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We study analytically and numerically the problem of two qubits with fixed coupling irradiated with quan-
tum or classical fields. In the classical case, we derive an effective Hamiltonian and describe its entangling
properties. We identify a coupling/decoupling switching protocol and we construct composite pulse sequences
leading to a controlled-NOT �CNOT� gate. In the quantum case, we show that qubit-qubit photon multiparticle
entanglement and maximally entangled two qubit states can be obtained by driving the system at very low
powers �one quantum of excitation�. Our results can be applied to a variety of systems of two superconducting
qubits coupled to resonators.
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I. INTRODUCTION

In recent years, there has been a consistent experimental
progress in the quantum coherent manipulation of supercon-
ducting circuits based on the Josephson effect. Single-qubit
operations have now been demonstrated with charge,1 flux,2

charge flux,3 and phase4 qubits. Some of these experiments3

made it clear that in order to achieve long decoherence time
the qubits have to be operated at the so-called optimal point,
where the first-order noise induced by fluctuations of exter-
nal control parameters �gate voltages and magnetic fluxes�
cancels. The notable exception from this rule is the phase
qubit, which by construction does not have an optimal point.
This is compensated by engineering a peculiar bias circuit.4

The first generation experiments with fixed coupling5,6 did
manage to achieve two qubit gates. However the qubits were
not operated at the optimal points with a corresponding loss
in fidelity. Later it was noticed that flux qubits can be oper-
ated at the optimal point if the coupling is realized through a
dc superconducting quantum interference device �SQUID�
modulated at the sum and difference of the qubits resonance
frequencies.7 If the dc SQUID is replaced by a third flux
qubit—largely detuned from the frequencies of the two
qubits—the coupling can be realized through the quantum
inductance of the additional qubit.8

With the advent of circuit QED architectures,9,10 several
qubits can be placed in the gap between the signal line and
the ground of a coplanar waveguide resonator. In the disper-
sive qubit resonator coupling regime, the qubit-qubit cou-
pling are realized by virtually exciting the resonator. Further-
more, due to the structured cleaner electromagnetic
environment around the qubits, relatively long decoherence
time can be achieved.

Finally, since any additional coupling elements tend to
introduce extra decoherence in the system, one can place a
further restriction and ask the question: is it possible to de-
vise schemes in which the qubits are operated at the optimal
points and where there are no active additional elements for
coupling? Such a proposal was inspired from NMR: the so-
called fixed linear couplings between fixed off-resonant qu-
bits �FLICFORQ� protocol11 with coupling realized through
the dressed states of each qubit under on-resonance micro-
wave fields. The protocol was extended to more general de-

tuned driving fields.12 Although theoretically sound, it has
not been realized yet experimentally. In the FLICFORQ pro-
tocol, the fixed coupling is much smaller than the qubit-qubit
detuning. Even under the enhancement, the effective cou-
pling strength is up to only one-eighth of the bare coupling
strength.10,11 Small coupling strength is desirable for single
qubit operations but limits the two-qubit gate speed.

Therefore, one very interesting question emerges: is it
possible to develop a protocol which retains the advantages
of FLICFORQ and has also the capability of performing fast
two-qubit gates? In this work we will analyze such a proto-
col, in which the two qubits are relatively strong coupled in
the absence of driving fields. Moreover, we will show explic-
itly how to construct microwave pulses to switch the cou-
pling off.

The outline of this paper is as follows: In Sec. II we study
a specific circuit consisting of two qubits coupled to a single
cavity mode �a coplanar waveguide resonator�. A general
fixed qubit-qubit coupling Hamiltonian is derived. We then
analyze the case in which the qubits are manipulated using
classical fields. In Secs. III and IV—by deriving the effective
Hamiltonian of the system in the rotating reference
frame—we show that for large values of the driving field
amplitudes, the coupling is switchable. We also find numeri-
cally the on/off coupling ratio of the switchable coupling, as
well as the validity of our rotating wave approximation
�RWA�. The implementations of a single-qubit gate and a
CNOT gate are demonstrated in Sec. V. We show that both
gates can be realized with high speed and high fidelity. In the
quantum case, in which the qubits interact with a single
quantum of radiation, we propose a quantum nondemolition
�QND� method to entangle the qubits based on measuring the
presence of an excitation in the resonant cavity to entangle
the qubits in Sec. VI. Finally we conclude our work in Sec.
VII.

II. MODEL HAMILTONIANS

Although many of the results derived in this paper are
rather general �once the Hamiltonian is put into any of the
forms used in this paper�, it is useful to start by analyzing a
concrete superconducting quantum circuit—which will serve
as our workhorse. Let us consider a system of two coupled
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charge qubits irradiated with monochromatic off-resonance
microwave fields. The circuit is shown in Fig. 1. Two split
single Cooper pair box �SCB� qubits are capacitively
coupled to the center conductor of a coplanar waveguide
resonator. Each box has its own read-out circuitry �such as a
large current biased Josephson junction �CBJJ�, as in the case
of charge flux qubits�.

To ensure first-order insensitivity to charge fluctuations,
we bias the gates of the SCBs at the optimal points,

Cg1Vdc1 = Cg2Vdc2 = − e . �1�

When two microwave fields with the same angular frequency
�d and different phases �1,2 are applied, the gate voltages of
the SCBs have ac components,

Vac1,2 = V�w1,2�t�cos��dt + �1,2� . �2�

Written in the eigenbasis of each SCB �↑ �= ��0�+ �1�� /�2
and �↓ �= ��0�− �1�� /�2—with �0� and �1� denoting two lowest
charge states—the Hamiltonian has the following form �see
Appendix A�:

HSCB = �
j=1,2

	−
EJj

2
� j

z + ECjwj�t�cos��dt + � j�� j
x
 , �3�

where EJj and ECj indicate the standard Josephson and charg-
ing energies, respectively, and wj�t��−CgjV�wj�t� /2e.

A large current biased Josephson junction is also coupled
to the end of the resonator through a capacitor; the bias cur-
rent Ib is such that, during many of the qubit operations
described in this paper, only two bound states �of energy
difference �10 close to that of the resonator� are relevant.
This junction will serve as a detector of the state of the
resonator, as we will see in Sec. VI. The Hamiltonian of the
CBJJ assumes the form of a two-level system,

HCBJJ = −
�10

2
�3

z , �4�

where �10 denotes the transition frequency between the two
lowest levels in the tilted cosine potential.

To simplify the equations, from now on our units will be
such that �=1.

Depending on the length of the stripline, the qubit-qubit
and qubit-CBJJ couplings must be treated in different ways.
For a relatively long resonator, the couplings are mediated by

excitations in the resonator. As derived in Appendix A, the
total Hamiltonian in this case is

Htot1 = HSCB + HCBJJ + �r�a†a + 1/2�

+ i �
j=1,2

gj�� j
x + 2wj�t�cos��dt + � j���a† − a�

+ ���3
+ − �3

−��a† − a� , �5�

with �r as the resonance frequency of the resonator, a† �a� as
the photon creation �annihilation� operator, gj ��� as the qu-
bit resonator �CBJJ-resonator� coupling strength, and �3

+ ��3
−�

as the CBJJ raising �lowering� operator. By performing a
RWA to neglect fast oscillating terms, we have

Htot1 � HSCB + HCBJJ + �r�a†a + 1/2� + i �
j=1,2

gj�� j
−a† − � j

+a�

− ���3
+a + �3

−a†� , �6�

where � j
+= �↓ �↑� and � j

−= �↑ �↓� denote qubit raising and
lowering operators, respectively. Here we have neglected the
terms describing interactions between the qubit driving fields
and the resonator �in the second line of Eq. �5��. This is
justified by the fact that Rabi frequencies satisfy � j�t�
�ECjwj�t�	EJj, and the SCBs are working in the charge
regime ECj
EJj. Therefore wj�t� should be much smaller
than unity.

A. Long resonator limit

In the long resonator limit �the resonator length of the
same order as the wavelength corresponding to an excitation
with energy of the order of qubit energy�, a fixed linear
qubit-qubit coupling can be achieved in the dispersive re-
gime, gj	� j ��r−EJj. By performing a generalized
Schrieffer-Wolff transformation �see Appendix C�,

eA = exp	− i �
j=1,2

gj

� j
�a†� j

− + a� j
+�

− i �
j=1,2

gj� j�t�cos��dt + � j�
� j�r

� j
z�a† + a�


on the Hamiltonian �6�, we obtain

H̃tot1 � �
j=1,2

	−
EJj

2
� j

z +� j cos��dt + � j�� j
x


−
g1g2��1 + �2�

2�1�2
��1

+�2
− + �1

−�2
+� . �7�

Here we assume that the CBJJ is biased far off-resonance
with the resonator such that it is effectively decoupled from
it.

B. Short resonator limit

For a very short resonator �the resonator length is much
smaller than the wavelength corresponding to an excitation
with energy of the order of qubit energy�, the center conduc-
tor can be considered as a small metallic island. The two
qubits and the CBJJ are capacitively coupled to this island.

FIG. 1. Schematic circuit of our model system.
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In Appendix B we show that the total Hamiltonian has the
form,

Htot2 = HSCB + HCBJJ +
E12

4
�1

x�2
x − �

j=1,2

� j

2
� j

x�3
y

+
E12

2
�w2�t�cos��dt + �2��1

x + w1�t�cos��dt + �1��2
x�

− �
j=1,2

� jwj�j�cos��dt + � j��3
y , �8�

with E12 /4 and � j /2 as the qubit-qubit and qubit-CBJJ cou-
pling strengths, respectively. Due to small coupling
E12	EC1,2, the cross-talk12 terms in the second and third
lines of Eq. �8� are negligible. We can also drop the interac-
tions between the qubit driving fields and the CBJJ described
by the last line in Eq. �8� because wj is small. Therefore the
total Hamiltonian is approximately

Htot2 � HSCB + HCBJJ +
E12

4
�1

x�2
x − �

j=1,2

� j

2
� j

x�3
y . �9�

If the coupling capacitances Cm1,2
Cm3, the direct coupling
is dominating;

Htot2 � �
j=1,2

	−
EJj

2
� j

z +� j cos��dt + � j�� j
x
 +

E12

4
�1

x�2
x .

�10�

For Cm1,2	Cm3, the two qubits can be coupled through vir-
tual excitation of the CBJJ. By considering dispersive cou-
pling � j	� j���10−EJj, the qubit-CBJJ couplings are elimi-
nated by another Schrieffer-Wolff transformation similar to
the one in long resonator case, and we obtain

H̃tot2 � �
j=1,2

	−
EJj

2
� j

z +� j cos��dt + � j�� j
x


−
�1�2��1� + �2��

4�1��2�
��1

+�2
− + �1

−�2
+� . �11�

The Hamiltonians �7�, �10�, and �11� are similar; therefore
we will use a generic time-dependent Hamiltonian,

H�t� = �
j=1,2

	−
� j

L

2
� j

z +� j cos��dt + � j�� j
x
 + �xx�1

x�2
x ,

�12�

to replace all of them. � j
L and �xx denote the Larmor fre-

quency of qubit j and the qubit-qubit coupling strength, re-

spectively. As discussed in Sec. I, we are interested in the
regime �xx���1

L−�2
L�	�1,2

L .

III. SWITCHABLE COUPLING MECHANISM

Now, we start to derive an effective Hamiltonian with
tunable coupling terms. In order to eliminate the explicit
time dependence, we bring the Hamiltonian �12� into the
rotating reference frame by transforming it with the operator,

S1�t� = exp	 i�dt

2
��1

z + �2
z�
 . �13�

By performing a RWA to neglect oscillating terms with fre-
quency 2�d, we get a time-independent effective Hamil-
tonian,

Heff = H12 + �
j=1,2

Hj , �14�

where

Hj =
 j

2
� j

z +
� j

2
�cos � j� j

x − sin � j� j
y� , �15�

is the Hamiltonian for qubit j and

H12 =
�xx

2
��1

x�2
x + �1

y�2
y� , �16�

describes the interaction between the two qubits.  j
��d−� j

L denotes the detuning between the driving fre-
quency and the corresponding qubit Larmor frequency.

By diagonalizing the single-qubit Hamiltonians given by
Eq. �15�, we obtain the eigenenergies and the corresponding
eigenstates of each single qubit:

E+
�j� = �̃ j/2, E−

�j� = − �̃ j/2,

� + ��j� = cos
� j

2
ei�j/2�↑� + sin

� j

2
e−i�j/2�↓� , �17�

�− ��j� = − sin
� j

2
ei�j/2�↑� + cos

� j

2
e−i�j/2�↓� , �18�

where

�̃ j = � j
2 +� j

2, sin � j =
� j

�̃ j

, cos � j =
 j

�̃ j

. �19�

We then project the time-independent effective Hamil-
tonian �14� in the basis of product states �++�, �+−�, �−+� and
�−−�, and get

Heff� =
�̃1

2
�z

�1� +
�̃2

2
�z

�2� +
�xx

2
cos ���sin �1�z

�1� + cos �1�x
�1���sin �2�z

�2� + cos �2�x
�2�� + �y

�1��y
�2��

+
�xx

2
sin ���y

�1��sin �2�z
�2� + cos �2�x

�2�� − �sin �1�z
�1� + cos �1�x

�1���y
�2�� , �20�

with the Pauli matrices �s
�1� and �s

�2� �s=x ,y ,z� in the basis thus defined, and the phase difference ���1−�2.
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Next we transform Heff� into a rotating frame with

S2�t� = exp�− it

2
��̃1�z

�1� + �̃2�z
�2��� . �21�

By assuming that �̃1,2 are much larger than the coupling strength �xx, we may perform a second RWA to neglect the oscillating
terms with frequencies �̃1,2 and �̃1+ �̃2. The resulting Hamiltonian is

Heff� =
�xx

4
cos ��1 + cos �1 cos �2��cos��̃t���x

�1��x
�2� + �y

�1��y
�2�� − sin��̃t���y

�1��x
�2� − �x

�1��y
�2���

+
�xx

4
sin ��cos �1 + cos �2��sin��̃t���x

�1��x
�2� + �y

�1��y
�2�� + cos��̃t���y

�1��x
�2� − �x

�1��y
�2��� +

�xx

2
cos � sin �1 sin �2�z

�1��z
�2�,

�22�

with �̃� �̃1− �̃2. This effective Hamiltonian has oscillating
terms. In the rest of this section, we discuss how to switch
the effective coupling off in two limits with respect to the
oscillation frequency �̃.

A. High ��̃

The oscillating terms in Eq. �22� can be neglected if
��̃�
�xx. By using the definition of sin � j in Eq. �19�, the
remaining effective Hamiltonian is expressed as

Heff� =
�xx

2
cos �

�1�2

��1
2 +�1

2��2
2 +�2

2�
�z

�1��z
�2�. �23�

A maximum coupling strength of about �xx /2 can be
achieved when the driving frequency is in resonance with the
qubit Larmor frequencies �d��1,2

L and large driving ampli-
tudes �1,2
 �1,2���xx are applied in the meantime.

To turn the coupling off, we can switch off either �1 or
�2. Nevertheless, the two conditions must be satisfied:
�̃1,2
�

xx and ��̃�
�xx. Without loss of generality, we as-
sume �2=0. The condition �̃1,2
�

xx is fulfilled when the
driving frequency is largely detuned from the qubit frequen-
cies, 1�2
�

xx �assuming �d��1,2
L �. The second condi-

tion is fulfilled by driving the first qubit with a rather large
amplitude �1
�21�

xx.
We notice that this decoupling mechanism can also be

derived in the case of quantized driving fields. Let us start
with the usual Jaynes-Cummings form13 of the Hamiltonian,

H = �da†a − �
j=1,2

� j
L

2
� j

z + �xx�1
x�2

x + g��1
+a + �1

−a†� ,

�24�

and assume a dispersive coupling g	1. Then we perform a
Schrieffer-Wolff transformation U=exp�g��1

+a−�1
−a†� /1� to

eliminate the direct qubit field coupling to leading order and
obtain

U†HU � �da†a − 	�1
L

2
+

g2

1
�a†a +

1

2
�
�1

z −
�2

L

2
�2

z

+ �xx�1
x�2

x . �25�

Due to the driving field applied on it, the Larmor frequency
of qubit 1 is ac-Stark shifted by the quantity 2g2a†a� /1. If
the ac-Stark shift is much larger than the qubit-qubit cou-
pling strength �xx, the two qubits are effectively decoupled.

B. Low ��̃

A more general situation is when �̃ is not so large; there-
fore the oscillating terms cannot be neglected. Since we are
considering a relatively small qubit-qubit detuning, it is not
possible to eliminate 1+cos �1 cos �2, cos �1+cos �2, and
sin �1 sin �2, and to satisfy �̃1,2
�

xx at the same time. How-
ever, there is still a way to switch the coupling off. As shown
in Eq. �22�, terms in the first and the third lines have a com-
mon factor cos �. If the second line can be removed by
setting  j and � j to obtain

cos �1 + cos �2 =
1

�1
2 +�1

2
+

2

�2
2 +�2

2
= 0, �26�

the rest of the Hamiltonian will be switchable by means of �.
One solution of Eq. �26� is 1=2=0, which is realized only
when the qubits are on-resonance. For off-resonance qubits,
Eq. �26� leads to

�1/�2 = − 1/2. �27�

An extreme case is when �̃=0. By defining ���1
L−�2

L and
1=2−�, and by using Eq. �19�, we obtain the expression
of the resonance condition,

�̃1 = �̃2 ⇒�1
2 =�2

2 + 22� − �2, �28�

and the coupling coefficients,

1 + cos �1 cos �2 =
22

2 +�2
2 − 2�

2
2 +�2

2 , �29�

cos �1 + cos �2 =
22 − �

�2
2 +�2

2
, �30�
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sin �1 sin �2 =
�2

��2
2 + 22� − �2

2
2 +�2

2 . �31�

To eliminate cos �1+cos �2, we set the driving frequency
�d= ��1

L+�2
L� /2. The resonance condition Eq. �28�, as well

as the condition �̃1,2
�
xx, becomes �1=�2
�

xx. Since
�����xx, the effective Hamiltonian has a rather simple form,

Heff� �
�xx

4
cos ���x

�1��x
�2� + �y

�1��y
�2� + 2�z

�1��z
�2�� . �32�

Does this switching scheme work with quantized fields as
well? Here we briefly notice that in this approach it is essen-
tial to operate with states of the electromagnetic field having
well defined phases. Therefore this switching scheme can be
implemented either with classical fields or with coherent
states;13,14 Fock �number� states, even if they could be pre-
pared experimentally, have fluctuating phases and therefore
cannot be used.

IV. ENTANGLING PROPERTIES

In order to characterize the effectiveness of the switchable
coupling schemes derived in the previous section, we need to
determine the on/off ratio of the coupling with the original
Hamiltonian �12�. In this section, we will use the
concurrence15 to study the entanglement between the two
qubits. The concurrence of a pure two-qubit state ��� is de-
fined as

C��� = ����y � �y����� , �33�

where ���� is the complex conjugate of ���. For a general
two-qubit state ���=cuu�↑↑�+cud�↑↓�+cdu�↓↑�+cdd�↓↓�, it is

C��� = 2�cuucdd − cudcdu�� 1. �34�

We define the on/off ratio of coupling as the ratio of the
maximum concurrence obtained when the coupling is
switched on to the maximum concurrence obtained when the
coupling is effectively off.

In the laboratory frame, the concurrence can be calculated
by numerically solving the Schrödinger equation with the
time-dependent Hamiltonian �12�.16 In the rotating frame,
analytical calculations with the effective Hamiltonian �14�
can be done under the circumstance that 1 and 2 are small.
Here we only focus on the zero �̃ case discussed in Sec.
III B. For the sake of simplicity, we also consider that the
driving fields satisfy �1=�2��
�xx and specify our ini-
tial state to the ground state �↑↑�.

We start by deriving the analytical expression of the con-
currence. When �1=�2=0, the coupling is switched on. The
effective Hamiltonian �14� is approximately

Heff �
�

2
��1

x + �2
x� +

�xx

2
��1

x�2
x + �1

y�2
y� . �35�

It has eigenvalues �1=0, �2=−�xx, and �3,4
= ��xx����xx�2+4�2� /2, and corresponding �un-
normalized� eigenvectors �−1,0 ,0 ,1�T, �0,−1,1 ,0�T, and
�1,�3,4 /� ,�3,4 /� ,1�T, respectively. By expanding �↑↑� in

terms of the eigenvectors, we get the time-dependent state
vector,

���t�� = 	1

4
�e−i�3t + e−i�4t + 2� +

�xx

4��3 − �4�
�e−i�4t − e−i�3t�


��↑↑� −
�

2��3 − �4�
�e−i�4t − e−i�3t���↑↓� + �↓↑��

+ 	1

4
�e−i�3t + e−i�4t − 2� +

�xx

4��3 − �4�
�e−i�4t − e−i�3t�


��↓↓� . �36�

Then the concurrence is approximately

C�t� � �ei�xxt − 1�/2 = ��1 − cos��xxt��/2, �37�

oscillating between zero and one with a period of 2� /�xx.
According to Eq. �32�, if we set �1=� /2 and �2=0, the

coupling should be effectively switched off. Whereas the ef-
fective Hamiltonian �14� in this case reads

Heff �
�

2
��2

x − �1
y� +

�xx

2
��1

x�2
x + �1

y�2
y� . �38�

By diagonalizing Heff and expanding �↑↑� with the eigenvec-
tors again, we arrive at an analytical expression of the time-
dependent concurrence as

C�t� �
��xx�2

2�2 �3 + cos�2�t� − 4 cos��t�� . �39�

The maximum concurrence is about �2�xx�2 /�2.
Thus, the on/off coupling ratio is approximately

�2 / �2�xx�2. To perform the numerical calculations, we set
�=10�xx, �d=200�xx, �1

L=�d+� /2, and �2
L=�d−� /2

�considering �	�d�. For a charge qubit �EC /EJ
1�, the
probability of leakage to noncomputational states is negli-
gible for such a ratio of � /�1,2

L �see Appendix D�.
In Fig. 2, we show the concurrences calculated with dif-

ferent values of �. The numerical results indicate that the
switchable coupling scheme works well for as long as � is
not too big compared to �xx. An on/off coupling ratio of
about 20 can be obtained in a time duration longer than
several �-pulse widths. Once � becomes large, the on/off
ratio is reduced. Furthermore, differences between the con-
currences �dashed lines� calculated with the effective Hamil-
tonian �14� and the exact concurrences �solid lines� evaluated
with the time-dependent Hamiltonian �12� start to appear.
These differences imply that the counter-rotating terms ne-
glected in the RWA leading to Eq. �14� cause effects larger
than the Bloch-Siegert shift.17,18

In order to understand how the counter-rotating terms,

Hcr = e2i�dt��xx�1
+�2

+ +
�

2 �
j=1,2

ei�j� j
+�

+ e−2i�dt��xx�1
−�2

− +
�

2 �
j=1,2

e−i�j� j
−� , �40�

behave, we extend the derivation of Bloch-Siegert shift for a
single two-level atom �see e.g., Chapter 7 of Ref. 18� to our
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two-qubit system. To shorten the following discussions, we
only consider �1=�2=0.

The time evolution operator generated by Eq. �12� can be
expressed as

U�t� = S1�t�e−iHefftT� exp	− i�
0

t

d�H̃cr���
 , �41�

where S1�t� is defined in Eq. �13�, Heff is given by Eq. �14�,
T� exp�¯� is the time-ordered exponential integration, and

H̃cr��� = eiHeff�Hcre
−iHeff�. �42�

Because of the qubit-qubit coupling terms in Heff, the trans-
formation �Eq. �42�� is hard to perform. Due to the fact that
only when 1,2=�� /2
�xx the deviations become signifi-

cant, we may ignore the coupling terms and carry out Eq.
�42� in the basis of ��++� , �+−� , �−+� , �−−��;

H̃cr��� � exp� i�

2
��̃1�z

�1� + �̃2�z
�2���Hcr�

�exp�− i�

2
��̃1�z

�1� + �̃2�z
�2��� , �43�

where �̃1= �̃2=��� /2�2+�2 and Hcr� denotes the counter-
rotating terms transformed into this basis.

We have evaluated the time-ordered exponential integra-
tion to second order. By transforming it back to the compu-
tational basis ��↑↑� , �↑↓� , �↓↑� , �↓↓��, we have obtained

T� exp	− i�
0

t

d�H̃cr���

� 1 − i�

0

t

d�H̃cr��� − �
0

t

d�2�
0

�2

d�1H̃cr��2�H̃cr��1�

� exp� i�3t

�d�̃1
	�1

z + �2
z −

�

16�̃1

��1
x − �2

x�
� . �44�

This equation shows that besides the Bloch-Siegert shift
in each qubit Larmor frequency, the counter-rotating terms
also give rise to Rabi frequency shift proportional to �. As
illustrated in Fig. 3, the concurrence recalculated by substi-
tuting Eq. �44� in Eq. �41� �dotted line� fits the exact concur-
rence �solid line� much better than the concurrence calcu-
lated barely with Heff �dashed line�.

V. IMPLEMENTATION OF QUANTUM GATES
BY COMPOSITE PULSES

We are now in the position to address the problem of
implementing quantum gates. Simple rectangular driving
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FIG. 2. �Color online� Time evolution of the concurrences for
the input state ��in�= �↑↑�. �a� �1=�2=0; �b� �1=� /2 and �2=0.
The solid �red� and dashed �blue� lines indicate the concurrences
calculated with the time-dependent Hamiltonian �12� and the effec-
tive Hamiltonian �14�, respectively. We have set �=10�xx, �d

=20 �, and �1,2
L =�d�� /2.
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FIG. 3. �Color online� Time evolution of concurrences under the
same values of parameters as those in Fig. 2�a��iv�. Again, the solid
�red� and dashed �blue� lines indicate the exact concurrence and the
concurrence evaluated by the effective Hamiltonian with RWA. The
dotted �green� line is the concurrence calculated with counter-
rotating terms compensation.

LI, CHALAPAT, AND PARAOANU PHYSICAL REVIEW B 78, 064503 �2008�

064503-6



pulses have been proved to be not satisfactory for precise
manipulations.19 It is better to adopt other pulse techniques20

such as shaped pulses and composite pulses. In order to
achieve arbitrary quantum gates with both high accuracy and
high speed, we need to find a numerical approach to get the
suitable pulse parameters �amplitudes, frequencies, phases,
and pulse durations�. The idea is to find a certain functional
and to obtain the optimal pulse parameters by maximizing or
minimizing this functional. In a previous work,21 we found a
set of parameters to get a locally equivalent gate of CNOT by
minimizing the functional �G1�t��2+ �G2�t�−1�2, where G1 and
G2 are two locally invariant functionals defined by
Makhlin.22 This method has a drawback that when a locally
equivalent gate is found determining the two single-qubit
gates, which transform it into CNOT, could be a difficult task.
Therefore in this section, we minimize a different
functional23 which can lead us directly to the target gate we
want.

We work in the rotating frame to reduce the computa-
tional complexity. Since in the preceding section we have
found that the RWA broke down when � was large, here we
assume �=2�xx and set the detunings �1 and 2� to be −� /2
and � /2, respectively. The pulse duration of performing a
gate, tp, is equally divided into m small intervals. We con-
sider �1 and �2 as “global” parameters, which are unchanged
in the whole pulse duration. In order to avoid sharp edges as
in rectangular pulses, we assume that in each time interval dt
the “local” pulse parameters �1,2 vary linearly with time. At
t=0 and t= tp, �1,2=0. The unitary operator generated by the
effective Hamiltonian �14� right after the pulses can be well
approximated as

Ueff � exp�− idtHeff	�1
�m� +�1

�m−1�

2
,
�2

�m� +�2
�m−1�

2

�¯

�exp�− idtHeff	�1
�1� +�1

�0�

2
,
�2

�1� +�2
�0�

2

� , �45�

where �1,2
�k� �k�0� stands for the values of �1,2 at the end of

the kth interval and �1,2
�0� denotes �1,2 at t=0. The optimal

�1,2, �1,2
�k� , and tp for a target gate U are achieved by search-

ing for the global minimum of the error functional,

� = �Tr��U − Ueff�†�U − Ueff�� . �46�

A. Simulated annealing

Since normally � has many local minima to avoid being
trapped in a local minimum, we use the simulated annealing
�SA� method24,25 to minimize �. It employs a random search
of pulse parameters, which allows changes not only by de-
creasing the “energy” � but also by increasing it. The prob-
ability to accept a change is given by P=exp�−� /T�, where
�=�after the change−�before the change, and T is a parameter act-
ing as the system “temperature.” One can easily find that if a
change in pulse parameters decreases �, P is always
larger than unity �which means we always accept this
change�. If a change increases �, we still have a chance to
accept this change. Our algorithm is summarized as follows:
�i� Define the starting temperature Ts=−0.01 / ln�0.8� and the

halting temperature Th=−10−10 / ln�0.8� for the annealing pro-
cess. �ii� Define the boundaries of pulse parameters
�1,2

�k� � �0,10�xx� and �1,2� �−� /2,� /2�. �iii� Initialize the
pulse parameters �1,2

�k� =5�xx and �1,2=0. Calculate the initial
value of � with these pulse parameters. Initialize the tem-
perature T=Ts. �iv� Repeat the following steps if T�Th: �a�
randomly generate sequences of pulse parameters until all
the parameters in the sequence are inside the boundaries; �b�
evaluate � with the last sequence; �c� keep the resulting � and
the pulse sequence with a probability P=exp�−� /T�; and
�d� after every 1000 successful evaluations of �, lower the
temperature by 1%.

We demonstrate two examples here: a � rotation of the
first qubit around its X axis,

UX1
= e−i�1

x�/2
� I2 = �

0 0 − i 0

0 0 0 − i

− i 0 0 0

0 − i 0 0
� , �47�

and a CNOT gate,

UCNOT = e−i�/4�
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
� , �48�

where the factor exp�−i� /4� is used to make UCNOT
�SU�4�since
Tr�Heff�=0.

Because of the off-resonance shaped pulses and the finite
on/off coupling ratio, a pulse duration much longer than
� /max���=0.1� /�xx was expected for X1 gate. By running
our SA code numerous times, we have found it very difficult
to minimize � to a satisfactory value if tp�0.4� /�xx. In Fig.
4�a�, a possible control sequence of ��1�t� ,�2�t�� is pre-
sented. The pulse duration tp=0.4� /�xx and has been divid-
edinto ten intervals and the optimized phases were taken as
�1=0 and �2=−0.5� have been divided into ten intervals.

The minimum pulse duration for the CNOT gate we have
found so far is tp=1.2� /�xx. Interestingly, it is approxi-
mately equal to the summation of the interaction cost26

CH�CNOT�=0.5� /�xxfor our effective Hamiltonian and dura-
tions for two single-qubit gates, which indicates that the SA
program constructs the CNOT gate in a way close to a Cartan
decomposition.27 A possible sequence of ��1�t� ,�2�t�� is
shown in Fig. 4�b�. The corresponding phases �1=−0.2� and
�2=0.07�.

B. Obtaining maximally entangled two-qubit states

To get a visual picture of how these optimized driving
pulses work, we perform a simulation of producing a maxi-
mally entangled two-qubit state by the CNOT gate. Suppose
that initially the two qubits were in the ground state �↑↑� and
then a � /2 rotation around Y axis of qubit 1 has been ap-
plied; so the new input state is then

ENTANGLEMENT OF SUPERCONDUCTING QUBITS VIA… PHYSICAL REVIEW B 78, 064503 �2008�

064503-7



��in� =
�↑� + �↓�

�2
� �↑� , �49�

as indicated with arrows in Fig. 5.
We then send the qubits through a CNOT gate, realized

using the pulse sequences presented in Fig. 4�b�. Then the
output state of the two qubits will be a Bell state,28

��↑↑� =
1
�2

��↑↑� + �↓↓�� . �50�

The total density matrix for this system of two coupled
qubits is obtained by numerically solving the Schrödinger
equation with the effective Hamiltonian �14�. The reduced
density matrix of each single qubit is obtained by partially
tracing out qubit 1 or qubit 2. Figure 5 shows the motions of
the reduced density matrices in the Bloch sphere picture. The
reduced density matrices of each qubit end up in the centers
of each of the spheres �corresponding to a zero Bloch vec-
tor�, indicating that the two qubits are in a maximally en-
tangled state.28

For the total density matrix of the output state in rotating
frame �out, we find the state fidelity,20

F���↑↑�,�out� = ��↑↑��out��↑↑�� 0.999. �51�

C. Losses of gate fidelity

Now, we move back to the laboratory frame to evaluate
the gate fidelity,29

F�U� � �in�U†�outU��in� �52�

with the time-dependent Hamiltonian �12�. We set �d
=200�xx and �1,2

L =�d−1,2, as in Sec. IV. By numerically
solving the Schrödinger equation, we obtain F�X1�=0.9993
and F�CNOT�=0.9982. Such high fidelities can only be ob-
tained in rather ideal cases since the calculations have only
taken gate errors due to the counter-rotating terms into ac-
count. These errors are very small by choosing small qubit-
qubit detuning. In practice, uncertainties in system param-
eters, external noises, etc. will cause extra fidelity losses.

The optimization method we have used relies on the well
defined qubit parameters, such as the Larmor frequencies
�1,2

L and coupling strength �xx. In experiments on Josephson
qubits, although the qubit parameters may be tunable due to
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FIG. 4. Possible sequences of �1�t� and �2�t�: �a� for the single-
qubit gate X1 and �b� for the CNOT gate.
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specific designs, we still assume they are static and the de-
tailed knowledge of them is obtained by measurements. So
uncertainties in measurements of qubit Larmor frequencies
and coupling strength will give rise to gate errors. By per-
forming numerical simulations, we have found that, com-
pared to F�CNOT�, F�X1� is less sensitive to the uncertainties
in qubit parameters. As shown in Fig. 6, there is nearly no
loss of F�X1� even when the measured value of �xx is 90%
�or 110%� of the exact �xx. Whereas in order to keep high
F�CNOT��say�0.99�, the uncertainty in �xx should not be
more than 7%. The data in Fig. 7 indicate that the uncertain-
ties in measuring �1,2

L should be controlled within 0.05%,
which is easily achievable with present day electronics. If we
consider typical charge qubits and dispersive coupling
through a resonator, �1,2

L �2��5 GHz and �xx�2�
�20 MHz �see Ref. 10�, the allowed uncertainties are in
megahertz range.

Nevertheless, the uncertainties in the driving pulses are
not troublesome to the optimized gates. As shown in Sec.
V A, the required precision of pulse parameters is already
low �only 0.1�xx for �1,2 and 0.01� for �1,2�. To account for
experimental imperfections �jitter and phase noise of the ex-
ternal electronics used to create the pulses�, we also simulate
the errors in pulses as normally distributed random numbers
with relative error � and null average. We find that if � is
smaller than 1%, the loss of fidelity is negligible.

We now examine the effect of the electromagnetic degrees
of freedom, which inevitably couple to each of the two qu-
bits, producing decoherence. We consider here the worst case
scenario—30 in which each qubit is coupled to a different
environment—modeled by Lindblad superoperators,

Ltj��� =
��

�j�

2
�� j

z�� j
z − �� , �53�

and

Llj��� =
��j�

2
�2� j

−�� j
+ − � j

+� j
−� − �� j

+� j
−� , �54�

describing longitudinal and transversal noise with decay
rates ��j� and ��

�j�, respectively. We evolve the system nu-
merically under the simultaneous action of decoherence and
of the pulse sequences corresponding to single gates and
two-qubit gates. To simplify the presentation, we take the
decoherence rates of the two qubits equal—��j�=� and ��

�j�

=��—and we show the resulting fidelity loss due to deco-
herence in Fig. 8.

D. Summary

Compared to the FLICFORQ protocol developed in Ref.
11, our protocol do improve the speed of two-qubit gate due
to the fact that in our schemes the qubit-qubit coupling
strength is reduced only by a factor of two and it still holds
the advantages of FLICFORQ: no need to dc bias away from
the optimal points and no need for active tunable coupling.
For a relatively weak coupling mediated through cavity,
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�xx�2��20 MHz, a CNOT gate can still be performed in
about 30 ns. With two qubits directly coupled by a capacitor,
�xx can be much larger and is only constrained by
�xx	�1,2	�1,2

L .
We have only demonstrated quantum gates with the swit-

chable scheme for low �̃ �see Sec. III B�; however, the
numerical optimization method used in this section should be
applicable also to the high �̃ case �in Sec. III A� with one
more pulse parameter �d needed to be optimized. Since the
high �̃ scheme can be realized by a single-qubit driving,
there might be possible applications other than manipulating
qubits �such as bringing a qubit on-resonance and off-
resonance with a naturally formed two-level system �TLS�
located in the Josephson junction barrier�, as briefly dis-
cussed in Appendix E.

VI. QUANTUM EFFECTS: QND ENTANGLEMENT

In the preceding sections, we considered that the coupling
strengths between the qubits and the resonator are much
smaller than the detunings between them. Two-qubit en-
tanglement can be realized by using the CNOT gate. In this
section, we move to the nondispersive regime and propose a
protocol to create maximally entangled two-qubit states us-
ing a method31 inspired from cavity QED systems.

We still bias the dc gate voltages of the qubits at charge
degeneracy points. After exciting one qubit, we switch off
the driving fields. The Hamiltonian of this qubit-qubit reso-
nator system is then

H = − �
j=1,2

EJj

2
� j

z + �ra
†a + i �

j=1,2
gj�a†� j

− − a� j
+� .

By considering that the two qubits and the resonator have the
same energy EJ1=EJ2=�r, the Hamiltonian projected onto

the basis states ��1̃���↓↑� � �0�p, �2̃���↑↓� � �0�p, and �3̃�
��↑↑� � �1�p, with �0�p and �1�p as the zero-photon and one-
photon Fock states of the field in resonator� has the form

H = � 0 0 − ig1

0 0 − ig2

ig1 ig2 0
� . �55�

It has eigenvalues,

�1,2 = � �g1
2 + g2

2, �3 = 0, �56�

with corresponding eigenvectors,

��1,2� = �
i

�2�g1
2 + g2

2�
�g1�1̃� + g2�2̃�� +

1
�2

�3̃� ,

��3� =
1

�g1
2 + g2

2
�− g2�1̃� + g1�2̃�� . �57�

For symmetric couplings g1=g2�g, the eigenstate ��3� is a
direct product of the resonator vacuum state and a maximally
entangled two-qubit state.

An arbitrary initial state ��in�=a1�1̃�+a2�2̃�+a3�3̃�
��a1�2+ �a2�2+ �a3�2=1� can be rewritten as

��in� = 	 i�a1 + a2�
2

+
a3

�2

��1� −

a1 − a2

�2
��3�

+ 	−
i�a1 + a2�

2
+

a3

�2

��2� , �58�

and the time evolution of it,

���t�� = e−i�1t	 i�a1 + a2�
2

+
a3

�2

��1� + e−i�2t	−

i�a1 + a2�
2

+
a3

�2

��2� − e−i�3ta1 − a2

�2
��3�

= 	a1 − a2

2
+

1

2�a1 + a2

2
−

ia3

�2
�e−i�2gt +

1

2�a1 + a2

2
+

ia3

�2
�ei�2gt
�1̃�

+ 	a2 − a1

2
+

1

2�a1 + a2

2
−

ia3

�2
�e−i�2gt +

1

2�a1 + a2

2
+

ia3

�2
�ei�2gt
�2̃�

+ �	 i�a1 + a2�
2�2

+
a3

2 
e−i�2gt + 	−
i�a1 + a2�

2�2
+

a3

2 
ei�2gt��3̃�

� c1�t��1̃� + c2�t��2̃� + c3�t��3̃� . �59�

The global entanglement among the two qubits and one photon can be quantified by the Q measure,32

Q�t� =
8

3
��c1�t�c2�t��2 + �c1�t�c3�t��2 + �c2�t�c3�t��2� , �60�

which can be analytically calculated with Eq. �59�. In Fig. 9, numerical calculations of the Q value are illustrated.
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Now, we consider the consequences of the fact that the
resonator is lossy: we look at the case in which by strongly
outcoupling the cavity to a detector �e.g., the CBJJ of Fig. 1�
the decay rate of the cavity is engineered to be much larger
than the energy relaxation rate of each qubit.

By continuously monitoring the cavity in a period longer
than the cavity life time but much shorter than the qubit
relaxation time, we can know the state of the two qubits. If a
photon is emitted out the cavity, the system collapses to the

ground state �0̃���↑↑� � �0�p. Then we start from the begin-
ning by re-exciting one qubit and repeating the monitoring.
If no photon is detected, the system is in the eigenstate ��3�,
which means a two-qubit entangled state is prepared.

Experimentally, the monitoring can be done by
biasing the CBJJ to be in resonance with the resonator,
��10−�r�	�, where

�� �10� Cm3
2

2C�3Lc̃
, �61�

is the coupling strength between the CBJJ and the resonator,
and the coupling has the form �see Eq. �A19��.

HR−C � − ��a†�3
− + a�3

+� . �62�

With an asymmetric design of the stripline resonator,33

such that the line has only one coupling capacitor Cm3 at one
end, the total decay rate of the cavity is approximately equal
to �.

In order to make sure that the photon absorbed by the
CBJJ will never go back to the cavity, the macroscopic quan-
tum tunneling �MQT� rate �1 for the excited state �1� of the
CBJJ should be much larger than �.34 Thus the barrier height
U0 of the CBJJ should be close to 1.5�10, as shown in Fig.
10�a�. When a CBJJ is excited by absorbing a photon, it
immediately switches to the dissipative branch and creates a
voltage pulse, which can be measured easily either directly
or by the use of an additional dc Squid.35

The MQT rate for the ground state �0� in this case can be
calculated as36

�0 =
�p

2�
�864�U0

�p
exp�−

36U0

5�p
� � 2� 10−4�10,

�63�

by assuming the plasma frequency �p��10. The rate �1 is
about 500 times of �0.

To achieve the desired effect with good enough efficiency,
the cavity decay rate � should be in the range of
�0	�	�1.

This method is also suitable for the short resonator case.
As derived in Appendix B, the Hamiltonian for the qubits
CBJJ system reads,

H = − �
j=1,2

EJj

2
� j

z −
�10

2
�3

z +
E12

4
�1

x�2
x − �

j=1,2

� j

2
� j

x�3
y .

If the coupling capacitance Cm3
Cm1,2, the direct coupling
E12 between the two qubits is negligible and the CBJJ itself
acts as a lossy cavity. By biasing the CBJJ on-resonance with
the qubits, the Hamiltonian projected onto the states

�1̃�= �↓↑� � �0�, �2̃�= �↑↓� � �0�, and �3̃�= �↑↑� � �1� is then

H =
1

2� 0 0 i�1

0 0 i�2

− i�1 − i�2 0
� , �64�

which has eigenvalues and eigenvectors similar to those in
Eqs. �56� and �57�.

In this case, the cavity decay rate is given by the MQT
rate of the upper level �1. It has to be much larger than the
qubit decay rates but not necessarily to be as large as that in
the long resonator case. So we can bias the CBJJ barrier U0
to be higher than 1.5�10. As illustrated in Fig. 10�b�, when
U0�1.84�10, �1 is approximately equal to 0.01�10 �which
can be of the same order as the couplings � j�.

To study the conditional time evolution of the system
state, we introduce a non-Hermitian Hamiltonian,37

Hcond = H − i��
j=1,2

� j
+� j

− − i�1�3
+�3

−. �65�

Here we assume that both qubits are equally coupled to the
CBJJ �1=�2�� and have the same relaxation rate
�	�1 ,�.
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FIG. 9. The Q value as a function of time. The solid line is for
an initial excitation in one of the qubits and the dashed line for an
initial excitation in the cavity.
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FIG. 10. Schematic potential-energy diagram of the CBJJ �phase
regime�.

ENTANGLEMENT OF SUPERCONDUCTING QUBITS VIA… PHYSICAL REVIEW B 78, 064503 �2008�

064503-11



The eigenvalues and corresponding eigenvectors of Hcond
are

�1,2� � −
1

2
�i�1� �2�2 − �1

2�, �3� = − i� , �66�

and

��1,2� � � −
�1� i�2�2 − �1

2

2�2�
��1̃� + �2̃�� +

1
�2

�3̃� ,

��3�� = −
1
�2

��1̃� − �2̃�� . �67�

For an initial state, say,

���0�� = �1̃� �
i����1�� − ��2���
�4�2 − 2�1

2
−

��3��
�2

, �68�

the �un-normalized� state vector at later time t is given by

���t�� �
i�

�4�2 − 2�1
2
�e−i�1�t��1�� − e−i�2�t��2��� −

1
�2

e−i�3�t��3�� .

�69�

Thus the probability for finding the two qubits in the
maximally entangled state ��↑↓�− �↓↑�� /�2, conditioned on
that no switching event has been detected, is obtained from
Eq. �69� as

P�t� � � e−i�3�t

�2
�2��� i�e−i�1�t

�4�2 − 2�1
2�2

+ � i�e−i�2�t

�4�2 − 2�1
2�2

+ � e−i�3�t

�2
�2� . �70�

This expression approximately fits the numerical solution
calculated by the conditional Hamiltonian in Eq. �65�, as

shown in Fig. 11. On a time scale �1
−1	 t	�−1, the condi-

tional probability of preparing the maximally entangled two-
qubit state approaches unity.

In a real experiment the fidelity of the states prepared by
this procedure will not be exactly one due to the detector
inefficiency and to the spontaneous decay of the qubits dur-
ing the time required to reach the asymptotic regime �less
than 100 ns, see Fig. 11�. Detector efficiencies �visibilities�
as large as 0.89 have been obtained recently for phase
qubits.38 The contribution of both these processes to the fi-
delity of the final state in the asymptotic regime can be
calculated.31 With parameters for superconducting qubits as
given in Fig. 11, we estimate that the fidelity of preparing a
Bell state by this procedure will be as high as 90%.

We conclude this part of the paper by pointing out that
this method of producing entangled states is robust with re-
spect to spurious excitations in the resonator39 and that can
readily be applied to existing experimental architectures such
as phase qubit resonator phase qubit40 without significant
changes in the sample design.

VII. CONCLUSION

We have analyzed the entangling properties of a system
consisting of two superconducting qubits coupled to electro-
magnetic fields, both in the quantum and classical cases and
in a variety of experimental situations. Efficient decoupling
of the qubits, two-qubit entanglement, and high fidelity
quantum gates can be obtained in this model. We propose
also a quantum nondemolition scheme for creating qubit-
qubit maximally entangled states by monitoring the state of
the resonator. Our calculations are not dependent on the
physical realization of the qubit and the coupling; therefore
most of our results can be adapted to various qubit species
and coupling schemes.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN
FOR A LONG RESONATOR

In this appendix, we derive the Hamiltonian for the two
SCB charge qubits and the CBJJ capacitively coupled to a
one-dimensional �1D� stripline resonator. We assume the

length of the resonator is L, and then we take c̃ and l̃ as the
capacitance and the inductance per unit length.

We start with the classical Lagrangian of the resonator. At
a point 0�x�L, the local charge density qr�x , t� and phase
�r�x , t� satisfy the following relations:

�0 � �r�x,t�
�t

=
qr�x,t�

c̃
,
�qr�x,t�

�t
=
�0�

2�r�x,t�

l̃ � x2
,

where �0�� /2e. The Lagrangian of the resonator can be
written as
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FIG. 11. The conditional occupation probabilities for the eigen-
states ��1,2� � �the dashed line� and ��3�� �the solid line from Hcond and
the dotted line from Eq. �70��. We have set EJ1,2=�10=10 GHz,
�1=�2=100 MHz, �1=50 MHz, and �=0.5 MHz.
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LR =
�0

2

2
�

0

L

dx�c̃	 ��r�x,t�
�t 
2

−
1

l̃
	 ��r�x,t�

�x 
2� .

�A1�

Because of the boundary conditions,

� ��r�x,t�
�x

�
x=0

= � ��r�x,t�
�x

�
x=L

= 0, �A2�

�r�x , t� has the form �r�t�cos�knx�, with kn�n� /L. By
adopting simplified notations �r�t�→�r and ��r�t� /�t→ �̇r,
the Lagrangian can be rewritten as

LR = �0
2�

0

L

dx	 c̃�̇r
2 cos2�knx�

2
−
�r

2kn
2 sin2�knx�

2l̃



=
1

2�Lc̃

2 ���0�̇r�2 −
1

2�n2�2

2Ll̃
���0�r�2. �A3�

The Lagrangians of the SCBs and the CBJJ are as fol-
lows:

LSCB = �
j=1,2

Cj

2
��0�̇ j�2 + �

j=1,2

Cgj

2
��0�̇ j + Vgj�2

+ �
j=1,2

EJj cos � j , �A4�

LCBJJ =
C

2
��0�̇3�2 + EJ cos �3 + Ib�0�3, �A5�

with the gate voltages Vgj =Vdcj +Vacj.
By considering that the SCBs are close to the ends of the

resonator x1→0 and x2→L, the CBJJ coupled to the end of
the resonator x3=L—and taking the mode of the resonator
n=2—the Lagrangian for the couplings read

Lcoup = �
j=1,2,3

Cmj

2
��0�̇r�xj� + �0�̇ j�2

� �
j=1,2,3

Cmj

2
��0�̇r + �0�̇ j�2. �A6�

The total Lagrangian is then

L = LR + LSCB + LCBJJ + Lcoup. �A7�

The conjugate charges are calculated by the Legendre
transformation Qj =−2enj =�L /���0�̇ j� �j=r ,1 ,2 ,3� and by
the total Hamiltonian,

H = �
j=r,1,2,3

Qj�0�̇ j − L =
�2e�2

2 �C�1C�2C�3

 �nr
2 +

�2

2�2e�2�2�2

Ll̃
��r

2 +
�2e�2

2C�1
�1 +

Cm1
2 C�2C�3

 ��n1 − ng1�2 − EJ1 cos �1

+
�2e�2

2C�2
�1 +

Cm2
2 C�1C�3

 ��n2 − ng2�2 − EJ2 cos �2 +
�2e�2

2C�3
�1 +

Cm3
2 C�1C�2

 �n3
2 − EJ cos �3 −

�

2e
Ib�3

−
�2e�2Cm1C�2C�3

 
nr�n1 − ng1� −

�2e�2Cm2C�1C�3

 
nr�n2 − ng2� −

�2e�2Cm3C�1C�2

 
nrn3 +

�2e�2Cm1Cm3C�2

 
�n1 − ng1�n3

+
�2e�2Cm2Cm3C�1

 
�n2 − ng2�n3 +

�2e�2Cm1Cm2C�3

 
�n1 − ng1��n2 − ng2� , �A8�

where ngj �−CgjVgj /2e, and

 � �Lc̃

2
+ C�4�C�1C�2C�3 − Cm1

2 C�2C�3 − Cm2
2 C�1C�3

− Cm3
2 C�1C�2,

with

C�1 = C1 + Cg1 + Cm1, C�2 = C2 + Cg2 + Cm2,

C�3 = C + Cm3, C�4 = Cm1 + Cm2 + Cm3.

By assuming that Cmj	C�j �j=1,2 ,3� and by defining

C�r �
Lc̃

2
+ C�4 and L�r �

Ll̃

2�2 ,

as the effective capacitance and effective inductance of the
resonator, the Hamiltonian in Eq. �A8� can be rewritten as

H �
�2e�2

2C�r
nr

2 +
�2

2�2e�2L�r
�r

2

+ �
j=1,2

	 �2e�2

2C�j
�nj − ngj�2 − EJj cos � j


+
�2e�2

2C�3
n3

2 − EJ cos �3 −
�

2e
Ib�3
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−
�2e�2

C�r
	Cm3

C�3
nrn3 + �

j=1,2

Cmj

C�j
nr�nj − ngj�


+
�2e�2Cm1Cm2

C�rC�1C�2
�n1 − ng1��n2 − ng2�

+
�2e�2Cm3

C�rC�3
�

j=1,2

Cmj

C�j
�nj − ngj�n3. �A9�

For a relatively long resonator Lc̃
C�4, the direct SCB-SCB
and SCB-CBJJ couplings—described by the last two lines in
Eq. �A9�—are negligible. To obtain the quantum Hamil-
tonian, we replace the variables nj and � j by the operators n̂j
and �̂ j—which obey the commutation relation,

��̂ j, n̂k� = i jk, �j,k = r,1,2,3� . �A10�

The quantized Hamiltonian of the resonator is then

HR =
�2e�2

2C�r
n̂r

2 +
�2

2�2e�2L�r
�̂r

2 = ��r�a†a +
1

2
� , �A11�

where a† �a� is photon creation �annihilation� operator and
the resonance frequency

�r = 1/�L�rC�r � 2�/L�l̃c̃ . �A12�

The dimensionless charge operator,

n̂r =
i

2e
�C�r��r

2
�a† − a� . �A13�

By projecting the Hamiltonian of SCBs onto the charge
states �nj�, we can get

HSCB = �
j=1,2

	 �2e�2

2C�j
�n̂j − ngj�2 − EJj cos �̂ j


= �
j=1,2

��
nj

	 �2e�2

2C�j
�nj − ngj

�2�nj�nj� −
EJj

2
��nj + 1�nj�

+ �nj − 1�nj��
� . �A14�

We also assume that the two SCBs are in charge regime,
EC1,2�2e2 /C�1,2
EJ1,2, so that we truncate Eq. �A14� to
the two lowest charge states of each SCB. We also obtain the
Hamiltonian,

HSCB = �
j=1,2

	ECj�ngj −
1

2
�� j

z −
EJj

2
� j

x
 . �A15�

Since the dc gate voltages are biased at the charge code-
generacy point �1� and the ac voltages have the form in Eq.
�2�, by transforming the Hamiltonian �A15� into the un-
coupled eigenbasis ��↑↑� , �↑↓� , �↓↑� , �↓↓��, we arrive at

HSCB = �
j=1,2

	ECjwj�t�cos��dt + � j�� j
x −

EJj

2
� j

z
 ,

�A16�

where wj�t��−CgjV�wj�t� /2e.

For the CBJJ, we consider EC�2e2 /C�3	EJ. It is better
to discuss it in the “position” space where �̂3 acts as a posi-
tion operator. In the bottom of one of its local minima �see
Fig. 10�, the tilted cosine potential is approximated by a
harmonic potential. So the Hamiltonian is approximately

HCBJJ =
�2e�2

2C�3
n̂3

2 − EJ cos �3 −
�

2e
Ib�̂3

=
��10

2
��1�1� − �0�0��

= −
��10

2
�3

z . �A17�

Here �0� and �1� indicate the ground and the first excited
states of the CBJJ, not charge states anymore. ��10 is the
energy difference between the two states. The dimensionless
charge is analogous to the momentum

n̂3 = i���10C�3

2�2e�2 ��3
+ − �3

−� =
1

2e
���10C�3

2
�3

y ,

�A18�

with the raising operator �3
+= �1�0� and the lowering opera-

tor �3
−= �0�1�.

With these charge operators, we obtain the quantized
Hamiltonians for resonator-CBJJ and resonator-SCB cou-
plings from the fourth line in Eq. �A9�;

HR−C = ���3
+ − �3

−��a† − a� , �A19�

HR−S = i �
j=1,2

gj�� j
x + 2wj�t�cos��dt + � j���a† − a� ,

�A20�

where the coupling strengths

��
�Cm3

2
�2�10�r

C�3Lc̃
, gj � e

Cmj

C�j
���r

Lc̃
. �A21�

The total Hamiltonian is

H = HR + HSCB + HCBJJ + HR−S + HR−C. �A22�

For a very short resonator C�r→C�4 and nr→0, the
kinetic-energy terms in Eq. �A9� become the same as terms
in Eq. �B3�. Furthermore, ��r is much larger than the other
energies in the system; therefore we can assume that the two
SCBs and the CBJJ are directly coupled to each other.

APPENDIX B: DERIVATION OF THE HAMILTONIAN FOR
A SHORT RESONATOR

When the stripline resonator is very short, Lc̃	C�4, the
center conductor can be considered as an island. The SCBs
and the CBJJ are capacitively coupled to this island. Instead
of deriving the Hamiltonian from the classical Lagrangian of
this circuit, here we use a relatively simpler method.

The system has four nodes. As shown in Fig. 1, the total
charge on node j�j=1,2 ,3� is indicated by Qj =−2enj �two
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for a Cooper pair�. The center island acts as the fourth node
and the total charge on it is assumed to be Q4=−2en4. Since
the total charge on a node is equal to the sum of the charges
on all capacitors connected to the node, by denoting the elec-
trostatic potential of node j as Vj, we write the charge equa-
tions for all the nodes in a matrix form as

�
Q1 − Cg1Vg1

Q2 − Cg2Vg2

Q3

Q4

� = �
C�1 0 0 Cm1

0 C�2 0 Cm2

0 0 C�3 Cm3

Cm1 Cm2 Cm3 C�4

��
V1

V2

V3

V4

� .

�B1�

The 4�4 matrix in Eq. �B1� is called the capacitance
matrix C. The total electrostatic �kinetic� energy of the sys-
tem can be calculated by using the matrix,

T =
1

2
QTC−1Q , �B2�

where Q denotes the column vector of charges on the left-
hand side of Eq. �B1�. By making the same assumption as in
Appendix A, Cm1,2,3	C�1,2,3, and by taking Q4=0, the result
of Eq. �B2� is

T = EC1�n1 − ng1�2 + EC2�n2 − ng2�2 + ECn3
2 + �E13�n1 − ng1�

+ E23�n2 − ng2��n3 + E12�n1 − ng1��n2 − ng2� , �B3�

with

EC1 � 2e2/C�1, E13 �
�2e�2Cm1Cm3

C�1C�3C�4
,

EC2 � 2e2/C�2, E23 �
�2e�2Cm2Cm3

C�2C�3C�4
,

EC � 2e2/C�3, E12 �
�2e�2Cm1Cm2

C�1C�2C�4
. �B4�

The inductive �potential� energy of the system can be ex-
pressed as

U = − EJ1 cos �1 − EJ2 cos �2 − EJ cos �3 −
�

2e
Ib�3,

�B5�

where � j �j=1,2 ,3� is the gauge-invariant phase difference
across each Josephson junction.

The total classical Hamiltonian is H=T+U. To derive the
quantum Hamiltonian, we again replace the variables � j and
nj by operators �̂ j and n̂j.

The quantized Hamiltonians of the SCBs and the CBJJ
have the same form as those in Eqs. �A16� and �A17�. With
the charge operators derived in Appendix A, the Hamiltonian
for direct coupling between the two SCBs is given by

HS−S = E12�n̂1 − ng1��n̂2 − ng2�

=
E12

4
�1

x�2
x +

E12

2
w2�t�cos��dt + �2��1

x

+
E12

2
w1�t�cos��dt + �1��2

x , �B6�

and the Hamiltonian for the couplings between the two SCBs
and the CBJJ is derived from the second line in Eq. �B3�,

HS−C = − �
j=1,2

� j	1

2
� j

x�3
y + wj�t�cos��dt + � j��3

y
 ,

�B7�

where

� j = 2e
Cm3

C�4
�Cmj

C�j
����10

2C�3
. �B8�

The total Hamiltonian of this system is finally

H = HSCB + HCBJJ + HS−S + HS−C. �B9�

APPENDIX C: DERIVATION OF THE EFFECTIVE
HAMILTONIAN IN THE DISPERSIVE REGIME

We assume that the Rabi frequencies � j�t� change adia-
batically with respect to the qubit �Larmor� frequency. So in
the following calculations we take �� j /�t=0. We use the
Baker-Hausdorff formula to expand the transformation to
second order,

HA � H + �H,A� +
1

2
��H,A�,A� − i

�A

�t

� − �
j=1,2

	EJj

2
−

gj
2

� j
�a†a +

1

2
�
� j

z

+ �
j=1,2

gj�d

� j�r
� j sin��dt + � j��a† + a�� j

z

+ �
j=1,2

� j cos��d + � j�� j
x + �ra

†a

−
g1g2

2
� 1

�1
+

1

�2
���1

+�2
− + �1

−�2
+� . �C1�

By making an adiabatic approximation for the resonator,
a†a�=0 and a†+a�=1, we neglect the ac-Stark shift and
Lamb shift terms and the Hamiltonian of the resonator. The
effective Hamiltonian can be written as

HA = HA0 + HA1,

where

HA0 = �
j=1,2

gj� j�d

� j�r
sin��dt + � j�� j

z, �C2�

and
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HA1 = �
j=1,2

	−
EJj

2
� j

z +� j cos��dt + � j�� j
x


−
g1g2��1 + �2�

2�1�2
��1

+�2
− + �1

−�2
+� . �C3�

Now we transform HA1 into the interaction picture,

H̃ = ei�0
t dt�HA0�t��HA1e−i�0

t dt�HA0�t��. �C4�

The raising and lowering operators become

�̃ j
� = � j

�e�iz cos��dt+�j� = �
n=−!

!

inJn��z�ein��dt+�j�, �C5�

where Jn��z� is the nth order Bessel function of the first
kind. Since z=gj� j / �� j�r�	1, J0��z� is dominant. There-
fore �̃ j

��� j
� and the Hamiltonian

H̃ � �
j=1,2

	−
EJj

2
� j

z +� j cos��dt + � j�� j
x


−
g1g2��1 + �2�

2�1�2
��1

+�2
− + �1

−�2
+� . �C6�

APPENDIX D: LEAKAGE OUT OF THE
COMPUTATIONAL SUBSPACE

Here we only consider a single charge qubit with rectan-
gular driving pulse � cos��dt�. By considering the three
lowest charge states �n�= ��0� , �1� , �2�� and dc biasing to the
degeneracy point, the Hamiltonian has the form

H = EC�n̂ − ng�2 − EJ cos �̂

= � 0 − EJ/2 0

− EJ/2 − 2� cos��dt� − EJ/2
0 − EJ/2 2EC − 4� cos��dt�

� .

The leakage can be defined as the occupation probability
of state �2� after certain pulse duration, averaged overall pos-
sible initial states ��in�=cos�2 �0�+ei� sin�2 �1�. In Fig. 12, the
leakage for a � pulse is plotted by numerically solving the
Schrödinger equation with H. The driving frequency is set to
�d=EJ.

APPENDIX E: QUBIT-TLS SYSTEM

A lot of experimental progress has been made recently on
phase qubits following the realization that the dielectric in-
sulator forming the Josephson junction contains two-level
system �TLS� defects.4,41 These defects have been shown to
have decoherence time comparable to that of the qubit; thus
they can be addressed coherently �e.g., by tuning the qubit
on-resonance and off-resonance with them�.

The form of the interaction Hamiltonian between the
qubit and the TLS is of the type �x�x in the case of
phase qubits.41 This coupling becomes important when
����1−�2�"�xx. Here we adopt the same notations as in
Sec. III, �xx denotes the coupling strength between the qubit
and the TLS, �1 and �2 are Larmor frequencies of the qubit
and the TLS, respectively. By assuming that for a single
qubit there is only one such a TLS near it and the TLS is
weakly coupled to the driving field of the qubit, we may use
the Hamiltonian in Eq. �24� to describe this qubit-TLS sys-
tem and therefore use the switchable scheme developed in
Sec. III A to perform quantum gates with the qubit and the
TLS.
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