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We investigate numerically the local density of states �LDOS� in the vicinity of a vortex core in a ferro-
magnetic superconductor. Specifically, we investigate how the LDOS is affected by the relative weight of the
spin bands in terms of the superconducting pairing and we also examine the effect of different pairing sym-
metries for the superconducting order parameter. Our findings are directly related to scanning tunneling mi-
croscopy measurements and may thus be highly useful to clarify details of the superconducting pairing in
recently discovered ferromagnetic superconductors.
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I. INTRODUCTION

Recently, UCoGe was added to the distinguished list of
materials �already featuring UGe2 and URhGe� that appear to
display coexistence between ferromagnetism and
superconductivity.1–3 While ferromagnetism and conven-
tional superconductivity may be shown to be antagonistic in
terms of a bulk coexistent state,4 several studies have pointed
out the possibility of a nonunitary, spin-triplet superconduct-
ing state coexisting with itinerant ferromagnetism.5–10 The
synthesis of two important phenomena in condensed-matter
physics, i.e., ferromagnetism and superconductivity, is not
only interesting from the point of view of basic research but
has also spawned hope of potential applications in low-
temperature nanotechnology.

A number of questions arise concerning the nature of the
coexistence of ferromagnetic and superconducting order. In
particular, it is crucial to address �i� whether the two long-
range orders are phase separated or not, �ii� whether the mi-
croscopic coexistence is spatially homogeneous or not, and
�iii� what the symmetry of the superconducting order param-
eter is. Concerning the first question, the answer clearly ap-
pears to be “yes” since the onset of superconductivity ap-
pears inside the ferromagnetic part of the phase diagram.6

The second question is, however, still open. Some authors
have studied spatially uniform coexistence of ferromagnetic
and superconducting order7–11 while others have pointed out
the intriguing possibility of a spontaneously formed vortex
lattice state12–14 due to the internal field. It has been argued15

that a key factor with regard to whether such a spontaneous
vortex phase appears or not is the magnitude of the internal
magnetization M. Finally, although the issue of pairing sym-
metry raised in the third question has not been established
conclusively, the most likely option appears to be a nonuni-
tary, spin-triplet superconducting state where the spin of the
Cooper pair couples to the bulk magnetization through a
third order term �i�dk�dk

�� ·M in the Ginzburg-Landau free
energy. Several studies16–20 have addressed the means by
which one may identify the pairing symmetry of the super-
conducting order parameter in a ferromagnetic supercon-
ductor �FMSC� mainly focusing on transport properties.

Clearly, it would be highly desirable to clarify experimen-
tal signatures of a possible spontaneous vortex lattice phase

realized in a ferromagnetic superconductor. In this work, we
present numerical results for the local density of states
�LDOS� in the vicinity of a vortex core of a ferromagnetic
superconductor. Our approach is based on the quasiclassical
theory of superconductivity, and takes into account several
crucial factors such as the depletion of the order parameter
near the vortex core in addition to self-consistently obtained
magnetic and superconducting order parameters. Our results
are directly relevant to scanning tunneling microscopy
�STM� measurements,21 and may be useful to clarify signa-
tures of the existence of a spontaneously formed vortex lat-
tice and also the pairing symmetry of the superconducting
order parameter.

This paper is organized as follows. In Sec. II, we establish
the theoretical framework employed in this work. Namely,
we use the quasiclassical approximation and solve the Eilen-
berger equation in the vicinity of the vortex core with appro-
priate boundary conditions. In Sec. III, we present our results
for the spatial and energy dependences of the local density of
states near the vortex core. Specifically, we investigate how
the relative weight of the spin bands in terms of the super-
conducting pairing and different pairing symmetries for the
superconducting order-parameter affect the density of states.
In Secs. IV and V, we discuss and summarize the main re-
sults of the paper. We will use boldface notation for two

vectors: . . .ˆ for 4�4 matrices and . . . for 2�2 matrices.

II. THEORETICAL FRAMEWORK

It is generally believed that the pairing symmetry in fer-
romagnetic superconductors may be classified as a nonuni-
tary, spin-triplet state.5,7,8 Our starting point is the quasiclas-
sical Eilenberger equation22 for such a system, which, in the
clean limit, reads �see Appendix A for details�

ivF · �ĝR + ���̂3 + M̂ + �̂�pF�, ĝR� = 0, �1�

where � is the quasiparticle energy measured from the Fermi
level, vF is the Fermi velocity, and �. . .� is a commutator. The
exchange field h and the superconducting order parameters

�� are contained in terms of M̂ =h diag��3 ,�3� in addition to
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�̂�pF� = � 0 ��pF�
− ���pF� 0

� ,

��pF� = ��↑�pF� 0

0 �↓�pF� � . �2�

The matrices �̂i and �i are defined in Appendix A. The re-
tarded part of the Green function, ĝR, will have the structure

ĝR = � g�r,pF,�� f�r,pF,��

− f��r,− pF,− �� − g��r,− pF,− �� � ,

and must satisfy the normalization condition �ĝR�2= 1̂. Due to
the internal-symmetry relations between the components of
ĝR, one may parametrize it very conveniently by means of a
so-called Ricatti parametrization.23,24 In the absence of inter-
band scattering, the Eilenberger equation decouples into two
2�2 equations as follows:

ivF · �g� + ���3 + �h�0 + ���pF�,g�� = 0, �3�

where we have introduced

g� = N��1 − a�b� 2a�

2b� − 1 + a�b�
	, N� = �1 + a�b��−1,

���pF� = � 0 ���pF�
− ��

��pF� 0
� . �4�

Note that the gap matrix in Eq. �4� is a 2�2 matrix in
particle-hole space while the gap matrix in Eq. �2� is a 2
�2 matrix in spin space. From Eq. �3�, one obtains two
decoupled differential equations for a� and b�:

ivF · �a� + 2a�� − a�
2��

��pF� − ���pF� = 0,

ivF · �b� − 2b�� − b�
2���pF� − ��

��pF� = 0. �5�

Note that the above equations do not have any explicit de-
pendence on the exchange splitting h. As we shall see later,
the exchange splitting does however enter implicitly through
the spin-dependent gaps ��. Note that the magnetic vector
potential A may be incorporated above simply by a shift in
the quasiparticle energies: �→�+evF ·A. In a gauge that ren-
ders the superconducting gaps to be real, one finds that eA
→eA−�� /2, where � is the superconducting phase associ-
ated with the broken U�1� symmetry. Therefore, the total
Doppler shift in the quasiparticle energies is �→�
−emvF ·vs, where the gauge-invariant superfluid velocity is
vs= ���−2eA� / �2m�. Below, we keep the distribution of the
superconducting phase in the order parameter and consider
the case with Ginzburg-Landau parameter �	1, for which
the magnetic vector potential A may be neglected. This fol-
lows since we are considering only one single vortex, i.e.,
the zero-field limit, such that only gauge-field fluctuations
around zero could possibly be relevant. However, assuming
that the superconductors are strongly type II with �	1,
gauge-field fluctuations are suppressed.25,26

In order to solve the above Ricatti equations, we follow
closely the procedure of Ref. 23. Let us consider the term

with vF ·� in more detail. Assume that we have a cylindri-
cally symmetric vortex situated at ra=rb=0 with its axis
along ĉ. The position vector in this coordinate system then

reads r=raâ+rbb̂. Assuming that the transport of quasiparti-

cles primarily takes place in the â-b̂ plane, we may define
the Fermi velocity as

vF = vF�cos 
â + sin 
b̂� 
 vFv̂ , �6�

and its orthogonal vector as û=−sin 
â+cos 
b̂. Thus, the
position vector r may also be expressed as r=xv̂+yû, where
we have defined

x = ra cos 
 + rb sin 
, y = − ra sin 
 + rb cos 
 . �7�

Using the coordinate system v̂-û, the Ricatti equations may
be rewritten as

ivF�xa� + �2� − ��
�a��a� − �� = 0,

ivF�xb� − �2� + ��b��b� − ��
� = 0, �8�

where a�=a��x ,y� and ��=���x ,y�. The above equations
may be solved by imposing boundary conditions for �a� ,b��
in the bulk of the superconductor. The Ricatti equations with
��0 for a� and b� are stable for integration from x→ �−��
and x→�, respectively �opposite for �0�.23 The boundary
conditions then read as

a��x → �− ��� = �� − �2 − ����2�/��
� ,

b��x → �� = − �� − �2 − ����2�/��. �9�

The superconducting order parameter �� is now modeled in
the presence of a vortex centered at ra=rb=0. In general, the
superconducting order parameter may be written as27

���r,
,�� = ��,0���
,��F�r�eim�, �10�

assuming a vorticity m. Here, �0 is the gap magnitude,
��
 ,�� is a symmetry factor for the gap �taking into account
both anisotropicity and frequency dependence�, F�r� models
the spatial depletion of the gap near the vortex core, and
tan �=rb /ra. We will here restrict our attention to an even
frequency, p-wave symmetry, which is believed to be the
most likely candidate for the order parameter in ferromag-
netic superconductors. Assuming that the angular symmetry
is the same for both the majority- and minority-spin gaps,
and considering the usual case of m=1, we explicitly have

���r,
� = ��,0��
�tanh�x2 + y2

�
	 x + iy

x2 + y2
. �11�

In what follows, we will compare the cases ��
�=cos 
 and
��
�=ei
, and also investigate how the LDOS changes de-
pending on the relative weight of the superconducting insta-
bility in both spin bands. The normalized LDOS for spin
species � is given by

N��r,�� = �
0

2� d


2�
Re��1 − a�b��/�1 + a�b��� , �12�

and we introduce the total LDOS in the standard way as
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N�r,�� = �
�

N��r,��/2. �13�

To account for a finite quasiparticle lifetime �, we let �→�
+i�, where ���−1. From now on, we fix �=0.1�↑,0 and
comment further upon the role of inelastic scattering in Ap-
pendix B.

Even if the exchange field h is absent from the Eilen-
berger equation, the LDOS is not independent of the value of
h. The reason for this is that the magnitude of the supercon-
ducting gaps depends on the strength of the exchange split-
ting. Following the approach of Refs. 8 and 9, we derive
from a weak-coupling mean-field theory that the self-
consistent solution of bulk superconducting gaps in the T
→0 limit may be written as

��,0/�0 = c exp�− 1/�g1 + �h/��� , �14�

where the prefactor is equal to c�2.43 for a px-wave sym-
metry ���
�=cos 
� and c=2.00 for a chiral p-wave symme-
try ���
�=ei
�.8,9 Here, g=V0N0 is the weak-coupling con-
stant, which we set to g=0.2, and �0 is the typical frequency
width around Fermi level for the bosons responsible for the
superconducting pairing. Above, V0 is the strength of the
pairing interaction, N0 is the LDOS at Fermi level in the
normal state, and � denotes the Fermi energy. The reader

may consult Appendix C for a derivation of Eq. �14�. We find
that the ratio between the majority- and minority-spin gaps
may be written as

�↑,0

�↓,0

 R�h/�� = exp�1 + h/� − 1 − h/�

g1 − �h/��2 � , �15�

when assuming that h /�� �0,1� �shown in Fig. 1�. In UGe2,
the energy splitting between the majority- and minority-spin
bands was estimated2 to lay around 70 meV, which yields
R�1.42 when assuming �=1 eV.

III. RESULTS

We begin by plotting the energy-resolved LDOS in the
vortex core �ra=rb=0� for an order parameter that has line
nodes in momentum space. Such an order parameter was
recently proposed to be realized in UGe2 by Harada et al.6

and it was argued that the superconducting pairing only took
place in the majority-spin band. To investigate how the rela-
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FIG. 1. �Color online� Schematic of the model.
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FIG. 2. �Color online� The ratio R between the majority- and
minority-spin gaps as a function of h /� as obtained from a self-
consistent, mean-field solution �Eq. �15��.
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tive magnitudes of the majority- and minority-spin gaps �Fig.
2� affect the LDOS in the vortex core, we plot the LDOS for
several values of the ratio h /� in Fig. 3. As usual, the LDOS
is strongly enhanced for subgap values due to the existence
of bound states within the vortex core.28 The presence of two
gaps in the system should manifest itself in the form of non-
monotonous behavior in the subgap spectrum but it is not
possible to discern such behavior unambiguously from Fig.
3. This effect may be masked by strong inelastic scattering,
modeled here by the parameter �, which effectively smears
the LDOS. The effect of increasing the exchange field is seen

to suppress the deviation from the normal-state LDOS. This
may be understood by noting that the minority-spin gap is
strongly reduced with increasing exchange field and that the
corresponding increase in the majority-spin gap is not able to
compensate for the suppressed regime of bound states within
the core.

We next study the chiral p-wave symmetry analogous to
the A2 phase in liquid 3He and plot the energy-resolved
LDOS for several values of h /� in Fig. 4. Although the
qualitative behavior is quite similar to Fig. 3, there are two
important distinctions. First, one notices that the chiral sym-
metry appears to have a much more pronounced influence on
the LDOS quantitatively, yielding a larger zero-energy peak
and larger subgap dips. This is in fact opposite what one
would have expected from tunneling conductance measure-
ments of px-wave and chiral p-wave superconductors, re-
spectively. For such measurements, the zero-energy peak be-
comes much larger in the px-wave case than in the chiral
p-wave case. Second, the subgap features associated with the
presence of two gaps were enhanced in Fig. 4 as compared to
Fig. 3. The nonmonotonous behavior for subgap energies is
present for all curves in Fig. 4 but the features indicative of
multiple gaps are most clearly seen for h /�=0.15, mani-
fested through an additional inflection point before the
normal-state LDOS is recovered. These differences could be
helpful in discriminating between different types of pairing
symmetries in ferromagnetic superconductors.

In order to show more clearly the contribution from each
spin band to the LDOS near the vortex core, consider Fig. 5
where we plot the total LDOS and the contribution from
each spin band for �a� ��
�=cos 
 and �b� ��
�=ei
. The rise
of the LDOS following the gap edge ��,0 of each spin band
occurs at different energies due to the exchange splitting.
This was revealed in the total LDOS as kinks located at two
distinct energies, which offers the opportunity to obtain ex-
plicit information about the relative magnitude of the two
gaps. The qualitative features are the same in Figs. 5�a� and
5�b� but they are quantitatively more pronounced in the chi-
ral p-wave symmetry case. This may be due to the fact that
the chiral p-wave gap has a constant magnitude ����
��=1�
while the px-wave gap varies in magnitude upon traversing
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around the Fermi surface. Therefore, the LDOS is more
strongly affected in the chiral p-wave case.

We now study the resolution of the LDOS in real space
for a fixed energy in Fig. 6. We have chosen R=2, corre-
sponding to h /��0.14, and have also chosen the line node
symmetry ��
�=cos 
. In all cases, the plots in Fig. 6 display
a twofold spatial symmetry, in accordance with the supercon-
ducting order parameter.23,29,30 The zero-energy peak present
for �=0 evolves into a dip structure at the vortex core upon
increasing the quasiparticle energy. The deviation from the
normal-state LDOS is still significant even at distances �2�
away from the vortex core around � /�↑,0=0.5. The qualita-
tive features are the same for the chiral p-wave symmetry in
Fig. 7 although the symmetry is now circular due to the
isotropy of the magnitude of the gap ����
��=1�.

IV. DISCUSSION

In our calculations, we have chosen a real gauge for both
superconducting order parameters ��, where �= ↑ ,↓. If the
two spin bands are completely independent, there is no phase
locking between the order parameters, which fixes the rela-
tive phase ��=�↑−�↓, where �� is phase associated with the
broken U�1� symmetry. The existence of two such phases
would imply that a U�1��U�1� symmetry is broken in a
ferromagnetic superconductor and would in principle allow
for two critical temperatures that may differ in magnitude.
However, if the two spin bands do communicate by means
of, e.g., spin-orbit coupling or impurity scattering, a term of
the form −� cos���� will appear in the free energy describ-
ing the system. This corresponds to a phase locking scenario
where the sign of � determines whether ��=0 or ��=� is
the energetically preferred relative phase. Above, we have
decoupled the two spin bands such that the relative phase of
�↑ and �↓ is of no consequence. Taking into account scatter-
ing between the spin bands would require solving coupled
Ricatti equations and investigating the effect of phase lock-
ing explicitly, which is beyond the scope of this paper.

In Fig. 5, we plotted the relative contribution from the two
spin bands to the LDOS near the vortex core to clarify how

the LDOS may give decisive clues about whether both spin
bands partake in the superconducting pairing or not. In prin-
ciple, it might be possible to probe explicitly the spin-
resolved LDOS by using a strong ferromagnetic STM, and
contrasting parallel and antiparallel relative configurations of
the exchange fields in the FMSC and the ferromagnetic STM
tip. The experimental realization of this particular proposal is
nevertheless probably challenging.

V. SUMMARY

In summary, we have numerically studied the LDOS in
the vicinity of a vortex core in a ferromagnetic supercon-
ductor. Specifically, we have investigated what influence the
exchange field and the symmetry of the superconducting or-
der parameter exhibit on both the spatially resolved and
energy-resolved LDOS. The symmetry of the spatially re-
solved LDOS near the vortex core, as revealed by STM mea-
surements, should give decisive clues about the orbital sym-
metry of the superconducting order parameter23,29,30 while
the energy-resolved LDOS could provide important informa-
tion about the presence of multiple gaps in the system. Our
results should be comparable to experimentally obtained
data, both qualitatively and quantitatively, and may thus be
helpful in clarifying the nature of the superconducting pair-
ing in ferromagnetic superconductors.

ACKNOWLEDGMENTS

The authors acknowledge A. Nevidomskyy and I. B. Sper-
stad for useful discussions. J.L. and A.S. were supported by
the Norwegian Research Council through Grants No.
158518/431, No. 158547/431, �NANOMAT�, and No.
167498/V30 �STORFORSK�. T.Y. acknowledges support by
the JSPS.

APPENDIX A: MATRICES AND QUASICLASSICAL
THEORY

The matrices used in this paper are defined as31

�1 = �0 1

1 0
	, �2 = �0 − i

i 0
	, �3 = �1 0
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�. A circular symmetry is observed in agreement with the symmetry of the order parameter.
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1 = �1 0

0 1
	, 1̂ = �1 0

0 1
	, �̂i = ��i 0

0 �i
	 ,

�̂1 = � 0 �1

�1 0
	, �̂2 = � 0 − i�1

i�1 0
	, �̂3 = �1 0

0 − 1
	 .

�A1�

Let us briefly sketch the way to obtain the quasiclassical
Eilenberger equations for a nonunitary, spin-triplet supercon-
ducting state coexisting with ferromagnetism. For further
background information on the quasiclassical theory of su-
perconductivity, the reader may consult, e.g., Refs. 32–36 for
nice reviews. We follow here closely the notation of Ref. 31.
Our starting point is the following Hamiltonian:

H = �
��
� dr��

†�r,t��−
�2

2m
1 − h�3	

��

���r,t�

− �
�
� drdr�����r,r����

†�r���
†�r�

+ ��
��r,r�����r���a�r�� . �A2�

The Heisenberg equation of motion for the above Hamil-
tonian was obtained in the standard way:

i�t�̂3��r,t� =� dr�Ĥ�r,r�,t���r,t� ,

Ĥ�r,r�,t� = �̂�r���r − r�� − �̂�r,r��, �̂�r� = −
�r

2

2m
1̂ ,

�̂�r,r�� = � 0 ��r,r��
���r,r�� 0

� ,

��r,r�� = diag��↑�r,r��, �↓�r,r��� . �A3�

For simplicity, we consider only the retarded component of
the Green function GR in what follows since the system is
specified exclusively by GR in an equilibrium situation. It is
defined as

G��
R �1,2� = − i��t1 − t2������1�,��

†�2��+� , �A4�

where the notation �Eqs. �1� and �2�� refers to the spatial and
time coordinates: �1�
�r1 ; t1�. We explicitly write the “+”
sign as a subscript to denote an anticommutator; else it is
implicitly understood that the notation �. . .� denotes a usual
commutator. Similarly, the anomalous Green function is
given by

F��
R �1,2� = − i��t1 − t2������1�,���2��+� . �A5�

One may construct 4�4 matrices in combined particle-hole
and spin spaces, known as Nambu space, in the following
manner:

ĜR�1,2� = � GR�1,2� FR�1,2�
�FR�1,2��� �GR�1,2���� . �A6�

Note that G�1,2� is a generalized Gor’kov Green function,
which contains information about processes occurring at
length scales comparable to the Fermi wavelength. Such in-
formation is lost upon applying the quasiclassical approxi-
mation. Using the Heisenberg equation of motion Eq. �A3�,
we obtain

�i�t1
��̂3ĜR�1,2��ij −� dr��

l

�− i��t1 − t2��Ĥil�r1,r�,t1�

���̂3�ll���l�r�,t1�,� j
†�r2,t2��+�� = �ij��1 − 2� . �A7�

To arrive at Eq. �1�, it is convenient to introduce the mixed
representation that shifts the frame of reference to a center-
of-mass system. We define

R = �r1 + r2�/2, r = r1 − r2,

T = �t1 + t2�/2, t = t1 − t2, �A8�

such that

ĜR�1,2� = ĜR�R +
r

2
,T +

t

2
,R −

r

2
,T −

t

2
	 . �A9�

The Fourier transformation of Eq. �A9� yields

ĜR�p,R;T,�� =� dre−ipr� dteit�ĜR�1,2� . �A10�

An exact solution for ĜR�p ,R ;T ,�� is very hard to achieve
but the situation is considerably simplified if one is willing to
neglect all atomic-scale fine-structure effects that are in-

cluded in ĜR. These give rise to a rapidly oscillating part in

the solution for ĜR and rewriting the Green function through
Eq. �A10� allows us to integrate out this unnecessary infor-
mation �at least for our purposes�. This approximation may
be expected to yield satisfactory results if the energy of the
physical quantities involved in the problem, e.g., exchange
field and superconducting order parameter, are much smaller
than the Fermi energy. Assuming that only particles in the
vicinity of Fermi level will take part in physical processes,
one only needs to retain the direction of the momentum at
Fermi level in the p coordinate.

As this Appendix is only meant as background informa-
tion for the Eilenberger equation, we do not show all the
details leading from Eq. �A7� to Eq. �1� here. The calcula-
tions are nevertheless fairly straightforward, and consist of
first switching to a mixed representation, then Fourier trans-
forming the variables, and finally performing the quasiclas-
sical approximation

ĝR =
i

�
� d�pĜR, �p =

p2

2m
. �A11�
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APPENDIX B: INELASTIC SCATTERING

The choice of �=0.1�↑,0 is motivated by the fact that the
zero-energy peaks observed in experiments are usually lim-
ited from above to roughly a factor of five times the normal-
state value of the LDOS, which we reproduce with this par-
ticular choice of �. Choosing � smaller �corresponding to a
longer quasiparticle lifetime since �=�−1� causes the zero-
energy peak to grow substantially, as shown in Fig. 8. In
general, the inelastic-scattering rate does not have to be pro-
portional to the gap at all and our choice of �=0.1�↑,0 is
simply chosen to compare the scattering rate against a famil-
iar quantity.

APPENDIX C: DERIVATION OF EQ. (14)

The gap equation may be obtained by starting out with a
Hamiltonian assuming a nonunitary triplet pairing state co-
existing with itinerant ferromagnetism,7,18 namely

Ĥ = �
k

�k +
INM2

2
−

1

2�
k�

�k��
† bk��

+
1

2�
k�

�ĉk�
† ĉ−k��� �k� �k��

�k��
† − �k�

	� ĉk�

ĉ−k�
† 	 . �C1�

Here, I is the ferromagnetic exchange coupling constant, N is
the number of lattice sites, M denotes the magnetic order
parameter �dimensionless�, and bk�� is the Cooper pair ex-
pectation value. Diagonalization of this Hamiltonian pro-
duces:

Ĥ = H0 + �
k�

Ek��̂k�
† �̂k�,

H0 =
1

2�
k�

��k� − Ek� − �k��
† bk��� +

INM2

2
, �C2�

where ��̂k� , �̂k�
† � are new fermion operators and the eigen-

values read

Ek� = �k�
2 + ��k���2. �C3�

Above, �k is the kinetic energy measured from Fermi level.
By minimizing the free energy, one obtains the gap equation
for the superconducting order parameter:7

�k�� = −
1

N
�
k�

Vkk���

�k���

2Ek��

tanh��Ek��/2� . �C4�

Assuming that the gap is fixed on the Fermi surface in the
weak-coupling limit, one may write in general

V���
,
�� = − V0Y��
��Y��
����. �C5�

where Y��
� are basis functions for the angular dependence
of the interaction. To model px-wave and chiral p-wave pair-
ing, respectively, we use Y��
�=−�ei�
 and Y��
�=cos 
.
Conversion to integral gap equations is accomplished by
means of the identity

1

N
�
k

f��k�� =
1

4�
� d�d�N����f��, �� , �C6�

where N���� is the spin-resolved density of states. In three
spatial dimensions, this may be calculated from the disper-
sion relation by using the formula

N���� =
V

�2��3�
�k�=const

dS�k�

��̂k�k��
. �C7�

With the dispersion relation �k�=�k−�IM −�, one obtains

N���� =
mV2m�� + �IM + ��

2�2 . �C8�

In their integral form, the gap equation reads

1 =
V0

4�
�
�
�

−�0

�0

�� 2�0d�d

N����Y��
��Y��
����

E����
tanh��E����/2� .

�C9�

Consider now T=0, where the integral may be done analyti-
cally to yield

��,0 = c�0e−1/g1+�M̃, � = ↑,↓ �C10�

where we have defined M̃ = IM /�=h /�, i.e., the exchange
energy scaled by the Fermi energy. Moreover, c is a numeri-
cal prefactor which depends on that symmetry one considers
�px wave or chiral p wave� while g is the weak-coupling
constant. The important influence of the magnetization is that
it modifies the density of states, which affects the supercon-

ductivity gaps. For M̃ =1, i.e., an exchange splitting equal to
the Fermi energy, the minority-spin gap is completely sup-
pressed. Thus, the presence of magnetization reduces the
available phase space for the minority-spin Cooper pairs,
suppressing the gap and the critical temperature compared to
the pure Bardeen-Cooper-Schrieffer case.
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FIG. 8. �Color online� Normalized LDOS in the vicinity of the
vortex core at three different values of the inelastic-scattering rate
�=�−1, using a px-wave symmetry with h /�=0.15.
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