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Bound states in the continuum in photonic waveguides inspired by defects
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Photonic crystal with defect layer forms directed continuum for electromagnetic waves. Defect rods in the
vicinity of the defect layer interact with the continuum and give rise to scattering of ingoing waves. We derive
quantum-mechanical analog of the non-Hermitian Hamiltonian of the open system with complex eigenvalues,
which describes a scattering of electromagnetic waves by the defect rods. In this formalism a bound state in the
continuum (BIC) can be easily found by the condition that one of the complex eigenvalues becomes real for
variation of dielectric constant of the defect rods. We numerically find BICs with discrete frequencies belong
to the continuum for different arrangements of the defects and show that they are localized around the defects.
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I. INTRODUCTION

In 1929, von Neumann and Wigner' predicted the exis-
tence of discrete solutions of the single-particle Schrodinger
equation embedded in the continuum of positive-energy
states. Their analysis examined by Stillinger and Herrick?
was long regarded as a mathematical curiosity because of
certain spatially oscillating central symmetric potentials. Af-
ter it has been suggested that bound states in continuum
(BIC) might be found in certain two-electron systems,> later
in 1973 Herrik* and Stillinger® predicted BICs in semicon-
ductor heterostructure superlattices, which were observed by
Capasso et al. as a very narrow absorption peak.% BIC can be
observed in the stationary quantum transport as a resonant
state whose width tends to zero as at least one physical pa-
rameter varies continuously as it was formulated first by
Friedrich and Wintgen’? in framework of a two-level model
(see also Refs. 9—14). The numerical evidence for the BIC in
straight waveguide with an attractive finite-size impurity was
presented by Kim et al.' for the variation of the impurity
size. Furthermore, calculations in microwave and semicon-
ductor open structures showed that the resonance width also
can turn to zero for variation of angle of bent waveguide,'®
shape of quantum dot and microwave resonator,'*!” or mag-
netic field.'®

The underlying simple mechanism of the BIC phenom-
enon can be demonstrated using the idea of perfect reflec-
tions in the Fabry-Perot resonator.!” The total transmission
amplitude can be easily calculated as a geometrical sum over
all individual transmitted and reflected elementary processes.
This gives the simple expression T=¢%/(1-r?e**) for the
transmission probability, where ¢ and r are the complex am-
plitudes of the transmission and reflection, respectively, for
individual processes and k is the wave number. The bound
states are defined by the zeros of the denominator in 7, i.e.,
by sin[ ¢(E)+7g(E)L]=0, where ¢(E)=arg(r). One obtains
therefore a quantization rule for the particle trapped in the
space between the mirrors in the Fabry-Perot resonator of the
length L. The Fabry-Perot approach was explored for two
identical billiards connected by a wire!7?%2! and recently for
two parallel dielectric gratings and two arrays of thin parallel
dielectric cylinders in photonic crystal.??

For the considered case of the photonic waveguide
coupled to defects (see below Fig. 4) the Fabry-Perot ap-
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proach is hardly applicable because of an interaction between
the defects. However, to restrict ourselves by two defects, we
can use the two-level approximation for description of the
defects.”'? By tuning the dielectric constant of the defects,
we can perform the crossing of resonances. For that process
we have strong interference of resonances,’ which might re-
sult in complete suppression of the coupling of the resonance
state with the continuum!!'='%23 to convert the state into the
BIC. Recently it was rigorously shown that it is exactly
equivalent to the resonance width equaled to zero.'8:>*

At least, the following conditions are necessary for ex-
perimental observation of BICs. The possibility of continual
variation of spectrum of the closed system, the high quality
of whole open system, and each continuum has to support
one open channel (the single-channel transport). The open
microwave billiards with movable wall and the quantum dots
with variable confined potential can satisfy to these
conditions.'* The goal of the present paper is to show that
photonic crystal (PC) with defect layer with additional de-
fects in the vicinity of the layer might be a candidate for the
study of BICs.

Compared to homogeneous media, the existence of band
gaps inside Bloch bands, where linear light propagation is
forbidden, forms a new feature in periodic media of PC.2>26
To be specific we consider the square lattice (lattice constant
a) of cylindrical dielectric rods of radius r,,q=0.18a and di-
electric constant eé=11.56 in air as given in Refs. 27 and 28.
The background bulk PC exhibits a TM-polarization (the
electric field is parallel to the axis of the cylinder) band gap
at 0.302=< w=0.444 (Ref. 27) in units of 27c/a, where c is
the light speed in vacuum. Removing a row of rods creates
the single mode PC waveguide with effective width of order
of a few a.?’-3? The waveguide supports a single wide band
of guided mode spanning from 0.312 to the upper band edge.
The dispersion relation of the propagating guided mode is
shown in Fig. 10(b) of Ref. 27. Therefore such a PC forms
the directed continuum of TM electromagnetic field.>>-2

In the framework of the Feshbach’s theory of resonances,
Friedrich and Wintgen’ have shown that BIC occurs due to
the interference of resonances for their crossing. Therefore
the simplest PC system which might demonstrate such a phe-
nomenon consists of, at least, the single mode PC waveguide
side coupled to two defects or two single mode cavities. The
system was considered as a realization of model®* in PC 283
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FIG. 1. PC consists of a square lattice of dielectric rods

(e=11.56) of radius 0.18a in air. The defect rods of the same radius
but with different e=1 (air) in PC shown by bold circles define the
left and right waveguides. Filled circles show additional local defect
rods with variable dielectric constant €; which gives rise to scatter-
ing of propagating mode in the left and right waveguides. The scat-
tering region () includes an area of local defects as parts of
waveguides ()¢ and Qgs. Frame shows all rods involved for the
calculation of the transmission.

as well as by the solution of the Maxwell equations.>®> More-
over that system is similar to the double dot system which
was considered in many publications to demonstrate
BICs.%!13:17:2021 The total system is shown in Fig. 1 where
two interacting defect rods shown by filled circles are
coupled with the photonic continuum.

In Fig. 2 we show the frequency of electromagnetic field
varies dependent on the dielectric constant of single isolated
defect cylinder. Next Fig. 3 demonstrates that this electro-
magnetic field is localized in the vicinity of the defect rod.

In order to consider the BICs we solve the Maxwell equa-
tions for the TM mode in the PC with defect rods by expan-
sion of electromagnetic field over maximally localized pho-
tonic Wannier functions.”’® As a result we formulate the
effective model on a squared lattice and derive the non-
Hermitian effective Hamiltonian of the open system with
complex eigenvalues.'® Then BIC can be easily found by the
condition that at least one of the complex eigenvalues be-
comes real.'82*

II. LATTICE MODEL DESCRIBED LIGHT TRANSMISSION
IN THE DEFECT PC

In the present section we borrow notations from the re-
view by Busch et al.?’ The description of defect structures
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FIG. 2. The frequency of isolated bound mode for the single
isolated defect cylinder as dependent on its dielectric constant €.
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FIG. 3. (Color online) Pattern of localized solution for electro-
magnetic field of the isolated defect cylinder for a frequency taken
from Fig. 2. The pattern very slowly changes with variation of this
frequency.

embedded in the PC starts with the wave equation for the
TM mode of electromagnetic field:

?

V2 + —[e(r) + Se(r)] (E(r) =0, e(r+R)=¢(r), (1)

c
where R=a(je,+me,) runs over cells of a square lattice of
rods. e,,e, are the unit vectors of the square lattice. The
dielectric constant is considered to be e(r)= e inside the rods
and unit outside. Because of the Bloch-Floquet theorem the
solution of Eq. (1) can be written as E,(r+R)

=exp(ikR)E,(r) where the index n enumerates the Bloch
bands with the following normalization

f PrE (D)D) Eyno (0) = 5,0 Ok -K).  (2)

The photonic Wannier functions W, are defined through a
lattice Fourier transform

W,g(r) = Vwsc f d*k exp(— ikR)E,(r), 3)
BZ

(2m)?

of the Bloch functions, E,(r). Here, Vygc denotes the vol-
ume of the Wigner-Seitz cell. The photonic Wannier function
W, has the frequency range covered by band n. Because of
the translational invariance W,g(r)=W,o(r—R). Moreover
the photonic Wannier functions obey the following normal-
ization condition:

J der:R(r)E(r)Wn’R’(r) = 5nn'5RR’ . (4)

However these Wannier functions are poorly localized.
Marzari and Vanderbilt®® (see also Ref. 27) proposed an ef-
ficient scheme for the computation of maximally localized
Wannier functions by a superposition of the Bloch solutions
E, i (r) from Ny, different bands,
Ny
Ex(1) = 2 Upn(K)E(r). (5)

m=1

The matrix elements of transformation U,,,(k) are found nu-
merically by minimization of an appropriate spread func-
tional,
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Q=> [(n0]r*|n0) — (n0|r|n0)], (6)

(nR[f(r)[n'R") = f W, ()W, (D) e(r)f(r).  (7)

The defect rods in the PC are presented in Eq. (1) by a
change of the dielectric constant Se(r). In particular if to
arrange defect rods into a chain, then

oo

Swe(r)=(ey—€) 2 O(r—R,). (8)

m=—m.

This chain forms guided waveguide for the light and is
shown in Fig. 1 by bold circles. ©(r) defines the area of the
defect rod, ®(r)=1 inside a defect rod and O (r)=0 outside.
Moreover we introduce additional N, defect rods as shown in
Fig. 1 by filled circles,

Ny
Sse(r) =2, (e,~ ©O(r-R,), )
d=1

where the dielectric constants €, are assumed can vary. The
subscripts W and S in formulas (8) and (9) mean waveguide
and scattering defects.

After expansion of electric field over the maximally local-
ized Wannier functions E(r)=2,zE,gW,r(r) the basic Eq.
(1) becomes?’

2
nn' c nn'
> [%&mr + Dy — (;) ARR,]EH,R, =0, (10)

n'R’

nn' Vwsc 21, ik(R-R’) Wik :
ARR’ Ry d’ke E U:l—m(k) T Umn’(k)7
m

(277')2 BZ

Digys = f Wi (0)[Sye(r) + Sse(r)IW, g/ (r).  (11)

Here w,, are the photonic dispersion relations with respect
to the wave vector k in ideal PC. Vg denotes the volume

’
nn

of the Wigner-Seitz cell. The matrix elements A;’{;é, and Dgp,
are real and rapidly decay with growth of |R-R’|.

III. EFFECTIVE HAMILTONIAN FOR PHOTONICS

Among many other quantum mechanical concepts there is
a non-Hermitian effective Hamiltonian which describes open
system. The concept is based on the Feshbach projection
operator technique®” (see also Ref. 38). In this formalism, the
whole function space is divided into two subspaces that are
coupled with one another. Discrete states localized inside of
closed system form one of the subspaces while the con-
tinuum of extended propagating solutions of waveguide are
responsible for the outer subspace. Then projection of the
Hamilton operator of the whole system H=Hg+2(H¢
+Vge+Vep) onto the space of discrete states of the closed
system formulates the effective Hamiltonian,37-39-42
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1

Hy=Hg+ 2, Vege————V¢p. 12
eff =11p % BCE+_HC CB (12)

Here Hp is the Hamiltonian of the closed system, V- and
Vep stand for the coupling matrix elements between the
eigenstates of Hy and the waveguides that may consist of
different continua C, and E is the energy of scattering par-
ticle. The term E*=E+i0 ensures that only outgoing waves
will be present in the exit continua. As a result the effective
Hamiltonian (12) is non-Hermitian whose complex eigenval-
ues z) of the effective Hamiltonian determine the positions as
Re(zy) and widths of the resonance states as —2 Im(z,). For
the limit Im(zy) — 0 the corresponding eigenfunction of H
is becoming the BIC localized interior of the closed
system,!8:24

Our aim then is to formulate the non-Hermitian effective
Hamiltonian for the PC waveguide coupled to the defects.
The particular case of that system is shown in Fig. 1. There
are two defect cylinders shown by filled circles that are
coupled to the propagating TM mode in the waveguide of PC
shown by bold circles. The direct way to derive the effective
Hamiltonian would be calculation of matrix elements of cou-
pling operators in Eq. (12). This way in the tight-binding
approach is given in Refs. 43 and 44. However, in the PC we
cannot restrict ourselves by the hopping matrix elements be-
tween the nearest neighbors only. Moreover each site is pre-
sented by the four Wannier states. The coupling of the Wan-
nier functions is relevant at the distances between rods till
4a.%” That also agrees with our numerical practice. As a re-
sult, in the PC we obtain the two-dimensional lattice model
shown in Fig. 1 instead of simple tight-binding model
coupled to aside defects.***> The coupling matrix is to be
calculated in regions labeled in Fig. 1 as ., where C
=L,R. Therefore the calculation of the coupling matrix in
Eq. (12) is formidable task as different from the tight-binding
models in quantum mechanics.*3#*

Here we use a different approach to formulate the effec-
tive Hamiltonian based on the Ando scattering theory in
wires* generalized for the present case of the PC. Let us first
briefly outline the Ando’s approach for the one-dimensional
tight-binding model*® for the reader’s convenience. The
model consists of the N-site wire coupled to the ideal semi-
infinite tight-binding wires (leads), left and right, via the cou-
pling constant v:

o0

H=-21]j)}j+1|+H.c, (13)

—o0

where 7;=1 everywhere, except fo=fy=v. In the left ideal
wire the solutions are composed of the right-going (incident)
exp(ikja) and left-going (reflected) r exp(—ikja) solutions.
Here r is the amplitude of reflection. Therefore, the ampli-
tude of wave function at the utmost right point j=0 is

o=t + o - (14)

Then the solution at the nearest site j=—1 can be written as
follows:*
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Yo =F o+ [F - F 'y, (15)

where for the one-dimensional tight-binding chain F_
=exp(—ika) and F_ =exp(ika). On the other right wire only
right-going (outgoing) wave exist at site N+ 1. Therefore,

Uno=F .- (16)

Consequently writing the Schrodinger equation for
Yo, U5 ..., ¥y, Yy, We can complete the system equations
and obtain the Green’s function, which defines the transmis-
sion from site O to site N+1:

1
GE)=—", 17
(E) E_H, (17)
with the matrix of rank N+2,
—exp(ika) —v 0 ... 0 0
-v 0o -1 ... 0 0
0 -1 0 0 0
He = .
0 o o0 ... 0 -v
0 0 o —v —exp(ika)

(18)

The effective Hamiltonian (18) is not Hermitian because of
terms exp(ika) resulted by that the wave exp(ikaj) incidents
from the left of wire.

It is important that Ando presented the case of two-
dimensional tight-binding wire consisted of M lattice sites in
the direction orthogonal to the transport axis. Then the solu-
tion at the jth slice of the wire is W; consisting of M sites
obeyed to

At the slice j=0 there are the M left-going solutions U™
=P, ¥y, ..., ¥, corresponding to N[ ,\5,...,\;, and
the M right-going solutions U~ =¥ ,¥,,..., ¥, corre-
sponding to A", A5, ..., \,,. Relations (14)—(16) remain the
same however with

«—

_
Fy=UAU, s ={ , (20)

where A; is the diagonal matrix consisted of eigenvalues
NN, ..., N} The corresponding matrix of the effective
Hamiltonian acquires the rank (N+2)X M and is given in
Ref. 46.

Now we can apply the described derivation of the effec-
tive Hamiltonian to the PC structure shown in Fig. 1. Similar
to the tight-binding leads we have the one-dimensional peri-
odicity of the waveguides. The only difference is that the
number of hopping matrix elements substantially exceeds
unit. Let us write the solution in the left waveguide in the
same form as it is given in Eq. (14), i.e., superposed of
incident and reflected waves. Correspondingly in the right
waveguide we have only transmitted wave. These solutions
are to be matched with unknown solution in the scattering
region labeled in Fig. 1 by Q. The matching is performed in
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the regions Q¢ U Q g, where C=L,R. We present the basic
Eq. (10) for a whole PC as

H(w)V =0,

with matrix elements of the “Hamiltonian” operator given by
expression in round parentheses and the state W is a row
vector of amplitudes E,g. This equation presents the equa-
tion for the eigenvector ¥ and eigenfrequencies defined by

Det[ H(w)]=0. We decompose the operator H as follows:
(Hp+ V, + Vg + Hy)¥ =0, (21)

where H p involves all couplings inside the scattering region
Qy, VC,C =L,R describe couplings of the scattering region

with external one (), and I:IOul includes all couplings in the
region (. The region (), comprises all rods beyond (g
and includes in particular the regions .y as parts of
waveguides. The photonic eigenmodes labeled by integers p
in semi-infinite waveguides consist of propagating and de-
caying (evanescent) waves, right-going v; and left-going
v . Moreover we assume that the mode p, incidents from
the left waveguide which scatters onto reflected and trans-
mitted p modes. These modes are calculated numerically in
Refs. 27 and 47 and shown in book.?” The solutions are
given at each slice perpendicular to the waveguide axis by
the vector of dimension Ny, X Ng. Here Ny, is a number of
Wannier functions and Ny, is a finite number of lattice sites,
surrounding defect rods inside each slice including the defect
rod, for which the coupling of Wannier functions is relevant.
Specifically, as shown in Fig. 1 Nz=7. Then, each guided
photonic mode is given by the dispersion relation associated
with the wave vector kp(a)), where p=1,...,2NyNgL and L
is the distance above which the coupling between slices can
be neglected. We consider that only one photonic mode p, is
propagating while other are evanescent. As shown in Fig. | a
length of buffer region Q ¢y U Qg is just 2L taken equal to
eight.

Next, similar to Eq. (19) we write the relations which
connect the regions Q- of the waveguides with the regions
Qg of the scattering region,?’

U;(‘QLS) = )\pv;(QLW)7
07 Q) = N0, (),
U;(‘QLW) = ApU;:(QLS) ’

U;(QRS) = ApU;(QRW)’ (22)

where \,=exp[—k,(w)a], A, =explk,(w)a], A
=explik, (w)al, and Ap0=exp[—ik1,0(w)a].27

Let us, first, consider a matching at the right buffer region
QgsU Oy where only the outgoing modes v,” exist. If there
is some superposition of the modes in the region g,

Po
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N
v (Qgs) = E apU,T(QRS)a (23)
p=1

then we have the following superposition in the next region
Qpw because of relations (22)

N
UH(QRW) = E ap)\pv;(QRS)’ (24)
n=1

where N=2NyNiL is a total number of photonic modes in
the waveguide (the number of continua). Introduce square
matrices

0% = [UT(QRS)J};(QRS)? cee ,U;(QRS)],

and the row vector AT=(a,,a,, ...,ay). Then from Eq. (23)
we have

A=U""o7(Qgy).

Correspondingly from Eq. (24), we obtain
v (Qgw) = f‘HUH(QRS) = UHX@UH(QRS), (25)

where X is the diagonal matrix consisted of eigenvalues \,,.
Similar relations can be written for v with a difference that

matrix U, consists of the modes v‘p_(QR).
The right buffer region (), consists of the region g, a
part of the scattering region, and gy, the part of the right

waveguide. Therefore, the operator H decomposes in this
region as follows:
; Hs Vsw
H(Qp) = ( I (26)

SwW HRW

According to Eq. (25) the solution in the region )y can be
written as

v (Qgs)
b (Qp) = { R 27)
T_ v (Qgs)
Therefore, with account of Eq. (26) we have
H(Qpv™ (Qp) = Her o™ (Qgs),
where
Hepp=Hys+ VT . (28)

In the left buffer region (); the solution consists of the
incident and reflected waves U(QL)=U;(;(QL)+UH(QL). Be-
cause of equation similar to Eq. (27) it takes the following
form:

T<—U (QLS) :| , (29)

Q) =v,(Q
U( L) va( L)+[ v(_(QLS)

A A

where T_=U_A U?!, where A= diag(A,). Then

PHYSICAL REVIEW B 78, 075105 (2008)

0(Q) =110, (Qp9) + T v (Q)
= (fj - 7A1<—)U;O(QLS) + YALU(QLS)- (30)

Similar to Eq. (26) we write the operator H in the left buffer
region ;=0 U Q, as follows:
X Hyy V3,
A0, =< ALW Aws).
Vs Hrs

31)

Consequently one can write

U(QLW) }
v(Qys)

= I:ILSU(QLS) + ‘A/ws(f:l - YAL)U,TO(QLS)-
(32)

Finally from Egs. (28) and (32) we obtain the closed
equation for the vector of state ¥ mapped onto interior the
scattering region {)g. This equation takes the following form

H(Q)v(Qy) = ﬁ(m)[

HeW == Viys(T~ = T, (Qy), (33)

He(w) = Hy(w) + VyT_(0) + VisT_(0),  (34)

with account of Egs. (26)—(28). Equation (33) is equivalent
to the Lippman-Schwinger equation in quantum mechanics.
In the last case the scattering wave function inside the scat-
tering region obeys the following equation;'8-3%40:44

(Heff—E)|¢s>= VL|E,L), (35)
provided that a quantum particle incidents from the left at the
state |E,L). Vg, is the coupling matrix between lead L and
dot B. There is however an important difference between the
quantum case and photonic one. A free parameter, the energy
of incident quantum particle, is separated in the left hand of
the Lippman-Schwinger Eq. (35). For the PC case the free
parameter, frequency w of incident wave, is the argument of
all operators in Eq. (34). The right hand of Eq. (33) shows
that the guided photonic mode p is the source of light inte-
rior the scattering region, i.e., in the vicinity of the defect
rods. Solution ¥ of Eq. (33) can be expressed via the Green

function which is an inverse of the operator He(w). As in
quantum mechanics the scattering boundary condition that
ingoing wave scatters onto outgoing waves gives rise to that

the operator I:ICff(w) is non-Hermitian. Its complex eigenval-
ues z(w) have a simple physical context: Re[z(w,,) + w,,] give
the positions of resonances w,, and I',,=—2 Im[z(w,,)] do
their widths in the wave transmission provided that the fix
point equation ,,=Re[z(w,,)]+w,, is fulfilled.*! Therefore,
for PC the positions of resonances are given by equation
Re[z(w,,)]=0. Except some simple cases this nonlinear fix
point equation can be solved only numerically.
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FIG. 4. (Color online) Examples of BICs for different arrangements of the defect rods with radii r,,q=0.18a and e=11.56. (a) The defects
are disposed perpendicular to the waveguide. The BIC state odd relative to the transport axis for the parameters wa/2mc=0.3557 and
€,=2.7406. (b)—(d) The defects are disposed parallel to the waveguide. (b) The BIC state even relative to the axis perpendicular to the
transport axis for parameters wa/2mwc=0.3753 and €,=3.086. (c) The odd BIC for wa/2mc=0.3751 and €;,=1.9634. (d) The even BIC for
wa/2mwc=0.3279 and €,=5.5642. (e) The even BIC symmetrical relative to inversion of coordinates x——x and y——y for wa/2mc
=0.3752 and €;,=2.5646. (f) The case of different defect rods with r,,q=0.18a (left) and rq=0.45a (right) for wa/2mwc=0.3745 and

€41 208576, €d2=3' 1348.

As shown in Ref. 18, BIC W, as a peculiar solution of the

Lippman-Schwinger equation H,g(w,)W,=0 localized in the
scattering region, occurs in particular case of singular matrix

f[eff(ws)‘l. Therefore, we can formulate the equation for BIC
as follows:

det PAIeff(wS) =0. (36)

From the equation for the eigenvalues and right eigenvectors

Hegr(0)|20(0) = 2, (0) |23 (w), (37)

we can rewrite Eq. (36) as ll\z)(w,)=0. This equation is
equivalent to statement that, at least, one of the eigenvalues
of the matrix H(w) is to be zero at w=w,, i.e.,

z)\o(ws) =0. (38)

Equation (38) shows that the resonance width as
-2 Im[z(w,)] equals to zero, i.e., the BIC, on the one hand.
On the other hand, it does the frequency w, of the BIC by the
equation Re[zxo(ws)]zo. In order to achieve this condition
which is the necessary and sufficient one for BIC to exist, an
additional physical parameter is to be free.” We take here that
the dielectric constant of the defect rods €; can be varied. If
the eigenvector W, of matrix H.{w,) is orthogonal to the
right-hand state in Eq. (33), then the solution of the Eq. (33)
becomes superposed;

V=aV +V,. (39)
Here W, is the localized BIC, ‘I’p is particular extended so-
lution of the Lippmann-Schwinger Eq. (33), and « is arbi-
trary factor. Therefore, at the BIC point the solution becomes
degenerated.

The rank of the matrix Heff equals number of sites in the
region (), multiplied by the number of the Wannier functions
Eq. (4). Therefore Egs. (33) and (36), complemented by the

fix point equation, and H,(w,)¥,=0 can be solved only nu-
merically. First, we show in Figs. 4(a)-4(e) examples of
BICs for different arrangements of the defect rods in vicinity
of the waveguide including the case of different defect rods
Fig. 4(f). For better illustration of the space profile of BIC
we complement Fig. 4 by three-dimensional (3D) plot for
particular case of the different defect rods. One can see from
Figs. 4 and 5 that the BICs are mostly localized in the defect
rods however with inclusion of neighbors. Figures 4(c) and
4(d) demonstrate odd and even BICs respectively for the
same structure of the defect rods in PC.

An example of the extended solution W, is shown in Fig.
6 (inset) which describes the transport behavior of EM wave
in the vicinity of the BIC point.

Similar to the open quantum dots'* the line of maximal
transmission touches the line of the zero transmission at the
BIC point as shown in Fig. 7. The transmission probability is
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FIG. 5. (Color online) 3d plot of BIC for the case in Fig. 4(f). It
is shown that BIC is asymmetric because of different defect rods.

defined as T=|ap0|2 where a,, is the coefficient of expansion
of solution in the right waveguide over the right-going waves
Eq. (23). The phenomenon that in a vicinity of the BIC point
the Breit-Wigner resonance and Fano line shape appear in
the same energy window was found numerically by Kim et
al."> Moreover for the limit to the BIC point the Fano reso-
nance is collapsed!>® as one can follow up from Figs. 6 and
7. Analytically, the collapse of the Fano resonance for an
approaching to the BIC point was considered in the two-level
approximation.'*!® In the very vicinity of the BIC point
whether the transmission is unit or zero crucially depends on
a way to approach the BIC point in the parametric space of
frequency and dielectric constant of the defect rods €;. Simi-
lar, the superposition coefficient « in Eq. (39) does. Figure 6
shows the transmission probability for the particular case of
two choices of the dielectric constant of the defect rods and
demonstrates collapse of the Fano resonances.

IV. SUMMARY

The typical scattering problem considers a wave which
incidents and scatters by some local inhomogeneity. For the
present case of the photonic crystal with defect layer the
former is the EM wave which can propagate without change

(m-ms)a/2nc X 10-5

FIG. 6. (Color online) The probability of transmission of propa-
gating photonic mode as dependent on the frequency in the vicinity
of BIC shown in Fig. 4(b) for two sets of the dielectric constant of
the defect rods w,=0.3753, €;,=3.08351791, €;,=3.088568 (solid
line), €;,=3.06331, and €,;,=3.10877 (dashed line). BIC appears for
€,1=€,4=3.08604. The inset right shows pattern of transport solu-
tion W, at this point.

PHYSICAL REVIEW B 78, 075105 (2008)

of shape. The frequency of the wave fills some continual
band forming a continuum of the Hilbert states. An inclusion
of the additional defects in the vicinity of the defect layer
gives rise to scattering of the incident waves. A knowledge of
solution for the incident and reflected waves allows us to
reduce the full Hilbert space to the finite number of states
which describe only the scatterer. There are two ways to
achieve that. The first is the N-level Friedrichs-Fano ap-
proach for that BIC can be diagnosed by a square integrable
condition->7484% for wave function. The second is the Fes-
hbach projection approach for that the total Hamiltonian is
projecting onto the discrete states of the scatterer subsystem.
This procedure allows to formulate the Hamiltonian of the
open quantum dot as the non-Hermitian Hamiltonian with
complex eigenvalues.’”~*" Then BIC appears for real eigen-
value of the effective Hamiltonian.”>!>!% Recently it was
proven that both approaches to find BIC are equivalent.?*
For tight-binding modeling of quantum waveguide the
formulation  of  the  effective = Hamiltonian  is
straightforward.*>** However for the directed waveguide in
PC there is a finite number of bands, Ny, while a number of
hopping matrix elements is not restricted by only nearest
neighbors as the case of the quantum waveguide. Therefore,
the derivation of the effective Hamiltonian is not so simple
task. Accordingly, based on the Ando’s approach*® we devel-
oped a different way to derive the effective Hamiltonian. The
way is based on enlargement of the scattering region by ad-
dition of the buffer regions (5, where C=L,R as shown in
Fig. 1. The length of these regions is just the distance for
which couplings of Wannier functions are relevant. The key
point in our approach is the relations (22) which establish
linear relations between amplitudes of incoming and re-
flected waves in the outside regions )y and the inside ones
Q. As a result we obtain the relations (27) and (29) which,
in turn, allow us to obtain an analog of the Lippman-
Schwinger Eq. (33). The left-hand operator in the Lippman-
Schwinger equation is just H.;—E for quantum mechanics.
For PC case this operator is H.(w) whose complex eigen-
values z(w) are responsible for positions of resonances w,,
via the fix point equation Re[z(w,,)]=0 and their widths I,
=-2 Im[z(w,,)]. Such a treatment of complex eigenvalues of

0.377r

wa/2n ¢

0.375(

0'372.4 4.7 5 A 5.3 5.6

FIG. 7. (Color online) The maximal transmission of propagating
photonic mode (dashed line) touches the line of the zero transmis-
sion (solid line) at the BIC point. The structure is similar to that as
in Fig. 4(f) but the left defect rod has a radius r,,q=0.108a. The

dielectric constants of the defect rods were chosen as €;=5.5536
—A/2 and €,=5.5536+A/2.
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the effective Hamiltonian is justified for small resonance
widths compared to their positions.>

Because of interference of resonances caused by two de-
fect rods it might happen that for some peculiar values of the
dielectric constant €, of the defects one of the resonance
width becomes zero while the other achieves maximum. For
model case of two-level system coupled to waveguides such
a case was established by Fan er al.!! They derived the
widths of the resonance states equal to zero for kl=m(2n
+1),n=0,1,2,... for the even defects state and ki=m2n,n
=1,2,... for the odd state correspondingly. Here / is a dis-
tance between the defect rods. It is worthy to note that our
numerical computations of real system of pair defect rods in
PC confirm these equations with high accuracy with slight
deviation because of evanescent modes. It is clear that a

PHYSICAL REVIEW B 78, 075105 (2008)

peculiar singular point of BIC cannot be achievable physi-
cally, at least, because of finite Q factor of the PC. However
for the sufficiently high Q factor the Fano resonance width
becomes very narrow as shown in Fig. 6. Moreover, the so-
lution for transmission of photonic waves can be written in
the form Eq. (39) in the vicinity of BIC. The coefficient «
depends crucially on a path to the BIC point.!*!® In particu-
lar, one can always choose the paths in the space €; and w to
achieve that a contribution of BIC in the transport solution
becomes dominant.
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