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We examine the nature of phase transitions occurring in strongly correlated Fermi systems at the quantum
critical point �QCP� associated with a divergent effective mass. Conventional scenarios for the QCP involving
collective degrees of freedom are shown to have serious shortcomings. Working within the original Landau
quasiparticle picture, we propose an alternative topological scenario for the QCP in systems that obey standard
Fermi-liquid �FL� theory in advance of the QCP. Applying the technique of Poincaré mapping, we analyze the
sequence of iterative maps generated by the Landau equation for the single-particle spectrum at zero tempera-
ture. It is demonstrated that the Fermi surface is subject to rearrangement beyond the QCP. If the sequence of
maps converges, a multiconnected Fermi surface is formed. If it fails to converge, the Fermi surface swells into
a volume that provides a measure of entropy associated with formation of an exceptional state of the system
characterized by partial occupation of single-particle states and dispersion of their spectrum proportional to
temperature. Based on this dual scenario, the thermodynamics of Fermi systems beyond the QCP exhibits
striking departures from the predictions of standard FL theory. Mechanisms for the release of the entropy
excess of the exceptional state are discussed.
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I. INTRODUCTION

The Landau quasiparticle pattern1 of low-temperature
phenomena in Fermi systems is universally recognized as a
cornerstone of condensed-matter theory. Although Landau’s
Fermi-liquid �FL� theory was originally formulated for liquid
3He, it is a quirk of fate that discrepancies between theoret-
ical predictions of the theory and experimental data on the
low-temperature behavior of key thermodynamic properties
first came to light in this system.

In the three-dimensional �3D� liquid, deviations of the
spin susceptibility ��T� and specific-heat ratio C�T� /T from
the predicted constant behavior, rather small at very low tem-
peratures T, increase with T. In two-dimensional �2D� liquid
3He, however, departures from the predictions of FL theory
become more pronounced as the temperature is lowered once
the density � reaches a critical region where the FL effective
mass M���� is greatly enhanced,2–4 with the values of M�

having been extracted from the specific-heat data via the FL
formula CFL�T�=TpFM� /3. This contrary behavior rules out
damping of single-particle excitations as the cause of the
observed failure of FL theory in 2D liquid 3He, since damp-
ing effects decrease and vanish at T→0. The experimental
data on the spin susceptibility ��T� of 3He films present a
thorny challenge of interpretation. In agreement with the Cu-
rie law but against the FL predictions, the product ��T�T fails
to show vanishing behavior as very low values of T are
reached in the measurements. In the critical density region,
the value of this product gradually increases with increasing
�, as if a fraction of spins of 3He atoms becomes localized
and coexists with the liquid part of the system. Analogous
behavior has been observed for 2D electron gas.5 Non-
Fermi-liquid �NFL� behavior also exhibits itself in properties
of strongly correlated electron systems of heavy-fermion
metals.6–15

Various theories, generally invoking critical fluctuations
associated with second-order phase transitions,16,17 have
been proposed to explain NFL behavior in strongly corre-
lated Fermi systems beyond the quantum critical point
�QCP�. At a QCP, which by definition occurs at zero tem-
perature, the Landau state becomes unstable due to a diver-
gence of the effective mass M� �cf. Ref. 18 and works cited
therein�.

On the weakly correlated side of the QCP, the properties
of systems of interest are described within the standard FL
theory, in which the Fermi liquid is treated as a gas of inter-
acting quasiparticles with a spectrum of single-particle exci-
tations given by ��p�= pF�p− pF� /M�. Since this spectrum
loses its meaning when M� diverges, the standard FL theory
fails at the QCP and beyond. Bearing in mind the fundamen-
tal role played by the Landau approach in modern
condensed-matter physics, there is ample incentive to inves-
tigate the situation beyond the QCP within the original Lan-
dau quasiparticle formalism,1 free of shortcomings of the
standard quasiparticle picture. We will demonstrate that if the
strength of the effective interaction between quasiparticles
reaches a critical level, a topological phase transition occurs,
and the properties of the system change dramatically.

This paper is organized as follows. In Sec. II we call
attention to certain basic flaws of the conventional collective
scenario for the QCP that envisions a “fatal” breakdown of
the quasiparticle picture when the quasiparticle weight z van-
ishes at a second-order phase transition. We then describe an
alternative topological scenario for the QCP, in which the
quasiparticle group velocity at the Fermi surface changes
sign while the z factor stays finite. In Sec. III we apply the
concept and technique of Poincaré mapping, widely used in
the analysis of nonlinear phenomena, to explore the structure
of approximants �iterates� generated by iteration of the non-
linear integral equation1 for the single-particle spectrum ��p�
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and momentum distribution n�p� at zero temperature. Be-
yond the QCP, the iteration procedure either converges, in
which case the Fermi surface becomes multiconnected, or it
does not. In the latter case, which applies for systems with
long-range effective forces, the patterns of successive iterates
for ��p� and n�p� acquire chaotic features. A special proce-
dure is introduced for averaging over sequences of iterates,
in such a way as to suppress these chaotic features. In Sec.
IV, we demonstrate that the resulting averaged single-particle
energies and occupation numbers coincide with those be-
longing to a state with a fermion condensate �FC�—an ex-
ceptional type of ground state possessing a distinctive topo-
logical structure. Section V presents results from numerical
calculations based on the Landau equation for the spectrum
��p� at finite temperatures beyond the points of the topologi-
cal phase transitions. The relevance of the topological sce-
nario to the real experimental situation in Fermi liquids be-
yond the QCP is discussed in Sec. VI. Extraordinary aspects
of the NFL thermodynamics of these systems—Curie-Weiss
behavior of the spin susceptibility and the role of the entropy
excess associated with the fermion condensate—are ad-
dressed in Sec. VII. In Sec. VIII, we analyze different pos-
sibilities for release of this excess entropy, which may be
responsible for the diversity of quantum phase transitions
appearing in the phase diagrams of strongly correlated Fermi
systems beyond the QCP. The paper is concluded in Sec. IX
with a summary of key developments and findings and with
remarks on the true scope of Landau theory.

II. TWO DIFFERENT SCENARIOS FOR THE QUANTUM
CRITICAL POINT

A dominant activity in condensed-matter physics during
the last decade has been the investigation of quantum phase
transitions, occurring at extremely low temperatures in
strongly correlated Fermi systems. Imposition of pressure or
magnetic fields allows one to push the transition temperature
toward zero, producing a QCP associated with divergence of
the density of states or equivalently the effective mass M����
at a critical density ��. In homogeneous nonsuperfluid Fermi
systems, the ratio of M� to the bare mass M is determined by
the textbook formula

M

M�
= z�1 + � ���p,��

��p
0 �

0
� , �1�

where �p
0 = p2 /2M −� is the bare quasiparticle energy mea-

sured relative to the chemical potential, � represents the
mass operator, and the quasiparticle weight z in the single-
particle state is given by z= �1− ����p ,�� /��	0
−1. Here and
henceforth, the subscript 0 indicates that the quantity in
question is evaluated at the Fermi surface.

Since the Feynman-Dyson era, it has been a truism that
the effects of the two factors in Eq. �1�, associated with �i�
the energy dependence of the mass operator �or self-energy�
��p ,�� and �ii� its momentum dependence, cannot be sepa-
rated from each other based only on measurements of ther-
modynamic and transport properties. Importantly, at the
quantum critical point these factors express themselves dif-

ferently in different scenarios. In a conventional collective
scenario for the QCP, the energy dependence of � plays a
decisive role. “Quasiparticles get heavy and die,”18 since
critical fluctuations destroy the quasiparticle picture, causing
the quasiparticle weight z to vanish at the transition
point.19–21

By contrast, in a topological scenario22 for the QCP,
which is associated with a change in sign of the quasiparticle
group velocity vF= �d��p� /dp	0 appearing in Eq. �1�, the mo-
mentum dependence of the mass operator evidently assumes
a key role when we note that vF is proportional to the sum
1+ ����p ,�=0� /��p

0	0. In this scenario, nothing catastrophic
happens beyond the critical point where vF reverses sign; the
original quasiparticle picture, advanced by Landau in the first
article devoted to theory of Fermi liquids,1 holds on both
sides of the QCP, since the z factor remains finite.

A. Original Landau quasiparticle pattern

We recall that the heart of the Landau quasiparticle pic-
ture is the postulate that there exists a one-to-one correspon-
dence between the totality of real, decaying single-particle
excitations of the actual Fermi liquid and a system of immor-
tal interacting quasiparticles. Two features specify the latter
system. First, the number of quasiparticles is equal to the
given number of particles �the so-called Landau-Luttinger
theorem�. This condition is expressed as

2� n�p�d� = � , �2�

where n�p� is the quasiparticle momentum distribution, the
factor 2 comes from summation over the spin projections,
and d� is a volume element in momentum space.

Second, the entropy S, given by the combinatorial expres-
sion

S�T� = − 2� �n�p�ln n�p� + �1 − n�p�	ln�1 − n�p�	
d� ,

�3�

based on the quasiparticle picture, coincides with the entropy
of the actual system. Treating the ground-state energy E0 as a
functional of n�p�, Landau derived the formula

n�p,T� = �1 + e��p�/T	−1, �4�

which has an obvious �but misleading� resemblance to the
Fermi-Dirac formula for the momentum distribution of an
ideal Fermi gas. In contrast to the ideal-gas case, the quasi-
particle energy ��p�=	E0 /	n�p�−� itself must be treated as
a functional of n�p�.

Another fundamental relation, which follows from the
Galilean invariance of the Hamiltonian of the problem, con-
nects the group velocity ���p� /�p of the quasiparticles to
their momentum distribution through1,23,24

���p�
�p

=
p

M
+ 2� f�p,p1�

�n�p1�
�p1

d�1. �5�

The interaction function f�p ,p1� appearing in this relation is
the product of z2 and the scalar part of the scattering ampli-
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tude 
�. In turn, 
� is the � limit of the scattering amplitude

 of two particles whose energies and incoming momenta
p1 ,p2 lie on the Fermi surface, with scattering angle cos �
=p1p2 / pF

2 and the four-momentum transfer �q ,�� approach-
ing zero such that q /�→0.

Landau �see formula �4� of Ref. 1	 supposed that solutions
of Eq. �5� always arrange themselves in such a way that at
T=0 the quasiparticle group velocity vF maintains a positive
value, implying that the quasiparticle momentum distribution
takes the Fermi-step form n�p ,T=0�=nF�p�=��p− pF�. If
this supposition holds, implementation of the original quasi-
particle picture is greatly facilitated: properties of any Fermi
liquid coincide with those of a gas of interacting quasiparti-
cles.

The failure of this assumption in strongly correlated
Fermi systems, established first in microscopic calculations
of Refs. 25 and 26, can be seen from the analysis of Eq. �5�
itself. Consider, for example, homogeneous fermionic matter
in three dimensions. Upon setting T=0 and p= pF in Eq. �5�
and denoting the first harmonic of the interaction function by
f1 we find

vF =
pF

M
�1 −

1

3
F1

0� , �6�

having introduced the dimensionless parameter
F1

0= pFMf1 /
2. Equation �6� is easily rewritten in the FL
form1,23,24

M

M�
= 1 −

1

3

pFM


2 f1 � 1 −
1

3
F1

0. �7�

Hence the inequality vF�0 is violated at the critical density
�� where F1

0����=3.
It is instructive to rewrite Eq. �7� in terms of the k limit of

the dimensionless scattering amplitude �
k=A+B�1 ·�2,
where �=z2pFM� /
2 is the quasiparticle density of states.
Noting the connection1,23,24 A1=F1 / �1+F1 /3� of A1 to
F1= pFM�f1 /
2, simple algebra based on Eq. �7� then yields

M

M�
= 1 −

1

3
A1. �8�

Clearly then, one must have

A1���� = F1
0���� = 3 �9�

at the density �� where the effective mass diverges.
We would like to emphasize that the critical density ��

has no relation to the density associated with violation of the
Pomeranchuk condition for stability against dipolar deforma-
tion of the Fermi surface. In the latter situation, the critical
value M1c

� of the effective mass M� is found from the
condition1,23,24

1 + f1c

pFM1c
�

3
2 = 0, �10�

which, according to Eq. �7�, may be recast as �1−F1c
0 /3�−1

=M1c
� /M =0. Quite evidently, this situation is not relevant to

the QCP.

B. Critique of the conventional QCP scenario

In this section, it will be argued that the collective sce-
nario for the QCP becomes problematic when the wave vec-
tor kc specifying the spectrum of the critical fluctuations has
a nonzero value, as is assumed in the standard collective
descriptions of the QCP.20,21,27 We address here the case of a
homogeneous system, which admits a robust demonstration
of the questionable applicability of the collective scenario.
The corresponding analysis of the case of anisotropic sys-
tems, exemplified in heavy-fermion compounds, is more
delicate and will be the subject of a separate article.

The requirement of antisymmetry of the amplitude 
 with
respect to interchange of the momenta and spins of the col-
liding particles leads to the relation20

A�p1,p2,k,� = 0;� → �c� = − D�k� +
1

2
D�p1 − p2 + k� ,

�11�

where

D�k → kc,� = 0;� → �c� =
g

�−2��� + �k − kc�2 , �12�

with g�0 and the correlation length ���� divergent at �
=�c. To explicate difficulties encountered by the standard
scenario for the QCP in homogeneous matter, let us calculate
harmonics Ak��� of the amplitude A�pF , pF , cos �� from Eqs.
�11� and �12�. In particular, we obtain

A0�� → �c� = g



2

kc����
pF

2 , A1�� → �c� = g
3


2

kc����
pF

2 cos �0.

�13�

The sign of A1��→�c�, which coincides with the sign of
cos �0=1−kc

2 /2pF
2 , turns out to be negative at kc� pF


2. Ac-
cording to Eq. �8�, this means that at the second-order phase
transition, the ratio M���c� /M must be less than unity. We
are then forced to conclude that the densities �c and �� can-
not coincide. Although the z factor does vanish at the density
�c due to the divergence of the derivative ����p ,�� /��	0, the
effective mass M� remains finite, since the derivative
����p ,�� /��p

0	0 diverges at the QCP as well.22

Moreover, it is readily demonstrated that at positive val-
ues of cos �0 below unity, vanishing of the z factor is incom-
patible with divergence of M�. Indeed, as seen from Eq. �13�,
the harmonics A0��c� and A1��c� are related to each other by
A0��c�=A1��c� / �3 cos �0�. If M���c� were infinite, then ac-
cording to Eq. �8�, A1��c� would be equal to 3, while
A0��c�=1 /cos �0�1. On the other hand, the basic FL con-
nection A0=F0 / �1+F0� implies that A0�1, provided the
Landau state is stable. Thus in the conventional scenario, the
QCP cannot be reached without violating the stability condi-
tions for the Landau state. The same is true for critical spin
fluctuations with nonvanishing critical wave number. One
must conclude that the system, originally obeying FL theory,
undergoes a first-order phase transition upon approaching the
QCP, as in the case of 3D liquid 3He.

Based on these considerations we infer that for homoge-
neous matter, the list of possible second-order phase transi-
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tions compatible with the divergence of the effective mass
M� includes only long-wave transitions. These are associated
with some L deformation of the Fermi surface such that one
of the two Pomeranchuk stability conditions,24 e.g.,
1+FL / �2L+1��0, is violated.

C. Salient features of the topological scenario for the QCP

In ordinary �“canonical”� Fermi liquids, there exists a
one-to-one correspondence between the single-particle spec-
trum ��p� and the momentum p, at least in the vicinity of the
Fermi surface, since the group velocity vF is positive. This is
equivalent to asserting that the equation

p2

2M
+ ��p,� = 0� = � �14�

has a single solution p= pF.
Within FL theory, Eq. �14� reduces to the relation

��p,T = 0;nF� = 0, �15�

where the energy ��p�, measured from the chemical potential
�, is evaluated with the Landau quasiparticle momentum dis-
tribution nF�p�=��p− pF�. However, it is a key ingredient of
the topological scenario for the QCP that at a critical value of
some input parameter, specifically the density �� or a cou-
pling constant g�, the group velocity vF vanishes. �This fea-
ture is demonstrated in several numerical examples presented
in Sec. V.�

Beyond the critical point, e.g., at g�g�, Eq. �15� acquires
at least two new roots �see Fig. 1�, triggering a topological
phase transition.28 Significantly, terms proportional to � ln �,
which are present in the mass operator � of marginal Fermi
liquids, do not enter Eqs. �14� and �15�.

The bifurcation point pb of these equations can emerge
anywhere in momentum space. Here we examine the case in
which pb coincides with the Fermi momentum pF, so that at
the critical density �� the group velocity vF���� changes its
sign. This distinctive feature of the topological scenario for
the QCP is in agreement with results of microscopic calcu-
lations of the single-particle spectrum ��p ,T=0� of 2D elec-
tron gas,29 as illustrated in Fig. 2. It is seen that the sign of vF
remains positive until the dimensionless parameter rs attains
a critical value r��7.0, where vF vanishes. At larger rs, the
group velocity vF= �d��p ,nF� /dp	0, evaluated with the qua-
siparticle momentum distribution nF�p�, is negative. Having
lost its stability, the Landau state is replaced by a new state
through the intervention of a topological phase transition.

A qualitatively similar situation is to be expected in an-
isotropic Fermi systems. In support of this statement, we

may refer to the first example of the QCP, namely, the Lif-
shitz saddle point,30 which has been elaborated for aniso-
tropic 2D electron systems in solids that are characterized by
a density of states diverging at T→0 as N�T ,���� ln�1 /T�.
Close to the saddle point, the QCP single-particle spectrum
has the form ��p ,���= �1 /2��px

2 /Mxx− py
2 /Myy�, with the

components px and py specifying the distance to the saddle
point in momentum space. In the Lifshitz model, the param-
eters Mxx and Myy have comparable finite values. Suppose,
however, that the electron-electron interactions cause one of
these parameters, say Mxx, to become much larger than the
other. One then arrives at the so-called extended saddle
point, which has been considered in connection with high-Tc
superconductivity in Ref. 31. The corresponding phase tran-
sition, associated with the divergence of Mxx, is also topo-
logical.

III. POINCARÉ MAPPING FOR STRONGLY
CORRELATED FERMI SYSTEMS

In this section we restrict considerations to homogeneous
matter at zero temperature. Microscopic calculations of the
single-particle spectrum ��p ,T=0� are as yet available only
for several simple types of bare interactions between par-
ticles. Moreover, there is no microscopic theory beyond the
point where the Landau state loses its stability. On the other
hand, given a phenomenological interaction function f , Eq.
�5� holds on both the sides of the topological QCP, since the
z factor retains a nonzero value. Numerical iteration is a
standard approach to solution of an equation such as Eq. �5�.
We shall see that the mathematical counterpart of iteration,
Poincaré mapping, which has been widely exploited in the
theory of turbulence,32 is also instrumental in elucidating the
striking features inherent in solutions of Eq. �5� beyond the
QCP.

The discrete iterative map corresponding to Eq. �5� reads

���j+1��p�
�p

=
p

M
+

1

3
2� f1�p,p1�
�n�j��p1�

�p1
p1

2dp1, �16�

the iterate ��j+1� for the chemical potential being determined
from the normalization condition �2�. The index

0

�(p)

p
2

p
1

p
F

FIG. 1. Location of roots of the equation ��p ,T=0�=0 beyond
the bifurcation point.
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���

���
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	��
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�
��

�
ε�
�
��

ε �

���

FIG. 2. Single-particle spectrum ��p ,T=0� of a homogeneous
2D electron gas, measured from the chemical potential �, in units
of �F

0 = pF
2 /2M, evaluated microscopically �Ref. 29� at T=0 for dif-

ferent values of the dimensionless parameter rs=
2Me2 / pF.
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j=0,1 ,2 ,¯ counts the iterations �zeroth, first, second, etc.�.
The iterate n�j+1��p� of the quasiparticle momentum distribu-
tion n�p� is generated by inserting the corresponding spectral
iterate ��j+1��p� into Eq. �4�, which at T=0 reduces to a
Heaviside function n�p�=��−��p�	.

A. Poincaré mapping for systems with a nonsingular
interaction

The key quantity of the Poincaré analysis in the Fermi-
liquid problem is the group velocity

d��1��p�
dp

=
p

M
−

pF
2

3
2 f1�p,pF;�� , �17�

evaluated by inserting the standard FL momentum distribu-
tion nF�p�=��p− pF� into the right-hand side �rhs� of Eq. �16�
as the zero iterate �starting approximant� for the quasiparticle
momentum distribution n�p�. In canonical Fermi liquids, for
which the sign of the derivative d��1��p� /dp is positive and
the function ��1��p� has a single zero at p= pF, the first iterate
n�1��p� and all higher iterates for the distribution n�p� coin-
cide with the nF�p�, this being a fixed point of the transfor-
mation. However, beyond the QCP the sign of the group
velocity vF evaluated from Eq. �17� becomes negative, and
the first iterate ��1��p����p ;nF� for the spectrum already has
three zeroes p1

�1�� p2
�1�� p3

�1�, implying three kinks in the mo-
mentum distribution.

At the second step, the evolution of the iteration process
follows different patterns, depending on the presence or ab-
sence of a long-range component in the effective interaction
between quasiparticles �long range in coordinate space�. We
first consider the simpler case in which the effective interac-
tion f�k�, local in coordinate space, has no singularities. In
this case the interaction function f1�p , p2� is then expanded
in a Taylor series in the variable p− pF, and Eq. �5� may be
recast as a set of algebraic equations. Then, as the straight-
forward analysis demonstrates and the numerical calcula-
tions described in Sec. V confirm, the shape

��p,T = 0� � �p − p1��p − p2��p − p3� �18�

of the spectrum remains the same independently of the num-
ber of iterations, with three roots p1� p2� p3 specifying the
location of the three sheets of the Fermi surface and lying
close to the QCP Fermi momentum p�. Correspondingly, the
spectrum ��p ,T=0� changes smoothly in the momentum re-
gimes removed from the kinks but oscillates in the interval
�p1 , p3	. The amplitude of the oscillation, i.e., the maximum
value

Tm = max���p,T = 0��, p1 � p � p3, �19�

of the departure of ���p ,T=0�� from 0, defines a new energy
scale of the problem; if temperature T attains values compa-
rable to Tm, the kink structure associated with the multicon-
nected Fermi surface is destroyed.

To evaluate Tm, we note that according to Eq. �18� the
group velocity d��p� /dp is a parabolic function of p, conve-
niently written as

d��p�
dp

= − X + Y�p − pm�2, �20�

where pm determines the location of the minimum of the
group velocity. Comparison of Eqs. �18� and �20� leads to the
following set of equations:

r1 + r2 + r3 = 0,

r1r2 + r1r3 + r2r3 = −
3X

Y
,

�pm + r1�3 − �pm + r2�3 + �pm + r3�3 = 3
2� , �21�

for the three �shifted� roots rk= pk− pm, with k=1,2 ,3. The
last equation of Eqs. �21� is obtained from the normalization
condition �2�.

In the vicinity of the QCP where X=X�=0, the parameter
pm and the positive quantities X��� and Y��� can be shown to
change linearly with �−��. Simple but lengthy algebra then
yields

r3 � − r1 � �� − ���1/2, r2 � �� − ��� . �22�

These results allow us to express relevant parameters in
terms of the difference �−��, namely, �i� �p= p3− p1, which
characterizes the range of the flattening of the spectrum
��p ,T=0� beyond the QCP, �ii� the temperature Tm associ-
ated with the crossover from standard FL behavior to NFL
behavior, and �iii� the zero-temperature density of states
N�0���k�d��p= pk� /dp	−1, which replaces the ratio M� /M
in the standard FL formulas for the specific heat, spin sus-
ceptibility, etc. We find

�p � �� − ���1/2, Tm � �� − ���3/2, N�0� � �� − ���−1.

�23�

To our knowledge, the multiconnected Fermi surface, shown
here to arise in the homogeneous case, was first considered
in 1950 by Fröhlich.33 Within the Hartree-Fock �HF� ap-
proach, model variational calculations for the ground-state
energies of homogeneous systems leading to a multicon-
nected Fermi surface were performed more than 20 years
ago,34 while the corresponding phase transition was first dis-
cussed in terms of HF single-particle spectra in Ref. 35 and
later in Ref. 36. The original calculations of properties of this
transition on the basis of Eq. �5� were performed in Refs. 37
and 38. These calculations show that as the coupling constant
moves away from the QCP value g�, the number of sheets of
the Fermi surface, which coincides with the number of the
roots of Eq. �15�, grows very rapidly, with the distance be-
tween the sheets shrinking apace. Importantly, in all these
solutions, the relation

n2�p� = n�p� , �24�

inherent in the standard FL picture, is still obeyed.

B. Two-cycles in Poincaré mapping for systems with a singular
interaction function f

A remarkable feature of equations relevant to the turbu-
lence problem is the doubling of periods of motion, giving
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rise to dynamical chaos.32,39 If now the nonlinear system
corresponding to Eq. �16� is considered within this context
by associating an iteration step with a step in time, one’s first
instinct is to assert that such a phenomenon cannot occur
when Poincaré mapping is implemented, since chaos in the
classical sense cannot play a role in the ground states of
Fermi liquids at T=0. Moreover indeed, this general asser-
tion seems to be validated by the results of Sec. III A. How-
ever, the Taylor expansion of the interaction function
f1�p1 , p2� which is employed in the above analysis fails in
the case of long-range effective interactions. The Fourier
transform f�k→0� becomes singular, and the previous analy-
sis is inapplicable.

As an interesting example, we note that such a singularity
exists in the bare interaction


0�p1,p2,k,� = 0� = − g
p1 · p2 − �p1 · k��p2 · k�/k2

k2

�25�

between quarks in dense quark-gluon plasma, wherein g
�0. In this example, Eq. �5� has the form35

���p�
�p

=
��p

0

�p
+ g� ln

2pF

p − p1

�n�p1�
�p1

dp1, �26�

where �p
0 �cp is the bare single-particle spectrum of light

quarks.
The first iterate for the spectrum, evaluated from Eq. �26�

with the distribution nF�p�, has an infinite negative derivative
d��1� /dp at the Fermi surface. It then follows independently
of the value of the dimensionless coupling constant �
=g���p

0 /�p�0
−1, that the relation �15�, with x= p / pF−1, takes

the form

x�1 − � ln
2

x
� = 0 �27�

and has three different roots −x0, 0, and x0, with x0
=2 exp−1/�. The corresponding first iterate of the momentum
distribution is n�1��p�=��x+x0�−��x�+��x−x0�. The next it-
eration step yields n�2��p��nF�p�, so the standard FL struc-
ture of the momentum distribution is recovered. The nonlin-
ear system enters a terminal cycle of length 2 �a 2-cycle�.
Thus one is dealing with a 2-cycle Poincaré mapping.

The first two iterations of the mapping process are illus-
trated in Fig. 3. The top-left panel of this figure shows the
bare spectrum ��0��p���p

0. The first iterate of the spectrum,
��1��p�, appearing in the middle-left panel, is evaluated by
folding the kernel ln�2pF / �p− p1�	 with the Fermi step nF�p�,
shown in the top-right panel. The spectrum ��1��p� possesses
three zeroes, p1� pF, p2= pF, and p3� pF, implying that the
first iterate n�1��p�, drawn in middle-right panel, describes a
Fermi surface with three sheets. This distribution differs
from the ordinary Fermi step only in the momentum interval
−x0�x�x0. The next iterate, ��2��p� �bottom-left panel�,
again has a single zero pF, and the corresponding momentum
distribution n�2��p� �bottom-right panel� coincides identically
with nF�p�.

A two-cycle Poincaré mapping also arises in treating the
Nozières model,40 for which the interaction function f has
the limited singular form f�q�=g	�q� with g�0. In this
model, the iterative maps �illustrated in Fig. 4� are generated
from the equation

��j+1��p� + ��j+1� = p2/2M + gn�j��p� , �28�

along with the normalization condition �2� for n�j+1��p�
=��−��j+1��p�	. Here, the odd iterates n�2j+1��p� of the mo-
mentum distribution deviate from nF�p� in the interval
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−g /4�F
0 �x�g /4�F

0 , but in even iterations, the Fermi step
reappears intact.

Numerical analysis demonstrates that similar 2-cycles
arise when Poincaré mapping based on Eq. �16� is imple-
mented for other systems having an interaction function that
is singular at k→0 �see Sec. V�. In all these cases, the emer-
gence of 2-cycles turns out to be an unambiguous signal of
the instability of the standard Landau state. Moreover, the
domain of momentum involved in the cyclic behavior is al-
most identical with the domain within which an improved
iteration algorithm fails to converge �see Sec. III D�. As will
be seen, this concurrence is significant in that the associated
volume of momentum space provides a measure of the en-
tropy stored in the exceptional ground state that replaces the
Landau state.

C. Two-cycles in Poincaré mapping for finite systems

In finite Fermi systems—nuclei, atoms, atomic clusters,
quantum dots, molecules, etc.—integration over momenta in
Eq. �16� is replaced by summation over single-particle quan-
tum numbers. As a concrete illustration, let us explore a
schematic model41 of a spherical nucleus, in which the
single-�quasi�particle energies are independent of the mag-
netic quantum number m. We consider two neutron levels
available for filling in an open shell, denoted 0 and +.

In the presence of a quasiparticle interaction f , the ener-
gies of the two levels are influenced when neutrons are added
to the system. With this in mind, the energies of levels 0 and
+ when N neutrons are added to level 0 and none added to
level + are denoted �0�N ,0���0�N� and �+�N ,0���+�N�, re-
spectively. The initial distance between the two levels, with
no added neutrons, is D�0,0�=�+�0,0�−�0�0,0�=D0�0,
having designated 0 as the lower of the two levels. The be-
havior of the level distance D�N ,0�=�+�N ,0�−�0�N ,0� as
neutrons are added is crucial to the behavior of the system.
To facilitate the argument, we adopt a highly simplified in-
teraction between neutrons, retaining in f only a
principal42,43 	�r�-like component. Also for simplicity, the
relevant matrix elements for determining the energy shifts
are reduced to two, namely, f00= f++ and f0+= f+0, which
�with k=0,+� are calculated as

fkk� =� Rk
2�r�f���r�	Rk�

2 �r�
r2dr

4

�29�

in terms of the radial parts of the corresponding single-
particle wave functions. We then have

�0�N� = �0 + Nf00, �+�N� = �0 + D0 + Nf+0, �30�

so that the distance D�N ,0� varies as

D�N,0� = D0 + N�f+0 − f00� . �31�

Significantly, in both the atomic and nuclear problems, the
sign of the difference f0+− f00 is negative,41 so that the func-
tion D�N ,0� falls off as the number N of added neutrons
increases. The standard FL scenario, in which all added qua-
siparticles occupy the level 0, remains valid as long as the
level distance D�N ,0� remains positive. As seen from Eq.

�31�, this distance changes sign when N reaches the critical
number Nc=D0 / �f00− f+0�. Thus, at N�Nc,

D�N,0� = �N − Nc��f+0 − f00� � 0, �32�

forcing all the quasiparticles to resettle into the level +.
To perform the next iteration, one calculates the distance

D�0,N���0�0,N�−�+�0,N� between levels 0 and + for the
case that all the quasiparticles occupy level +, obtaining

D�0,N� = D0 + N�f+0 − f++� � − �N − Nc��f00 − f+0� .

�33�

Since N exceeds the critical number Nc, the sign of this quan-
tity is negative. Therefore the priority for filling reverses
again, requiring that all the quasiparticles return to the level
0. This 2-cycle is repeated indefinitely.

In the weak-coupling limit where f00→0, the critical
number Nc diverges, and filling of the level 0 is completed
before N reaches Nc. In this case, level filling occurs nor-
mally, the 2-cycles being unattainable. However, in the
atomic problem, the magnitude of the matrix elements of the
Coulomb interaction between the orbiting electrons signifi-
cantly exceeds the distance between neighboring single-
particle levels. As a consequence, 2-cycles emerge at N�1
in the iterative maps for atoms of almost all elements not
belonging to the principal groups. The implication is that the
electronic systems of these elements do not obey standard
FL theory. The same conclusion is valid for many heavy
atomic nuclei with open shells.

Naturally, the occurrence of such 2-cycles in the analysis
of level filling in finite Fermi systems presents a dilemma
that must be resolved. Here �and in the other examples� such
cyclic behavior is obviously unphysical. Here the resolution
lies in the merging of single-particle levels and their partial
occupation hence in behavior that conflicts with standard FL
theory yet, in fact, maintains consistency within the broader
framework of Landau theory.41

D. Modified Poincaré mapping and insight from chaos theory

Apparently, the occurrence of persistent 2-cycles in the
iterative maps of Eq. �16� prevents us from finding true so-
lutions of the fundamental Landau equation �Eq. �5�	 beyond
the QCP for a specific class of Fermi systems possessing
singular effective interactions. It can be argued, however,
that this failure is a consequence of the inadequacy of the
iterative procedure employed, which works perfectly on the
FL side of the QCP. Indeed, a refined procedure that mixes
iterations does allow one to avoid the emergence of these
2-cycles. Nevertheless, the improved procedure possesses the
same feature: the iterations do not converge, although the
pattern of their evolution becomes more complicated
and—as will be seen—both intriguing and suggestive.

By way of illustration let us consider a modified Poincaré
mapping for the Nozières model,40 again with coupling con-
stant g=0.2�F

0 . Choosing a mixing parameter �, the equation
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��j+1��p� + ��j+1� = �1 − �����j��p� + ��j�	 + ��p2/2M + gn�j��p�	
�34�

is used to generate the iterative maps shown in Fig. 5. Re-
covery of the ordinary Fermi distribution nF�p�, an inherent
feature of the standard iteration procedure at the second it-
eration �see Fig. 4�, no longer occurs; indeed, the sequence
of iterations fails to converge even to a limit cycle. The num-
ber of sheets remains three at the second iteration. At the
third, however, seven sheets of the Fermi surface emerge,
and the number of sheets continues to increase in successive
iterations. At the same time, the distance between the sheets
continues to narrow, since the domain of momentum space in
which the improved iteration procedure does not converge
remains almost the same as that in which the standard pro-
cedure finds 2-cycles. This phenomenon of proliferating
Fermi sheets recapitulates a scenario envisioned in the semi-
nal study by Pethick et al.35 of the quark-gluon plasma based
on the interaction function �25�.

Treating the number j=1,2 ,3 ,¯ of the iteration as a dis-
crete time step, the sequence of the pictures in the left col-
umn of Fig. 5 shows the “temporal” evolution of the quasi-
particle spectrum. At any time step t, the single-particle
energy ��p , t� falls off steadily as p goes to zero, while its
sign changes unpredictably in a finite region �t of momen-
tum space adjacent to the Fermi surface. These erratic
changes in sign induce unpredictable jumps of the occupa-
tion numbers n�p , t� between the two values 0 and 1. Signifi-

cantly, as t goes to infinity, the region of momentum space in
which iterations of Eq. �5� fail to converge tends to a definite
limit �. The lack of convergence of the iteration process
may be attributed to the presence of a kind of “quantum
chaos.” Since entropy is a natural by-product of chaos, we
tentatively identify 2� ln 2 as its measure in the present con-
text, where � now denotes the numerical volume, in momen-
tum space, of the domain of nonconvergence and the factor 2
comes from the two spin projections. Thus, 2� ln 2 is inter-
preted as a special entropy associated with a Fermi system
for which iteration of Eq. �5� does not converge to a solution.

This naive formula for the special entropy can be refined.
To do so, we introduce a “time-averaged” single-particle en-
ergy �̄�p� by appropriating a standard formula from statistical
physics,

�̄�p� = lim
T→�

1

T
�

0

T

��p,t�dt � lim
N→�

1

N�
0

N

��j��p� , �35�

in which the iterates for ��p� are averaged over the fictitious
time t. In the same way, we introduce a corresponding time
average n̄�p� of the iterates of the momentum distribution
n�p�. The relation between the two time averages, simply

�̄�p� = p2/2M − � + gn̄�p� , �36�

stems from Eq. �28�. Remarkably, the mixing parameter �
cancels out in arriving at this relation.

Obviously, n̄�p� only takes values 0 or 1 wherever the
iterations converge, and then �̄�p� is a parabolic function of p
coinciding with the true single-particle energy. However, as
seen from Eq. �35� and verified by results shown in the left
column of Fig. 5, the function �̄�p� vanishes identically in the
domain � where iterations fail to converge, yielding

n��p� =
� − p2/2M

g
, p � � . �37�

The notation n��p� has been introduced to signify a smoothed
momentum distribution, determined by averaging iterates
��p , t� for the single-particle energy according to the pre-
scription �35�.

Thus, by implementing �i� a modified Poincaré mapping
procedure based on Eq. �34� together with �ii� “time-
averaging” of iterates for ��p� and n�p� in the manner of Eq.
�35�, we have found a solution of the problem that satisfies
the Pauli principle in the domain � where the sequence of
iterates does not converge. The exceptional solution so ob-
tained is independent of the parameters specifying the re-
fined iteration procedure. The boundaries pi and pf of the
momentum interval pi� pF� pf defining the domain of non-
convergence are determined by the conditions n��pi�=1 and
n��pf�=0. Thus, the quasiparticle momentum distribution
n�p� corresponding to the exceptional solution, hereafter
written as n��p�, is given by 1 and 0, respectively, at p� pi
and p� pf, and by Eq. �37� in between.

Now we are prepared to introduce a Kolmogorov-type
entropy,
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S� = − 2� �n��p�ln n��p� + �1 − n��p�	ln�1 − n��p�	
d� ,

�38�

in which the second term of the integrand accounts for the
equal status of particles and holes. According to the defini-
tion of n��p�, the integrand in Eq. �38� vanishes outside the
domain �, and we see that S� is essentially proportional to
the volume of this domain �also called ��. Setting n��p�
inside � equal to a typical value 1/2, one does indeed arrive
at S�=2� ln 2.

This program is to be implemented similarly when deal-
ing with other Fermi systems for which iteration of Eq. �5�
does not converge to a solution. The first step is to integrate
Eq. �5� and find an explicit relation connecting the spectrum
��p� with the momentum distribution n�p�. The average
quantity �̄�p� is then constructed by means of Eq. �35�. Since
this quantity vanishes identically in the domain � where
iteration fails to converge, we obtain a closed equation—
exemplified by the result �36� for the Nozières model40—that
may be used to find the smoothed NFL component of the
momentum distribution n��p� and calculate the entropy S�.

The possibility of a nonzero value of the entropy at T=0
beyond the QCP is an inherent feature of the topological
scenario being explored within the original Landau frame-
work. The existence of such an entropy excess for a system
whose interaction function f has a long-range component
means that the associated ground state is statistically
degenerate.23 These findings afford a different perspective
not only on the QCP itself but also on the concept of quan-
tum chaos—suggesting a special role for the phenomenon of
chaos in quantum many-body systems. The underlying con-
nections and their implications will be developed in depth in
a separate paper.

IV. FERMION CONDENSATION AS SPECIES OF
TOPOLOGICAL PHASE TRANSITION

An alternative �and ultimately equivalent� approach to
quantitative understanding of the exceptional state associated
with fermion condensation is based on Landau’s premise1

that the ground-state energy E of the system is a functional
of the quasiparticle momentum distribution n�p�. For canoni-
cal Fermi liquids, the minimum of E�n	 is attained at the
boundary point nF�p�=��p− pF� of the manifold �n
 contain-
ing all candidates for the function n�p� that satisfy the Pauli
restriction 0�n�1 and particle-number conservation. In
Ref. 44, the minimum of the model functional

E =� p2

2M
n�p�d� +

f

2
� n�p1�n�p2�

�p1 − p2�
d�1d�2 �39�

was found. The Fermi step nF�p� turns out to be the true
ground-state quasiparticle momentum distribution only if
correlations are rather weak. Otherwise a topological phase
transition occurs at some critical coupling constant fc. At
f � fc, an exceptional quasiparticle momentum distribution is
determined from the variational condition44

	E

	n�p�
= �, p � � . �40�

For the above model functional, this condition takes the ex-
plicit form

p2

2M
+ f� n�p1�

�p1 − p�
d�1 = �, p � � . �41�

This equation is easily solved for n�p� by exploiting a
transparent analogy with a system of charged particles
moving in an external elastic field. The result, yielding
n�p�=const�1 at p� pf and n�p�=0 otherwise, is drastically
different from the familiar FL solution. Importantly, the same
result is obtained when the iteration/averaging procedure es-
tablished in Sec. III D is applied to Eq. �41�. For the
Nozières model40 studied in Sec. III D, Eq. �40� may also be
solved analytically, and the solution is again in agreement
with the result �37� of the procedure introduced there.

Before examining this connection more fully, let us focus
on Eq. �40� itself. This variational condition, studied rather
extensively during the last decade,40,44–54 is generic. To illu-
minate its nature and conceptual status, we invoke a math-
ematical correspondence of the functional E�n�p�	 with the
energy functional E���r�	 of statistical physics. If the inter-
actions are weak, the latter functional attains its minimum
value at a density � determined by the size of the vessel that
contains it and which it fills uniformly. In such cases, solu-
tions of the variational problem evidently describe gases. On
the other hand, if the interactions between the particles are
sufficiently strong, there arise nontrivial solutions of the
variational condition

	E��	
	��r�

= � �42�

that describe liquids, whose density is practically indepen-
dent of boundary conditions.

The energy functional E�n	 of our quantum many-body
problem must have two analogous types of solutions, with an
essential difference; solutions n�p� of the variational condi-
tion �40� must satisfy the condition 0�n�p��1. This condi-
tion cannot be met in weakly correlated Fermi systems, but it
can be satisfied in systems with sufficiently strong correla-
tions.

The key point in connecting the procedure developed in
Sec. III D with application of the variational condition �40� is
that the quasiparticle energy is by definition just the deriva-
tive of the ground-state energy E with respect to the quasi-
particle momentum distribution n�p� or, referred to the
chemical potential, just ��p�=	E /	n�p�−�. Consequently,
condition �40� may recast as an equation

��p,n�� = 0, p � � �43�

that allows determination of the NFL component of the qua-
siparticle momentum distribution n�p�. Recognizing this
equation as the counterpart of Eq. �36�, we adopt the same
notation n��p� as used in Eq. �37�.
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The above analysis and discussion make it clear that the
most salient of the unorthodox features we have uncovered
in applying the original Landau quasiparticle formalism to
the behavior of strongly correlated Fermi systems beyond the
QCP is that at T=0 the single-particle spectrum ��p� be-
comes completely flat over a finite domain � of momenta
adjacent to the Fermi surface. One may envision this phe-
nomenon as a swelling of the Fermi surface. Another generic
feature, concomitant with flattening of the single-particle
spectrum, is partial occupation of single-particle states of
given spin; i.e., the quasiparticle occupation number n�p� is
no longer restricted to the values 0 and 1 but may take any
value in the interval �0,1	.

This extraordinary behavior is associated with a topologi-
cal phase transition fundamentally different from the one
which features a proliferating number of sheets of the Fermi
surface, in that the roots of the equation ��p�=0 now form a
continuum instead of a countable set. Since the Landau qua-
siparticles experience no damping, the single-quasiparticle
Green’s function becomes

G�p,�� =
1 − n��p�

� + i	
+

n��p�
� − i	

, p � � , �44�

in the domain � of vanishing ��p ,n� and retains its FL form
for p outside �. This particular structure of the Green’s func-
tion �44� may be characterized by a topological charge de-
fined as the integral28,45

N = �
�

G�p,���lG�p,��
dl

2
i
, �45�

where the Green’s function is considered on the imaginary
axis of energy �= i� and the integration is performed over a
contour in �p ,�� space that embraces the Fermi surface. For
canonical Fermi liquids and systems with a multiconnected
Fermi surface, the topological charge N is an integer,
whereas for the more exotic states characterized by a com-
pletely flat portion of the spectrum ��p�, its value is half-odd
integral.28,45

Aided by the variational condition �40�, one can elucidate
what happens when a quasiparticle with momentum p�� is
added to the system, assumed again to be homogeneous. In
contrast to what happens with a canonical Fermi liquid, the
addition of just one quasiparticle now induces a rearrange-
ment of the whole distribution function n��p�. This implies
that the kind of system being considered cannot be treated as
a gas of interacting quasiparticles, even though the original
Landau quasiparticle concept still applies.

The set of quasiparticle states for which Eq. �43� �or Eq.
�47�	 is satisfied has been called the fermion condensate
�FC�,44 while the topological phase transition in which the
Fermi surface swells from a line to a surface in 2D �or from
a surface to a volume in 3D� is otherwise known as fermion
condensation. In finite systems the phenomenon of fermion
condensation exhibits itself as merging of neighboring
single-particle levels.41

Unfortunately, the terms fermion condensation and fer-
mion condensate have unnecessarily promoted controversy.
Theorists are condition to think that in contrast to bosons,

fermions cannot condense because fermions cannot occupy
the same quantum state. However, in everyday life, “conden-
sation” means simply a dramatic increase in density. For
example, people use the word to describe what occurs when
the vapor in clouds forms into liquid drops that fall as rain.
On the other hand, statistical physics deals with occupation
numbers rather than with wave functions, and the thermody-
namic properties of a Bose gas at low temperatures are prop-
erly evaluated by treating Bose condensation through delib-
erate extraction, from the thermodynamic functions, of the
contributions of a macroscopic number of bosons having
single-particle energies equal to the chemical potential �.

Ideally, in experimental measurements of neutron scatter-
ing on liquid 4He, Bose condensation is reflected in a sharp
peak in the density of states ����=�c	���, with a prefactor �c
that is to be interpreted as the density of the Bose conden-
sate. In strongly correlated Fermi systems, fermions are also
capable of condensation in much the same sense: a macro-
scopic number can have the same energy �. If so, it follows
from Eq. �44� that the zero-temperature density of states,
which is associated with the integral of the imaginary part of
the retarded Green’s function GR�p ,�� over momentum
space, has the same kind of peak ����=�c	���, where �c is
the now the FC density. We hasten to add that although a
macroscopic number of fermions have the same energy, they
possess different momenta; hence the existence of states con-
taining a FC does not contradict the Pauli exclusion prin-
ciple.

In spite of the similarities between boson and fermion
condensation, an important difference between the structure
functions describing them must be noted. In the Bose case, a
macroscopic number of particles reside in condensate for all
temperatures lower than the critical temperature, with all the
bosons having zero momentum and energy ��p�=0. On the
other hand, in the Fermi case, any elevation of the tempera-
ture from zero acts to lift the degeneracy of the single-
particle spectrum in the domain �. Indeed, since a minute
temperature elevation does not affect the FC momentum dis-
tribution, Eq. �4� can be inverted to yield40

��p,T → 0� = T ln
1 − n��p�

n��p�
, p � � . �46�

Thus, the dispersion of the single-particle spectrum of sys-
tems having a FC turns out to be proportional to tempera-
ture, in contrast to the situation for canonical Fermi liquids,
where it is independent of T. This distinction can be em-
ployed for unambiguous delineation of the boundaries of the
domain � occupied by the FC at finite T.

In nonhomogeneous systems, finite or infinitely extended,
appropriate single-particle states are no longer eigenstates of
momentum p, so Eq. �43� must be replaced by

�� = 0, � � � , �47�

where � is set of quantum numbers specifying the single-
particle state. At finite temperatures, the FC degeneracy is
lifted according to the same formula �46� as for the homoge-
neous case.
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V. NUMERICAL CALCULATIONS

In this section, we discuss the results of numerical calcu-
lations of the single-particle spectra ��p ,T� and quasiparticle
momentum distributions n�p ,T� beyond the QCP. We com-
pare the temperature evolution of these quantities in a system
for which the interaction function f�k� is singular at k→0,
with their temperature dependence in systems for which f�k�
has no singularities.

We consider model quasiparticle interaction functions f�k�
that depend only on the difference k=p−p1. In this case one
can integrate the relation �5� over momentum and arrive at
the integral equation

��p� =
p2

2M
− � + 2� f�p − p1�n���p1��d�1 �48�

for the quasiparticle spectrum ��p�, the chemical potential �
being determined by the normalization condition �2�. To
evaluate the T-dependent spectrum ��p ,T� entering all ther-
modynamic and transport integrals, we substitute the formula
�4� into the right-hand side of Eq. �48�. We employ an itera-
tion procedure that mixes iterations for numerical solution of
Eq. �48�, with a mixing parameter � having the same mean-
ing as in Eq. �34�. It is worth noting that although at low
temperature the momentum distribution n�p ,T� is smoothed
somewhat, one meets the same difficulties with iterative so-
lution of Eq. �48� for singular interaction functions as in the
case of T=0 when the mixing parameter � is much larger
than the ratio T /�F

0 . However as soon as � becomes compa-
rable with this ratio, stable convergence of the iteration pro-
cedure is achieved. In the case of nonsingular interactions,
the requirements to be met by � are less stringent; in particu-
lar, � can be taken as large as some tens of T /�F

0 . Extremely
low temperatures are not accessible to the numerical analysis
since the mixing parameter � should then be taken so small
that the CPU time required to attain reasonable accuracy is
unreasonably large.

The numerical calculations were performed on a momen-
tum grid with the step size 10−4pF. The mixing parameter �
=10−4–10−2 was taken to achieve stable convergence of it-
eration procedure. The accuracy of the numerical solution,
measured by the maximum discrepancy between the left-
hand side �lhs� of Eq. �48� and its rhs, was fixed at 10−7�F

0 .
The number of iterations necessary to reach this accuracy
was about 102–104, depending on �. Convergence of the
iteration procedure is a warranty that an obtained solution
provides a local minimum of the free-energy functional
F�n	=E�n	−S�n	T−�N.

We first describe the situation for regular interactions. If
the analysis carried out in Sec. III is correct, then at T=0 the
condition �24� stays in effect, but the system possesses a
multiconnected Fermi surface. At low T below the new tem-
perature scale Tm, the thermodynamic properties of the sys-
tem still follow standard Landau FL theory. However, the
enhanced density of states, whose value we have determined
to be inversely proportional to the difference ��−���, pro-
duces a great enhancement of key thermodynamic character-
istics, notably the spin susceptibility ��T→0� and the ratio
C�T� /T at T→0. If the temperature T reaches values com-

parable to Tm, the sharp kink structure seen in the momentum
distribution n�p ,0� associated with the multiconnected Fermi
surface becomes smeared, and at T�Tm the function n�p ,T�
becomes continuous and almost independent of T in the mo-
mentum interval �p1 , p3	 between the sheets. According to
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Eq. �46�, the dispersion of the single-particle spectrum
��p ,T� then becomes proportional to T, as in systems with a
FC. All these features are confirmed in the calculations.

In Figs. 6–10, we show results from numerical calcula-
tions of the spectrum ��p ,T� based on Eq. �5� for two differ-
ent interaction functions f that are regular in momentum
space. The choice of the first of these,

f�k� = − g2



M

1

�k2/4pF
2 − 1�2 + �2

2 , �49�

is motivated by the fact that for the 2D electron gas, it can
adequately describe the results of microscopic calculations29

of the zero-temperature single-particle spectra ��p ,T=0� on
the FL side of the corresponding QCP, i.e., at rs�r�=7.0.
�Again, the dimensionless parameter rs is the radius of the
volume per particle measured in units of the atomic Bohr
radius, thus related to the Fermi momentum by rs
=
2Me2 / pF.� The second interaction,

f�k� = g3

2pF

M

1

k2 + �3
2pF

2 , �50�

which is relevant to a 3D system, is chosen because it was
employed in the first work37 addressing the deep connections
between the two types of the topological phase transitions
considered in the present paper. The results of calculations
with these two interactions are compared with those obtained
from analytic solution, at T=0, of a model of fermion con-
densation in three dimensions having the singular interaction
function47

f�k� = gs

2

M

e−�sk/pF

k
. �51�

Figure 6 displays the single-particle spectrum ��p� and the
group velocity d��p� /dp, as calculated on the FL side of the
QCP for the model corresponding to the interaction �49�. The
group velocity behaves as a parabolic function of momentum
p. With increasing rs, the bottom of the parabola gradually
moves downward and, when rs reaches r�, makes contact
with the horizontal axis exactly at the Fermi momentum
pF= p�. Consequently, the spectrum ��p ,T=0���p− p��3

has an inflection point at the Fermi surface.55 When evalu-
ated with n�p�=nF�p�, the group velocity changes sign from
positive to negative as rs passes r�, in agreement with the
topological scenario for the QCP.55 In the vicinity of the
QCP, the temperature dependence of the group velocity
obeys the relation vF�T��T2/3, again in agreement with the
result obtained in Ref. 55.

Figures 7 and 8 show numerical results for the quasipar-
ticle momentum distribution n�p� and the spectrum ��p�, as
calculated for the interaction function �49� both below and
above the temperature Tm. Inevitably, the value of Tm is
somewhat uncertain because the alteration of the FL behav-
ior in this temperature region is associated with a crossover
rather than with some second-order phase transition. Never-
theless, comparison of Fig. 7 �T�Tm� and Fig. 8 �T�Tm�
reveals striking changes in the structure of both of the func-
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tions ��p� and n�p�. Indeed, as seen in the top panel of Fig. 7,
a well-defined multiconnected Fermi surface, witnessed by a
pronounced gap in filling, exists only at extremely low
T�10−4�F

0 , while at T�Tm�10−3�F
0 , the gap in the occupa-

tion numbers closes.
On the other hand, upon inspection of the top panel of

Fig. 8, we observe that within a region pi� p� pf all of the
curves for n�p ,T� for T�Tm collapse into a single one—i.e.,
the momentum distribution n�p� becomes T independent.
This behavior persists until rather high T. Figure 8 also in-
dicates that the range �= pf − pi practically coincides with the
difference of roots �p= p3− p1 �cf. Sec. III A�, so that in
accordance with Eq. �23� we can write

� � 
�� − � . �52�

Moreover, comparison of the bottom panels of Figs. 7 and 8
demonstrates that the huge variations of the ratio ��p� /T that
are so prominent at T�Tm completely disappear in the FC
domain at T�Tm. Thus, again we discover scaling behavior:
within the range pi� p� pf all of the curves representing the
ratio ��p� /T collapse into a single one.

The same conclusions follow from parallel calculations
carried out for interaction �50�. For this case, Figs. 9 and
10—dedicated, respectively, to T�Tm and T�Tm—trace the
behavior with temperature of the spectrum ��p� and momen-
tum distribution n�p�.

The scaling behavior observed in Figs. 8 and 10 is also
evident in Fig. 11, where corresponding results of calcula-

tions based on Eq. �5� and the interaction model �51� are
displayed. The single noteworthy difference is that the
linear-in-T dispersion of the single-particle spectrum ��p�
characteristic of the FC domain is already in effect at T→0,
i.e., Tm=0 in this case. The results of similar numerical cal-
culations for the singular interaction function �25�, to be pub-
lished separately, support the same general conclusions, in
particular with respect to scaling behavior. From the evi-
dence gathered for different singular interaction functions,
we infer that scaling features that govern the flattening of
single-particle beyond the QCP and at T�Tm are universal.
The specifics of the interaction function affect only the value
of the crossover temperature Tm.

VI. RELEVANCE OF THE QCP TOPOLOGICAL
SCENARIO TO REALITY

Here we provide a brief assessment of the relevance of the
theory outlined in this paper to the contemporary experimen-
tal situation. At the outset we should emphasize that this
theory is applicable only to systems whose properties are
aptly described by the conventional FL approach on the
weakly correlated side of the QCP. If this condition is not
met, the theory is irrelevant.

At present, experimental information on the QCP is avail-
able for three types of strongly correlated Fermi systems.
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The first type is a silicon inversion layer in a metal-oxide-
semiconductor field-effect transistor �MOSFET�, with the
electrons forming a homogeneous 2D liquid. It is known
from measurements of the magnetic susceptibility and the
Shubnikov–de Haas oscillations56–59 that the 2D electron gas
does obey standard Landau theory on the FL side of the QCP.
Furthermore, recent measurements60 carried out for two dif-
ferent versions of the crystal structure, namely, �100� and
�111�, and for differing disorder have nevertheless demon-
strated that the density at which the effective mass M� di-
verges remains the same, ���0.8�1011 cm−2. This finding
implies that electron-electron interactions rather than disor-
der are responsible for the occurrence of the QCP in the
silicon inversion layer. Moreover, the experimental value of
the Stoner factor, which specifies the proximity to the ferro-
magnetic phase transition, is shown not to be enhanced rela-
tive to its value in the volume of the silicon crystal.58 This
finding implies that ferromagnetism is irrelevant to the rear-
rangement of the ground state that takes place at the QCP.
From the theoretical side, we have already mentioned that
results29 from microscopic calculations bearing on the diver-
gence of effective mass of the 2D electron gas are in agree-
ment with the topological scenario for the QCP. All of the
above factors, both empirical and computational, speak for
the relevance of the proposed topological scenario to the re-
ality of the 2D electron gas in the vicinity of the QCP.

Salient experimental information is also available for a
second class of Fermi systems having a QCP: films of 3He
atoms lying on different substrates. With certain qualifica-
tions, these systems may be modeled as 2D liquid 3He. If the
dimensionless Landau parameters specifying the effective in-
teraction between 3He atoms are rather small, the laboratory
systems may found to obey standard FL theory. There is
experimental evidence that this is indeed the case,2–4 in spite
of the violation of the Galilean invariance and the presence
of disorder, effects introduced by the substrate. As reflections
of a divergent density of states, the presence of the QCP in
3He films is exhibited in measurements of the spin suscepti-
bility � �Refs. 2 and 3� and the specific heat C,3,4 with the
quantitative results showing a substantial dependence on the
nature of the substrate. A crucial feature of the
measurements2,4 is the curious Curie-type behavior2,4 found
for the spin susceptibility: ��T ,��=Ceff��� /T, with the effec-
tive Curie constant Ceff depending strongly on the density �
in the QCP region. The challenge of explaining this experi-
mentally documented crossover from Pauli-type to Curie-
type behavior is still open. A microscopic understanding is
necessarily complicated by interactions between substrate
and helium atoms and by layering effects at higher areal
densities. In Sec. VII we will see that the topological sce-
nario for the QCP shows promise of capturing the essential
physics of the crossover.

The third and most extensive class of systems possessing
a QCP is that of the heavy-fermion metals, in which the
crystal lattice gives rise to anisotropy of the Fermi surface.
As pointed out in Sec. II C, the existence of topological
phase transitions in this class of systems is well known.30,31

A priori there appear to be no serious obstacles to realization
of the topological QCP for heavy-fermion metals. This pos-
sibility will be explored pending the results of a forthcoming

generalization of the considerations of Sec. II B to aniso-
tropic systems.

VII. UNCONVENTIONAL THERMODYNAMICS BEYOND
THE QCP

Theoretical results based on the ideas and method we
have developed allow one to reproduce available experimen-
tal data on properties of several concrete strongly correlated
Fermi systems in the immediate vicinity of the QCP �for
example, see Refs. 53, 55, and 61�. However, such validation
is to some extent inconclusive, since as a rule there exist at
least two alternative models that are capable of explaining
the data at the same level of accuracy. Accordingly, in this
section we will focus on certain unusual features of the ther-
modynamic properties of strongly correlated systems beyond
the QCP that emerge in the proposed topological scenario.
Detailed comparisons of the theory with experimental data
are reserved for a future article.

A. Entropy excess

In standard FL theory where the entropy S is given by Eq.
�3�, the curve S�T� starts at the origin and begins to rise
linearly with T. The situation changes at the QCP. In the
conventional scenario, which is predicated on a vanishing
quasiparticle z factor, one has S�T��C�T��T ln�1 /T�. In
the topological scenario for the QCP, the divergence of the
ratio C�T� /T is even stronger:55 C�T� /T�T−2/3. The standard
FL behavior of C�T� /T does re-emerge beyond the QCP,
where the density of states is again finite. However, recovery
of this behavior occurs only at extremely low temperatures,
with the proviso that T�Tm. At higher T, the FC forms in the
domain �, and its characteristic NFL momentum distribu-
tion, given by n��p�, leads to a drastic change in the behavior
of the entropy S�T�.44,47,53,62 The basic entropy formula �3� of
the original quasiparticle formalism remains intact, but due
to the NFL component in n��p�, the system is seen to possess
a T -independent entropy excess S����. Its value does not
depend on the manner of its evaluation, since Eqs. �3� and
�38� provide the same result.

The situation we now face—with the strongly correlated
fermion system having a finite value S� of the entropy at
T=0—resembles that encountered in a system of localized
spins. In the spin system, the entropy referred to one spin is
simply ln 2, while in the system having a FC, we have
S� /N�� ln 2, where �=� f /� is the dimensionless FC pa-
rameter.

Numerical calculations demonstrate that within the do-
main �, the momentum distribution n��p� changes rapidly
under variation of the total density �. The corresponding
nonzero value of the derivative �S� /�� produces a huge
enhancement of the thermal expansion coefficient
���S�T� /���� with respect to its FL value, proportional
to T.63 Consonant with this result, experimental data64 show
that at low T in many heavy-fermion metals, � is indeed
almost temperature independent and exceeds typical values
for ordinary metals by a factor 103–104. To our knowledge,
no theory has previously been advanced to explain this en-
hancement.
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B. Curie-Weiss behavior of the spin susceptibility

Another peculiar feature of strongly correlated Fermi sys-
tems beyond the QCP involves the temperature dependence
of the spin susceptibility ��T�=�0�T� / �1+g0�0�T�	, where

�0 = �e
2�0�T� = − 2�e

2� dn�p,T�
d��p�

d� , �53�

and g0 is the spin-spin component of the interaction function
�which remains unchanged through the critical density re-
gion�. As mentioned before, beyond the QCP the standard
Pauli behavior of ��T� prevails only at T�Tm, and its value,
proportional to the zero-temperature density of states
N�0����−���−1, turns out to be greatly enhanced.

At T�Tm, insertion of n��p� into Eq. �53� yields the
Curie-type term

���T� = �e
2Ceff���

T
, �54�

with an effective Curie constant

Ceff��� = 2� n��p��1 − n��p�	d� �55�

that depends dramatically on the density.53,62 Since Ceff is
proportional to the FC parameter �, we infer that

Ceff � S�. �56�

Thus, all compounds in which the spin susceptibility exhibits
the Curie-type behavior possess a large entropy. Further-
more, our model predicts that over the whole temperature
interval from T=0 to T�Tm, the spin susceptibility of the
Fermi system beyond the QCP possesses Curie-Weiss-type
behavior ��T��1 / �T−TW� with a negative Weiss tempera-
ture TW, reflecting the saturation of ��T� at T→0. Measure-
ments in 3He films on various substrates2,4 and in numerous
heavy-fermion compounds �cf. Refs. 11 and 65� provide ex-
amples of this NFL behavior. We emphasize that in our sce-
nario, the negative sign of TW holds independently of the
character of the spin-spin interaction, repulsive or attractive.
�In the latter case, the magnitude of this interaction must not
exceed certain limits, as indicated below in Sec. VIII B.� At
the same time, in a system of localized spins the Weiss tem-
perature has a negative sign only if the spin-spin interaction
is repulsive. In this case, however, the Stoner factor must be
suppressed. The necessity of reconciling the negative sign of
TW with the enhanced Stoner factor observed experimentally
in the vicinity of the QCP �Refs. 8 and 9� creates insur-
mountable difficulties for the standard collective QCP sce-
nario.

Another conspicuous feature of the physics beyond the
QCP is associated with the Sommerfeld-Wilson ratio RSW
=T��T� /�e

2C�T��S� /C�T�. Since the excess entropy S� does
not depend on T, it makes no contribution to the specific heat
C�T�; consequently one should see a great enhancement of
RSW.

VIII. RELEASE OF ENTROPY STORED IN THE
FERMION CONDENSATE

The diversity of phase transitions occurring at low tem-
peratures is one of the most spectacular features of the phys-
ics of many heavy-fermion compounds. Within the standard
collective scenario,16,17 it is hard to understand why these
transitions are so different from one another and their critical
temperatures are so extremely small. However, such diver-
sity is endemic to systems with a FC. Its source may be
traced to an obvious fact: the existence of the entropy excess
S� at T=0 would contradict the third law of thermodynamics
�the Nernst theorem�. We may recall that in order to relieve
themselves of excess entropy, systems of localized spins or-
der magnetically due to spin-spin interactions. The situation
in systems with a FC is similar, but there are many ways to
release the entropy excess S� as T goes down to zero. One
possible route for eliminating S�, already considered, is the
crossover between the state with a FC and a state with a
multiconnected Fermi surface as the temperature drops be-
low Tm. However, there exist other options associated with
second-order phase transitions, involving violation of a sym-
metry of the ground state.

A. Superconducting phase transitions

It is instructive to begin with superconducting phase tran-
sitions, considered already in the first article44 devoted to
fermion condensation. A necessary condition for a supercon-
ducting transition to come into play is that its critical tem-
perature Tc exceeds Tm. To determine Tc, one sets �L→0 in
the well-known BCS gap equation, yielding

�L�p,T → 0� =� VL�p,p1�
tanh���p1�/2T	

2��p1�
�L�p1,T�d�1,

�57�

where VL is the effective interaction between quasiparticles
in the L-wave pairing channel. It can be demonstrated that
the FC contribution to the integrand on the right-hand side of
this equation is dominant. After some algebra employing the
identity

tanh���p�/2T	
��p�

=
1 − 2n��p�

T ln��1 − n��p�	/n��p�	
, p � � ,

�58�

one obtains

Tc = VL�pF,pF��
�

1 − 2n��p�
2 ln��1 − n��p�	/n��p�	

d� . �59�

Confining the integration to the small FC domain, one arrive
at44

Tc � ���F
0 , �60�

where � is a dimensionless pairing constant and
����−���1/2 is the FC parameter. We see now that a remark-
able situation arises if the pairing constant is large enough to
ensure satisfaction of Tc�Tm. In contrast to the exponen-
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tially small BCS critical temperature Tc�e−2/�, the critical
temperature in a system having a FC turns out to be a linear
function of �.

B. Phase transitions in the particle-hole channel

Along the same lines, we can consider the possibility of a
collapse of particle-hole collective modes in systems with a
FC. Here we restrict ourselves to long-wave transitions that
give rise to a deformation of the Fermi surface. Manipula-
tions similar those previously applied lead to the relation

OL�p� = −� FL�p,p1�
dn�p1�
d��p1�

OL�p1�d�1, �61�

where OL�p� is shape function characterizing the
deformation. In the FC region we have dn�p� /d��p�
=n��p��1−n��p�	 /T, so that upon retaining only the FC con-
tribution Eq. �61� is recast as an equation for the transition
temperature,

TN = − FL�pF,pF��
�

n��p��1 − n��p�	d� � − fL��F
0 .

�62�

On observing that the dimensionless Landau parameters FL
= fL /N�0� keep their values through the critical region, we
may express the transition temperature in the form TN
=FL� /N�0�. Remembering that the FC density � is propor-
tional to ��−���1/2, while the density of states behaves as
N�0����−���−1, the estimated value of TN appears to be
proportional to ��−���3/2, being comparable with the cross-
over temperature Tm. In the case of ferromagnetism, the con-
dition TN�Tm is met only if the spin-spin component of the
interaction function is negative and sufficiently large. Other-
wise, the system avoids the ferromagnetic phase transition
and the spin susceptibility obeys the Curie-Weiss law
��T��1 / �T−TW� with a negative Weiss temperature TW.

Remarkably, in either of the above candidates posed as a
mechanism for release of the excess entropy S� through a
symmetry-breaking second-order phase transition, the un-
conventional state with a FC always corresponds to the high-
temperature phase, while the low-temperature phase pos-
sesses more familiar properties. Phase transitions occur in
any channel where the sign of the effective interaction is
suitable for the transition, provided the value of the effective
coupling constant is sufficient to produce the inequality
Tc�Tm. Otherwise, the entropy excess is released through
the crossover leading to formation of a multiconnected Fermi
surface. We see, then, that the diversity of phase transitions
in the topological scenario for the QCP is due to the accu-
mulation by the FC of a big entropy at extremely low tem-
peratures. Because of the smallness of the parameter
��−���, the transition temperatures should be very low and
the phase transitions themselves inevitably of quantum ori-
gin. Several phases specified by different order parameters
can in principle coexist with each other, giving rise to states
of an intricate nature. As the temperature decreases to zero,
these phases can replace one another.

IX. CONCLUSION

A basic postulate of standard Fermi-liquid theory reads,
“At the transition from a Fermi gas to a Fermi liquid, the
classification of energy levels remains unchanged” �Ref. 23,
p. 11�. Almost 20 years ago, the first paper on the theory of
fermion condensation44 demonstrated that this postulate is
incorrect beyond a quantum critical point, while maintaining
the essence of the quasiparticle picture. The work triggered a
wave of criticism and disbelief. “This theory is an artifact of
the Hartree-Fock method,” was a typical judgment. By now,
debates on the subject have become pointless: numerical cal-
culations based on Eq. �5�, carried out during the last decade
and discussed in the present work, provide the best way to
answer critics.

It has been a principal goal of this paper to investigate the
structure of the Fermi surface beyond the quantum critical
point within the original Landau quasiparticle pattern.1 We
have shown that at T=0 there are two different realizations
of this pattern, both of which involve a topological phase
transition. The first is associated with the emergence of a
multiconnected Fermi surface. The second entails the forma-
tion of a fermion condensate, implicated by the emergence of
a completely flat portion of the single-particle spectrum ��p�
that may be envisioned as a virtual swelling of the Fermi
surface. Such an inflation of the Fermi surface can occur if
the Landau interaction function f contains components of
long range in coordinate space.

We have performed a series of numerical calculations that
serve to demonstrate the existence of a crossover between
the two types of topological structure at extremely low tem-
perature, an effect that introduces an energy scale Tm into the
problem. At T�Tm, both the momentum distribution n�p�
and the single-particle spectrum ��p� exhibit universal fea-
tures inherent in strongly correlated Fermi systems beyond
the QCP. To be specific, scaling features pertaining to the
behavior of the momentum distribution n�p� and the �scaled�
single-particle energy ��p� /T in the vicinity of the Fermi
surface are independent of the assumed form of the interac-
tion function f �and notably whether on not it contains long-
range components�. The choice of f does, however, affect the
value of Tm.

We have explored intriguing features of Poincaré mapping
as a technique for iterative solution of the nonlinear integral
equation �5� that connects the group velocity and the quasi-
particle momentum distribution at zero temperature. For
regular interaction functions, the sequence of iterative maps
converges to the true solution beyond the quantum critical
point and describes a ground state with a multiconnected
Fermi surface. However, for Landau interaction functions f
having a component of long range in coordinate space,
2-cycles are generated in the standard iteration procedure, a
behavior symptomatic of the inadequacy of this solution al-
gorithm as well as the failure of standard Fermi-liquid theory
beyond the quantum critical point. Adopting a refined itera-
tion procedure �in which the input for the next step is a
mixture of the outputs of the two preceding iterations�, the
spurious 2-cycles no longer arise. However, the resulting se-
quence of iterative maps acquires chaotic features in a region
of momentum space adjacent to the Fermi surface that coin-
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cides with the domain in which the 2-cycles were previously
found.

We have elaborated a special procedure for averaging the
successive outputs of the iteration process and demonstrated
that the averaged single-particle energies and occupation
numbers so obtained coincide with those inherent in states
with a fermion condensate. The exceptional states involving
a fermion condensate are shown to possess a nonzero en-
tropy at zero temperature. This result does not contradict
basic laws of statistical physics if and only if the ground state
is degenerate. In effect, the comprehensive analysis of Eq.
�5� presented here affirms the consistency of the properties of
states possessing a fermion condensate. The insight into the
role of chaos theory in the quantum many-body problem that
has been gained through our analysis lays a basis for future
studies with the potential of wide implications. Finally, we
have investigated pathways for releasing the entropy excess
stored in the fermion condensate that are associated with
different quantum phase transitions—necessarily of quantum
origin since the transitions involved occur at extremely low
temperatures.
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