by one, thus, presenting

�S,s�k� � − i
8E,s

3

�2��4� dk�
V�k − k��

�̃,s
2 �k��̃,s

2 �k��
��̃,s�k�

− �̃,s�k��� . �44�

Rescaling the wave vectors and using for the single-pulse
excitation �,s=2E,s, we obtain

�S,s�k� � − i
1

�2��4� �x

�,s
�� k

k�
� , �45�

where �x=2mxe4 /�b
2 is the exciton binding energy and

���� =� d��
�1 + �4 − �1 + ��4

�1 + �4��1 + ��4��� − ���
. �46�

The dependence of this function on � is shown in Fig. 5. It
varies slowly over the interval ��1 /2, where its magnitude
is close to ��0�=�2 /�2−8 2�5 /4����−4.67. Thus, if the
Rabi frequency exceeds the exciton binding energy or
�equivalently� if the typical spatial scale of the interband po-
larization 1 /k� is smaller than the exciton Bohr radius, the
effect of the nonlinear terms on the time dependence of the

FIG. 3. �Color online� The effect of the electron-hole dispersion on the Rabi oscillations. The time dependence of the imaginary and the
real parts of the exciton polarization is shown for �,s /�,s�1 /rB�=5 �solid line� and �,s /�,s�1 /rB�=10 �dashed line�.

FIG. 4. The dependence of the constant level on the Rabi fre-
quency �,s /�,s�1 /rB�.

FIG. 5. The dependence on �=k /k� of the integral in Eq. �46�
describing the effective modification of the source due to the non-
linear terms in the limit of high intensity of the external field.
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exciton polarization reduces to a relatively small modifica-
tion of the amplitude of the external field.

This argument allows one to reformulate the criterion of
validity of the short-time approximation for the exciton po-
larization in terms of relation between the exciton Bohr ra-
dius rB and the typical spatial width of the interband polar-
ization due to the interaction with the external field �1 /k�.
If rBk�!1, then the result of convolution of the exciton
wave function with the interband polarization p,s does not
depend on the details of the dependence of p,s�k� on k.
Indeed, since in this case the main contribution into the in-
tegral P=�dx���x�p�x� comes from the small area near x
=0, we can approximate the integral by

P � ���0�� dxp�x� = �2��2���0�p�k = 0� , �47�

which turns Eq. �42� into Eq. �17� exactly �including the
cancelation of the factor �2��2�. This consideration shows
that the exciton polarization corresponding to the states in
the discrete spectrum is less sensitive to the deviations from
the short-time dynamics of the system than the interband
polarization. The latter contains information about all exciton
states, including those from the continuum spectrum, whose
spatial variation is no longer characterized by the exciton
Bohr radius. The condition rBk�=���,s /�x�!1 imposes
the limitation on the intensity of the external field that the
period of the Rabi oscillations should be smaller than
�200 fs �for GaAs�. It should be noted, however, that at this
time scale more significant correction comes from the heavy-
light hole beats with the characteristic period39 �100 fs,
which impose stronger restriction on the intensity of the ex-
ternal excitation.

An interesting effect of the dispersion is revealed when
the excitation pulse is not circularly polarized. In this case,
both states constituting a spin class are involved in the dy-
namics resulting in the appearance of an additional charac-
teristic frequency. In order to illustrate this effect, we con-
sider the case when the intensity of the excitation is
significantly high so that the effect dispersion of the hole-
hole correlation function �which is quantified by the param-
eter m�

−1=mlh
−1−mhh

−1� can be treated perturbatively. In order to
simplify the expression, we assume additionally that both
heavy- and light-hole excitons are described by the same
dispersion law �,s�k�. Under these assumptions, the Laplace
transform of the interband polarization can be written as

p,s��,k� = p,s
�0���,k� +

1

2�2�

�
E,s�Ē,s�2�̄,�k�

��2 + �̃,s
2 �k����� + i�,s�k�/2�2 + �̃,s

2 �k�/4�
,

�48�

where p,s
�0��� ,k� is given by Eq. �41� and �̄,�k�

=k2 /2m̄, with m̄,
−1 =m̄

−1−m
−1, i.e., �m̄,�=m�. The pertur-

bation term in the right-hand side of Eq. �48� has poles at the

same Rabi frequency �̃,s
2 �k�, as in the case of the circularly

polarized excitation and at the frequency ��̃,s
2 �k� /4, yield-

ing a component of the exciton polarization oscillating with
doubled period. We would like to emphasize that this fre-
quency was initially present among the eigenfrequencies of
the bright exciton classes �see Eq. �26��. Its appearance, how-
ever, in the time evolution of the exciton polarization was
prohibited in the dispersionless limit by the symmetry
p�2��↔p�1� of dynamical equations �Eq. �22��. The exciton
finite masses break the symmetry allowing for the frequency
�,s

2 �k� /4 to contribute to the evolution. With this regard, it
could be speculated that if the dark excitons would be in-
volved in the dynamics their presence could be traced by the
admixture of the frequencies specific for the dark exciton
spin class C3 �see Eq. �27��.

It should be emphasized that neither the effect of decay of
the Rabi oscillations nor the admixture of “extra” frequen-
cies are present in atomic analogs of the semiconductor Rabi
oscillations. The decay is essentially caused by the spatial
spread of the true �single-particle� eigenstates of the system.
The appearance of additional frequencies is related to the
existence of different kinds of holes with continuous spectra
characterized by different masses.

IV. CONCLUSION

We have studied the short-time semiconductor response
with respect to resonant high intensity excitations. The main
results are obtained neglecting the slow dynamics that is on
the time scale provided by detuning. We have calculated ex-
actly the excitation polarization P
= 	��t��B
���t�
 in the co-
herent limit. We have found that if the semiconductor is ex-
cited by a field consisting of one or two plane waves, the
polarization of bright excitons demonstrates Rabi oscilla-
tions, while the polarization of dark excitons is identically
zero. The main difference between the single-wave and two-
wave excitations is that in the latter case, the Rabi oscilla-
tions of the multiwave mixing �MWM� polarizations are
generally a superposition of two harmonics ��1��2�, un-
less the amplitudes of the waves satisfy a special relation.
For example, if both waves are circularly polarized with the
same helicity then �1−�2�2dE, where E is amplitude of
the weaker wave and the slow harmonic �2 collapses only if
the amplitudes of both waves are the same. Also, in the case
of the two-pulse excitation, oscillations of the exciton polar-
ization decay �t−1/2 owing to redistribution of the excitation
over the MWM polarizations.

In order to establish the dynamical origin of the vanishing
polarization of the dark states, we considered the operator
dynamics governed by the external field. We found that there
exist three invariant spin classes, which do not mix with the
evolution of the system. Two of these classes correspond to
bright excitons and the third one contains all the dark states.
It has turned out that the operator dynamics is described by
six frequencies. Only two of those frequencies show up as
the Rabi frequencies in the time evolution of the exciton
polarizations �one for each bright classes�, while others are
prohibited by a hidden symmetry.

The short-time approximation used in the first part of the
paper appears naturally in the more general context of the
semiconductor Bloch equation �SBE�. We use the SBE in
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order to discuss the effect of the Coulomb interaction and the
effect of the continuous spectra of the electrons and holes on
the results obtained in the limit of immediate response with
respect to intensive excitation. We found that if the system is
initially in the ground state, then the SBE preserves the in-
variant spin classes. Thus, it proves that as long as the SBE
holds and the approximation of angular independent dipole
moment is justified the dark excitons do not appear in the
dynamics.

An interesting result of studying the short-time approxi-
mation within the context of the SBE is that the Coulomb
interaction does not lead to essential changes if the intensity
of excitation is sufficiently high compared to the exciton
binding energy. Moreover, including the nonlinear exchange
terms directly to the equations of the short-time limit �i.e.,
without the kinetic energy� adds nothing since they cancel
each other. In turn, the effects of the continuous spectrum of
the electrons and holes are much more significant. We show
that the electron-hole dispersion, while does not change sig-
nificantly, the frequency of the oscillations of the exciton
polarization leads to the power-law decay of the oscillations.
An interesting effect is related to the mass difference be-
tween heavy and light holes. It breaks the symmetry that
selects only two Rabi frequencies out of six that are intro-
duced into the system by the external field and leads to the
admixture of the second nontrivial frequency for a specific
bright class.
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APPENDIX A: HEISENBERG REPRESENTATION
INDUCED BY THE EXTERNAL FIELD

In order to derive Eq. �21� one can either consider a regu-
larization of the � function, which appears in the anticom-
mutation relations and in the right-hand side of Eq. �19� or
consider a more general form of Eq. �19� with the amplitudes
being scalar functions, which are convoluted with the elec-
tron and hole operators,

F̂�t� = A�t� + �
1,2

� dxdyg1,2
�x,y;t�v1

† �x�v2
�y� + . . . .

�A1�

Furthermore, the Heisenberg equation of motion produces
the dynamical equations with respect to the amplitudes,

ḟ s1,s2
�x,y� = iE�,s1

�x���,s2

�2� �x,y� − i��,s1

�1� �y,x�E�,s2

� �y� ,

ġ1,2
�x,y� = iE1,s��x��2,s�

�2� �y,x� − i�1,s�
�1� �x,y�E2,s�

� �y� ,

�̇,s
�1��x,y� = − iE,s��x�fs,s��y,x� − ig,��x,y�E�,s�y� ,

�̇,s
�2��x,y� = iE,s�

� �x�fs�,s�x,y� + ig�,�y,x�E�,s
� �y� ,

Ȧ = i� dx���,s�
�1� �x,x�E�,s�

� �x� − ��,s�
�2� �x,x�E�,s��x�� ,

�A2�

where the summation over dashed spin variables is implied.

The last equation gives the time dependence of 	F̂�t�
 �com-
pare with Eq. �11��. Considering the dynamics of the diago-
nal x=y values of the amplitudes in the case of spatially
homogeneous excitation E,s�x�=E,s, one obtains Eq. �21�.

It should be emphasized that Eq. �A2� is not the semicon-
ductor Bloch equation �SBE�. Equation �A2� is written with
respect to amplitudes of different operators entering the

Heisenberg representation of the operator F̂�t�. The SBE, in
turn, is written for average values of the specific operators
�see, e.g., Eq. �B5��. While Eq. �A2� and the SBE have a
similar structure �in the linear approximation for the SBE�,
they are different as can be seen comparing closely the spin
indices in Eqs. �A2� and �B5�. In order to find an average
value of a particular operator using Eq. �A2�, one needs first
to solve these equations for specific initial conditions and
then use this solution in the last equation of Eq. �A2�.

APPENDIX B: SEMICONDUCTOR BLOCH EQUATION IN
THE COORDINATE REPRESENTATION

In the main text we consider the semiconductor response
under the action of an external field, which is spatially inho-
mogeneous in the plane of the quantum well. Because the
system does not possess the translational invariance, it is
convenient to use the SBE in the coordinate representation.

The Hamiltonian of an excited semiconductor in the ro-
tating wave approximation has the form

H = Hel + Hh + HC + He, �B1�

where Hel and Hh are the standard electron and hole single-
particle Hamiltonians,2,18 HC is the Hamiltonian of the Cou-
lomb interaction, and He describes the light-matter interac-
tion

He =� dxE,s�x�v
†�x�cs

†�x� + H.c., �B2�

where E,s�x�= 	s�p�
 ·E�x�, operator v
†�x� creates a hole

with the spin state  at point x, and cs
†�x� is the respective

electron creating operator. The equations of motion for the
interband polarizations p,s�x1 ,x2�= 	cs�x2�v�x1�
, the
electron-electron es1,s2

�x1 ,x2�= 	cs1

† �x1�cs2
�x2�
, and the hole-

hole h1,2
�x1 ,x2�= 	v1

† �x1�v2
�x2�
 correlation functions are

derived from the equation of motion d	f
 /dt= i	�H , f�
 using
the Hartree-Fock approximation for the terms describing the
Coulomb interaction.

Straightforward calculations give immediately quite cum-
bersome system of equations. We provide explicitly only one
equation, which shows the structure of the nonlinear Cou-
lomb terms,
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iṗ,s�x1,x2� = K,s�p� + �U��x1� − U��x2��p,s�x1,x2�

−� dx��V�x1 − x�� − V�x2 − x���

��h�,�x�,x1�p�,s�x�,x2�

− p,s��x1,x��es�,s�x�,x2�� + E,s�x1���x1 − x2�

− h�,�x2,x1�E�,s�x2� − E,s��x1�es�,s�x1,x2� .

�B3�

Here and below the summation over dashed spin indices is
implied. This equation clearly demonstrates that at the diag-
onal x1=x2, the contributions of the Coulomb terms cancel
each other. In Eq. �B3� U��x� describes an effective back-
ground potential created by the local imbalance between the
electrons and holes,

U��x� =� dx�V�x − x���es�,s��x�,x�� − h�,��x�,x��� .

�B4�

For a semiconductor excited by a single plane wave, this
potential vanishes in an overall neutral system due to the
translational invariance. In the two wave excitation setup, the
effect of U� is small for bound exciton states if the order of
the MWM response is not too high.

The dynamical equations significantly simplify after the
terms being rearranged to form renormalizations of the
single-particle energies and the coupling between the charge
densities and the interband polarizations,

iṗ,s�x1,x2� = K̂,s�p� + E,s�x1���x1 − x2�

−� dx��Ẽ�,s�x�,x2�h�,�x�,x1�

− Ẽ,s��x�,x1�es�,s�x�,x2�� ,

− iės1,s2
�x1,x2� = K̂s1,s2

�e� +� dx��Ẽ�,s1

� �x�,x1�p�,s2
�x�,x2�

− Ẽ�,s2
�x�,x2�p�,s1

� �x�,x1�� ,

− iḣ1,2
�x1,x2� = K̂1,2

�h� +� dx��Ẽ1,s�
� �x1,x��p2,s��x2,x��

− Ẽ2,s��x2,x��p1,s�
� �x1,x��� , �B5�

where we have introduced the modified coupling between
the interband polarization and the charge densities,

Ẽ,s�x,y� = E,s�x���x − y� − V�x − y�p,s�x,y� . �B6�

We represent the time dependence of the external field in the

form E�t�= Ẽ�t�e−i�t, where the amplitude Ẽ�t� is assumed to
be constant during the excitation. In the rotating frame, the
operators

K̂,s�p� = Ĥ,�p�,s + p,s�Ĥs�,s − V�x1 − x2�p,s�x1,x2�

− �p,s�x1,x2� ,

K̂s1,s2
�e� = Ĥs1,s�es�,s2

− es1,s�Ĥs�,s2
,

K̂1,2
�h� = Ĥ1,�h�,2

− h1,�Ĥ�,2
�B7�

are expressed in terms of the integrodifferential operators Ĥ.
The action of these operators is defined by

Ĥs1,s�fs� = �−
1

2ms1

�2

�x1
2 + Ve�x1� + U��x1� + Hs1� fs1

�x1,x2�

−� dx�V�x1 − x��es1,s��x1,x��fs��x�,x2� ,

Ĥ1,�f� = −
1

2m1,�

�2

�x1
2 f��x1,x2� + �Vh�x1�

− U��x1� + H1
�f1

�x1,x2�

−� dx�V�x1 − x��h1,��x1,x��f��x�,x2� ,

�B8�

with Ve and Vh being the electron and hole confinement po-
tentials, which effect on the spatial motion of the electrons
and holes is estimated by the �-functional approximation for
the quantum well. The parameters Hs and H denote the
energy offsets of the respective bands. The diagonal elements
of m1,2

are the masses of the light and heavy holes, while
the off-diagonal elements account for the valence-bands mix-
ing.

Thus, K̂,s has the meaning of a two-particle Hamiltonian
with the Coulomb interaction between them, while the prop-
erties of free particles are described by the Hamiltonians

Ĥ1,2
and Ĥs1,s2

.
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