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An extension of coherent potential approximation to analyze the single-particle spectra of disordered Kondo-
lattice model �KLM� to get the interconnected electronic and magnetic properties of “local-moment” systems
such as diluted ferromagnetic semiconductors �DMS� is proposed. Electron scattering by the magnetic ions,
which are randomly distributed over the crystal volume, is taken into account as well as the peculiarities of the
exchange interaction under the single-scattering act in KLM. The coupling of the localized magnetic moments
due to the itinerant electrons �holes� is treated by a modified Ruderman-Kittel-Kasuya-Yosida-theory, which
maps the KLM onto an effective Heisenberg model. We discuss in detail the dependencies of the Curie
temperature on the concentration x of magnetic ions, the carrier concentration n, the exchange coupling J, and
the crystal-field parameters: �AA, �MM, and �AM. The latter play a crucial role for understanding and controlling
the Curie temperature of DMS.
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I. INTRODUCTION

There are many compounds for which we can write the
formula A1−xMx, where A is a nonmagnetic atom and M is a
magnetic atom. Such an alloy model may exhibit very rich
magnetic properties, due to the exchange interaction between
localized moments of the magnetic atom M and conduction-
electron spin in the host of A atoms. For example, in the
metallic case Cu1−xMnx �many carriers� we can study the
Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction and
the Kondo effect.1 In the dielectric case Ga1−xMnxAs �few
carriers� we have a diluted magnetic semiconductors �DMS�
�Refs. 2 and 3�.

The DMS materials based on III–V and II–VI semicon-
ductors exhibit a very striking correlation between the trans-
port and the magnetic properties.2 Ideally, each Mn dopant
atom represents an acceptor that introduces a local spin and a
hole carrier. The ferromagnetism is driven by a charge-
carrier mediated mechanism as a consequence of an inter-
band exchange interaction between the localized magnetic
moments and the carrier �hole� spins. Experimentally, the
Curie temperature Tc of the DMS is enhanced by the post-
growth annealing of the samples, which changes positions of
defects and the hole concentration.2 So the magnetism in the
DMS is heavily depending on the impurity �Mn ion� disorder
and dilution, carrier concentration and compensation, and the
coupling mechanism between the localized Mn spins and the
itinerant holes. Therefore, it is very hard to study these ma-
terials without some approximations. There are many theo-
retical approaches attempting to understand DMS
physics.4–14 However, the mutual influence of interband cou-
pling effects and disorder effects with respect to the ferro-
magnetic phase transition have not been completely under-
stood so far. So we propose, first of all, to study the
ferromagnetic properties of the ideal alloy A1−xMx system.5,6

As mentioned, a very important aspect of these alloys is
the disorder, the magnetic and nonmagnetic atoms are dis-
tributed randomly over the crystal lattice. The magnetic ex-
change interactions are to be taken into account for all dis-
tances between the different moments. This defines an

effective Heisenberg model for the magnetic moments. The
concentration x controls the average distance between two
magnetic atoms. On the other hand, the effective Heisenberg
interaction also depends on x. The same holds for interband-
coupling effects.15,16 Both effects are important for under-
standing the ferromagnetic transition in such a component.5,6

The most developed approach for incorporation of the
carrier disorder is the coherent potential approximation
�CPA�.5,6,9,11,12,17–19 However, there are many indications
that this method is not sufficient for the explanation of
certain properties of the disordered ferromagnetic
semiconductors.17,20 For example, the CPA does not incorpo-
rate the electron scattering on the crystal-field fluctuations,
which are important and can change the Curie temperature
very drastically.2 One attempt of treating the crystal-field
fluctuation in the DMS systems using numerical simulation
for finite systems has recently been used in Ref. 21. How-
ever, the authors used only the effect of chemical substitution
that accompanies the presence of the magnetic atom.

In this paper, we will present an approach, which is based
on an extended CPA treatment that incorporates the carrier
scattering on the crystal-field fluctuation �Sec. II�. Numerical
results concerning Curie temperatures, magnon densities of
states, and effective exchange integrals are presented in Sec.
III for a wide range of the model parameters such as ex-
change coupling J, concentration of magnetic atoms x, elec-
tron band occupation n, and temperature T. Section IV is
assigned to a summary and an outlook.

II. SELF-CONSISTENT CALCULATION OF THE
ELECTRON SPECTRUM

The Hamiltonian of the disordered Kondo-lattice model
�KLM� for the A1−xMx alloy can be written in second-
quantized form as a sum of a kinetic energy, an exchange
interaction, and a crystal-field energy:6

Ĥ = �
i,j,�

tijai�
+ aj� + �

i

Ĥi, �1�

where the single-site part Ĥi has the following form:
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Ĥi = �
�

�ini� + �
�,��

Ji�S� i�� ����ai�
+ ai�� + �

�

�Lini�. �2�

ai�
+ �ai�� is the creation �annihilation� operator for the Wan-

nier electron with the spin ���= ↑ ,↓� at the site R� i. In order
to introduce the disorder into the A1−xMx KLM, we introduce
projection operators;

Xi
A = �1, − if site i is A

0, − otherwise,
� �3�

Xi
M = �1, − if site i is M

0, − otherwise.
� �4�

The energy and exchange coupling constants are written
as

�i = �
k�A,M

�kXi
k,

Ji = �
k�A,M

JkXi
k, �5�

where chemical energy parameters �A=�M =0 are equivalent,
and exchange couplings are JM =J and JA=0 for magnetic
and nonmagnetic atoms, respectively.

The crystal-field energy is given by

�Li = �
k�A,M

�
l�A,M

�
j�i

Xi
k�ij

klXj
l ,

�ij
kl =� �ki

� �r��Ul�r� − R� j��ki�r��dr� , �6�

where the Ul�r�−R� j� term is the potential energy of the elec-
tron at the point r� near the site defined by the radius vector

R� j. The cluster wave functions �ki are constructed from the
atomic functions of an i site of k type.

The transfer matrix is written as

tij = �
k,k��A,M

tkk�Xi
kXj

k�, �7�

where hopping parameters tAA= tMM = tAM = tMA= t=W /6 are
the same for the different kind of atoms and are equal to the
half bandwidth W for the case of simple cubic lattice.

To study conduction-electron properties, we use the con-
figurationally averaged single-electron Green’s function,17,18

Gij��E� = ��ai��aj�
+ 		E. �8�

We introduce the symbol �. . .� to denote the configurational
ensemble average.

The relation between the band occupation n and the
chemical potential � is as follows:

n = n↑ + n↓ = −
1

�
�
�
�

−	

	 Im Gii,��E�
e
�E−�� + 1

dE , �9�

with 
=1 /kT as the inverse temperature.
We use the idea of mapping the disordered KLM on an

effective random spin Heisenberg Hamiltonian5,6,15 �see Fig.
1�;

FIG. 1. �Color online� General procedure of the self-consistent mapping of the disordered Kondo-lattice model onto disordered Heisen-
berg model
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ĤRH = −
1

2�
ij

JijXi
MXj

M�Si
zSj

z + Si
+Sj

−� , �10�

where Jij is an effective interaction between localized mag-
netic moments. If we assume that we can calculate the effec-
tive interaction Jij within the frame of the modified RKKY-
method �MRKKY� �Refs. 15 and 19�,

Jq� =
J2

4�
� dE

e
�E−�� + 1

1

N
�
�,k�

Im
Gk�
0�E�Gk�+q� ,��E�� , �11�

where Jq� is the Fourier transform of Jij, then we get the
self-consistent loop for a finite temperature calculation �see
more detail in Ref. 6�. In order to study magnetic properties
of the disordered KLM, we calculate the configurationally
averaged magnon Green’s function;

Dq��E� = ��Sq�
+�S−q�

− 		E. �12�

By use of the Callen equation22 it is then possible to calcu-
late the magnetization �Sz	:

�Sz	 =
�S − ���1 + ��2S+1 + �S + 1 + ���2S+1

�1 + ��2S+1 − �2S+1 , �13�

where

� = −
1

�

1

N�
q�
�

0

	 Im Dq��E�

e
E − 1
dE . �14�

So, we have a model with two subsystems �Fig. 1�, and
the disorder in the two subsystems plays a different role.

For the spin subsystem we restrict ourselves here to the
simple virtual crystal approximation �VCA� that includes
only the clusters �1� and �5� in Fig. 1. This is exclusively
done because of mathematical simplicity. Since the main fo-
cus of the present study is on the influence of crystal-field
effects appearing in the electronic subsystem, only, VCA for
the spin system may be sufficient. An alternative approach
would be the so-called low-quadratic approximation �LQA�
�see Ref. 23� by which we investigated in our previous paper
�Ref. 6� the disorder in the spin subsystem. With respect to
the disorder problem of the electron subsystem, there are
many papers5,6,9,11,12,17–19 using the CPA technique to find the
electron spectrum for a random crystal. But the CPA includes
only clusters �1� and �5� on Fig. 1. The idea to include
crystal-field effects ��AA ,�AM ,�MM� into the Hamiltonian

Eq. �1�� can improve this CPA ansatz. It is clear that we
have to use the cluster CPA technique for the disordered
electronic part. Now we discuss this approximation in more
detail.

A. Electron subsystem: Cluster CPA treatment

Since the introduction of diagrammatic notation by
Edwards24 for classifying and collecting the terms in the per-
turbation expansion of the electronic properties of alloys,
many authors have extensively used such diagrams to study
many properties of disordered systems,17 and they have been
useful in seeing what sorts of scattering are physically im-
portant.

We shall use this method to obtain the CPA equations as a
self-consistent scattering problem, but shall begin our de-
scription by writing the series of diagrams for the Green’s
function ��ai� �aj�

+ 		E before the configurational ensemble av-
erage procedure 
Eq. �8��. For the alloy A1−xMx, the pertur-
bations are the interatomic hopping tij 
Eq. �7�� and crystal-
field coupling �Li 
Eq. �6��.

+��a �a ��i↑ =j↑ E

�15�

�16�
The graphical symbols refer to

� �ijgi↑�E� = �ij�
k

gi↑
k �E�Xi

k,
�17�

the electron local propagator near the site i for the spin ↑;

��Li �18�

the crystal-field perturbation on the site i from the neighbor
atoms;

� tij �19�

the transfer matrix between two neighbor sites i and j.
An open arrow �full arrow� on the horizontal electron line

means an electron with spin up �down�. The same we can
write down for the ↓ Green’s function ��ai↓ �aj↓

+ 		E. The hop-
ping and crystal-field perturbations do not change the spin
quantum number � in the electron scatterings.

For the electron local propagator gi�
k �E� we have the

Dyson equation;

gi�
k �E� =

1

E − �k − ��
k �E�

, �20�

where the self-energy ��
k �E� describes the electronic proper-

ties of the itinerant electron subsystem in the diluted ferro-
magnetic alloy A1−xMx. The local self-energy is approxi-
mately negligible for nonmagnetic atoms �k=A� and contains
two electron spin scattering parts �Ising and spin-flip parts�
for magnetic atoms �k=M�. The local electronic self-energy
��

k �E� becomes the central quantity of the many-body prob-
lem. For finite temperatures and arbitrary band occupations,
an exact expression of ��

k �E� is not available and one needs
to apply an approximation. In this paper, we use the interpo-
lating self-energy approach �ISA� �Ref. 19�, which results in
a wave-vector independent self-energy ��

k �E�, and is pre-
sented in the Appendix

��
k �E� =�0, if k = A

��

ISA
�E� , if k = M� . �21�
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After summation the set of diagrams 
Eq. �16�� reduces to
the electron local propagator renormalized by the crystal-
field effect;

�ij�
k

Xi
k

�gi↑
k �E��−1

=
�Li

k .
+ �22�

In order to perform the averaging over the X operator in
the electron Green’s function ��ai� �aj�

+ 		E, the density opera-
tor 
̂X can be written as


̂X = �
i


X
i = �

i


�1 − x�Xi
A + xXi

M� . �23�

For example, using the density operator, one gets the av-
eraged �Xi

k	 operators and the electron local propagator
�g�i	X;

�Xi
k	X = TrX�Xi

k
̂X� = �1 − x , k = A

x , k = M
� ,

�g�i	X = TrX�g�i
̂X� = �1 − x�g�i
A + xg�i

M . �24�

For averaging of the Green’s function 
Eq. �15��, we use
the standard cumulant decompositions.17,18 The cumulants of
two random variables g�i and �Li are defined by

S���1;�2� = �e�1g�i+�2�Li	 = exp
 �
n,m;n+m�0


�1�n
�2�m

n ! m!
Mnm

� � ,

�25�

where �1 ,�2 are infinitesimal variables.
From that it follows the cumulant expression;17,18

Mnm
� =

�n

��1
n

�m

�a2
mS���1 → 0;�2 → 0� . �26�

In the graphical presentation, the cumulant is shown as oval
near given site. For example, the first electron cumulant near
one local electron line g↑i and one crystal-field point �Li and
the second electron cumulant near two local electron lines
gather one and two separate parts, respectively,

� M20
↑ = − �M10

↑ − g↑i
A ��M10

↑ − g↑i
M� ,

� M10
↑ = �1 − x�g�i

A + xg�i
M ,

� M01
↑ = M01

↓ = ��Li�X. �27�

In this study we consider solely the diagrams for which the
configuration averaging embraces the electron propagators
and the crystal field separately. Such averaging is equivalent
to the statement of the coherent potential to be independent
of the crystal field. The local Green’s functions 
Eq. �16��
become renormalized by crystal field, but new poles do not
arise. Therefore, it is appropriate to introduce a special nota-
tion of such renormalized Green’s function 
first diagram in
the expression �15��;

� �g�i�E��X. �28�

The configuration averaging of each line in Eqs. �16� and
�28� can be performed in different ways,25,26 but in this paper
we use the cluster approximation.25 In the cluster approach
one has:

Di�
k �E� � � 1


g�i
k �E��−1 − �Li

�
X

= �
r=0

z
w�r�


g�i
k �E��−1 − �z − r��ij

kk − r�ij
kk�

, �29�

where w�r�=z ! / 
r ! �z−r�!��1−x�rxz−r;k��k; z is the number
of nearest neighbors; i and j are the nearest-neighbors sites in
the crystal lattice.

The further averaging over the full Green’s function
��ai↑ �aj↑

+ 		E in the Eq. �15� leads to the equation for the av-
eraged Green’s function,

G�;ij�E� = ��;ij�E� + �
i1,j1

��;ii1
�E�ti1j1

G�;j1j�E� . �30�

Here the ��;ij term is the self-energy part of the averaged
Green’s function in the Larkin presentation for whole crystal
and is irreducible by the transfer. It is called the locator in
Ref. 17 and has the following diagram representation:

��;ij =

�31�

Let us restrict ourselves to single-site diagrams in the ��;ij
expression �31� �e.g., 1, 2, 3, and so on�, i.e., to the single-
site approximation ��;ij�E�=�ij���E�. Then Eq. �31� can be
rewritten in the form:

�32�

where J��E� is the sum of all diagrams beginning and termi-
nating at the same site and having no common cumulants.
The set 
Eq. �32�� can be calculated using the technique of
Ref. 17.

���E� =
�1 − x�D�

A�E� + xD�
M�E� − D�

A�E�D�
M�E�J��E�

1 − 
xD�
A�E� + �1 − x�D�

M�E��J��E�
.

�33�

On the other hand, the sum J��E� can be determined if
one finds the sum of all diagrams beginning and terminating
at the same site and having the common cumulants �ovals�;
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1

N
�k�

tk��� +
1

N
�k�

tk�
2����2 + . . .

=
1

N
�

k�

tk�
2

����−1 − tk�
,

=

�34�

where tk� is the Fourier transform of the transfer matrix. It is
clear that the sum Eq. �34� �called the fully renormalized
interactor in Ref. 17� is equal to

1

N
�

k�

tk�
2


���E��−1 − tk�
=

J��E�
1 − ���E�J��E�

. �35�

Let us rewrite the expressions �30�, �34�, and �35� in the form
of the equations for the coherent potential as follows:

G�;ii�E� =
1

N
�

k�

1


���E��−1 − tk�
. �36�

Then the coherent potential J��E� takes the form,

J��E� = 
���E��−1 − 
G�,ii�E��−1. �37�

Combining Eqs. �33�, �36�, and �37� one gets the solution
of the self-consistent problem for the A1−xMx crystal lattice

G�,ii�E� =
1 − x


D�
A�E��−1 − 
���E��−1 + G�,ii

−1 �E�

+
x


D�
B�E��−1 − 
���E��−1 + G�,ii

−1 �E�
, �38�

where the disorder in the first coordination sphere �see Fig.
1� is included in the local propagators D�

A�E� and D�
M�E�,

which can be evaluated by using the cluster approach 
Eq.
�29��.

B. Magnetic subsystem: Virtual crystal approach

This is the most simplest approximation for the magnon
Green’s function.6 If we neglect all magnon scattering pro-
cesses on the disorder, we obtain the following expression
for the magnon Green’s function:

��Sq�
+�S

q��
−

		E = ��q� + q���
2x�Sz	

E − 2x�Sz	
J�0� − J�q���
. �39�

C. Full self-consistent approach

This technique was described in recent papers5,6 and is
schematically illustrated in Fig. 1 and proceeds as follows.
For the zero temperature and for the saturated magnetization
�Sz	=S, the electronic part of the model Hamiltonian is
solved by using a single-particle Green’s function 
Eq. �38��,
where the crystal-field parameters ��AA ,�AM ,�MM� are in-
cluded in the average local Green’s function 
Eq. �29��. The
result provides the single-site self-energy ���E� for a given
band occupation of the conduction band n 
Eq. �9��, concen-
tration of the magnetic atoms x, and exchange coupling con-
stant J. In order to study the magnetic properties �finite tem-

perature�, we use the MRKKY theory that results from
mapping the s− f interaction onto an effective Heisenberg
model. Getting effective exchange integrals Jij 
Eq. �11�� is
mainly determined by the electronic self-energy. Finally,
considering random distribution of the magnetic ions, the
effective Heisenberg model 
Eq. �10�� is solved in the cluster
CPA framework6 self-consistently and new magnetization
�Sz	 can be derived from the magnon Green’s function in the
VCA approximation 
Eqs. �12� and �39�� and the Callen
equation 
�13��. The entire procedure is repeated until the
solution of �Sz	 is self-consistent. Furthermore, one can
change the temperature and repeat the entire �Sz	 self-
consistent calculation until one gets Tc��Sz	=0�.

III. RESULTS AND CALCULATION

We have evaluated our theory for a local-moment system
�S=5 /2� on a simple-cubic lattice with the width of the free
Bloch band to be 2W=1 eV and for a small electron con-
centration n. We are interested in how disorder �dilution case
�=0 and cluster effects ��0� of the localized moments in-
fluence the electronic and magnetic properties of the system.
We start with the inspection of the electronic part in terms of
the quasiparticle density of states �DOS�.

Figure 2 shows the quasiparticle DOS of the conduction
band at T=0 for two different cases: switch off ��AA

=0,�AM =0,�MM =0� and switch on ��AA�0,�AM �0,�MM

�0� the crystal-field effects. In the first case the properties of
the disordered Kondo-lattice are absolutely the same as was
discussed in the earlier papers.5,6,12 The DOSs consist of two
correlated and one noncorrelated bands per spin direction.
The correlated bands correspond to the magnetic atoms M,
with the spectral weight �x and the center of gravity �M. The
noncorrelated band stems from nonmagnetic atoms A with
the spectral weight ��1−x� and the center of gravity �A. The
DOS of the correlated bands for �Sz	=S�T=0� and a large
enough interband exchange coupling J consists in general of
two subbands centered near the atomic energies: −JS /2 and
J�S+1� /2. For the spin-up electrons at T=0 there is no DOS
for energies around J�S+1� /2, while the spin-down density
is finite there �magnetic polaron states�. For weak couplings
�J�0.2� correlated and uncorrelated bands are mixed pre-
venting a clear interpretation of the various influences. For
the electron DOS with the crystal-field effects included,
these two bands are built-up by seven minibands, which cor-
respond to the cluster types presented in Fig. 1. The denomi-
nator of the local Green’s function 
Eq. �29�� controls the
center of gravity of every miniband and the numerator con-
trols the shape of the minibands. Figure 2 presents the influ-
ence of different crystal-field parameters ��AA ,�AM ,�MM� on
the electron DOS. At very low x, the crystal field between
two neighbor nonmagnetic atoms �AA cannot change �shift�
the DOS very drastically and the electron DOS �red line� is
approximately the same as the DOS without the crystal-field
effects �black line�. Increasing the crystal-field parameter
�MM between two magnetic atoms, the center of gravity of
the correlated subband monotonically shifts to higher energy
hardly changing the noncorrelated bands �blue line on Fig.
2�. The crystal field between magnetic and nonmagnetic at-
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oms �AM plays the role of hybridization between correlated
and noncorrelated subbands �green line�. At finite tempera-
ture all minisubbands are mixed. Finally, the spectrum of up
and down electrons from the correlated and noncorrelated

bands becomes symmetric at T�Tc, where bands are equally
populated and spin-polarization disappears.5,6,12,19

The coupling of the local spins is indirectly being medi-
ated by the itinerant charge carriers via interband exchange

FIG. 2. �Color online� Quasiparticle electron �left column� and magnon �right column� DOS at fixed model parameters W=0.5, S
=5 /2, x=0.1, and n /x=0.6 for three different couplings and for different values of the crystal-field parameters. The inset shows dependence
of the MRKKY interaction on the distance R between magnetic atoms in simple-cubic lattice �R=1 is a first shell, R= t�2 is a second shell,
and R=�3 is a third shell�.
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to the localized moments. So, the electron band concentra-
tion n and the concentration x of randomly distributed local
moments do strongly influence the character of the long-
range exchange interaction Jij between two magnetic atoms
M. In the inset of Fig. 2 the change in the MRKKY interac-
tion is shown for the three first shells. Figure 3 exhibits only
the dependencies of the effective nearest-neighbor exchange
J1 and next-nearest-neighbor exchange J2 interaction on the
interband exchange coupling J for the case of a switched off
crystal field.5,6 We identify three regimes for the effective
Heisenberg system: low coupling regime with a conventional
RKKY behavior J1�J2; strong coupling regime with short-
range interaction J1 while other exchange integrals J2 ,J3 , . . .
are small; and the intermediate coupling regime, which plays
a very important role for small concentration of magnetic
atoms x �see Fig. 3�.5,6 For the concentrated Kondo-lattice
�x=1� there is mainly a competition between the low cou-
pling and strong coupling regimes. Enhancing monotonically
the exchange coupling J, we can change from freelike re-
gime to the localized one, similar to a double-exchange re-
gime. However for the diluted case �x�1� and especially for
the very low concentration x, the magnetic subsystem is not
so closed and the competition between the two counteracting
tendencies becomes more visible �Fig. 3�.

Figure 4 shows the influence on the crucial field effects on
the exchange couplings J1 ,J2 of the effective Heisenberg
model for low concentration. We see that the biggest influ-
ence of the first exchange constant of the effective Heisen-
berg model appears for the intermediate regime of the inter-
band exchange coupling. The low coupling regime and the
strong coupling regime are absolutely the same as for the
situation where all crystal-field effects are neglected. The

crystal field �AM reduces the value of J1. The crystal field
between two nonmagnetic atoms �AA does not play any role.
Moreover increasing the crystal field between the two mag-
netic atoms, we can drastically increase the value of the ex-
change coupling in the effective Heisenberg model.

Such crystal field effects play a critical role for under-
standing and controlling the ferromagnetic key properties
such as the Curie temperature. Figures 5 and 6 show the
change in the Curie temperature as function of the interband
exchange coupling in the Kondo-lattice model.

Comparing with the concentrated Kondo-lattice model27

�x=1�, we realize a strong nonmonotonic change in the Curie
temperature by a variation of the interband exchange
coupling5 J �Figs. 5 and 6�. This is due, first of all, to the

FIG. 3. �Color online� Dependence of the nearest-neighbor ef-
fective exchange integral J1 and the next-nearest-neighboring one
J2 on the exchange coupling J at W=0.5 eV, n=0.06, S=5 /2, and
T=0 for different values of moment concentration x without crystal-
field effects.

FIG. 4. �Color online� Dependence of the nearest-neighbor ef-
fective exchange integral J1 and the next-nearest-neighboring one
J2 �in the inset� on the exchange coupling J at W=0.5 eV, n
=0.06, x=0.1, S=5 /2, and T=0 for different values of the crystal-
field parameters �AA, �AM, and �MM.

FIG. 5. �Color online� Dependence of the Curie temperature Tc

on the exchange coupling J at W=0.5 eV, S=5 /2, and x=0.1 and
three different value of a small electron concentration n /x=0.1,
n /x=0.6, and n /x=1 without crystal-field parameters influence.
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effective exchange coupling in the effective Heisenberg
model �Fig. 4�. However even for an extremely low carrier
concentration there is an induced ferromagnetism. The ex-
change coupling J must exceed a critical value Jc to get a
finite Tc. For J�Jc the system has paramagnetic properties
�Tc=0�. For the strong coupling regime the Curie tempera-
ture is saturated to some constant value �Fig. 5�. It turns out
that a realistic effective occupation parameter of the corre-
lated subbands for the diluted Kondo-lattice is the value n /x
rather than n. There is also a nonmonotonic shift to higher
values of the critical exchange coupling Jc when increasing
the electron band occupation n /x as in the concentrated
Kondo-lattice model.27

Figure 6 shows the dependence of the Curie temperature
on the interband exchange coupling constant J, with included
crystal-field effects in the first environment shell �see Fig. 1�.
We see that the crystal-field effects do not change drastically
the Curie temperature in low and strong coupling regimes
compared to the case without crystal-field effects. But there
is a drastic change in the intermediate region of the interband
exchange coupling �0.3�J�0.7�. Especially, increasing the
crystal-field parameter between two magnetic atoms �MM

can lead to a very drastic Curie temperature �Fig. 6�.

IV. SUMMARY

It is clear that a realistic electronic-structure calculation
based on density-functional theory8 or numerical methods
such as the classical quantum Monte Carlo7,10 can give more
realistic results. However, the disadvantage of these calcula-
tions comes from their strong material dependence and they
do not explain the basic physics of disordered local-moment
systems in a simple way.

A special challenge when treating the random Kondo-
lattice model arises with the fact that both the electron and
the spin subsystem have to be considered simultaneously and

on the same level.5,6 So, we have performed a self-consistent
model calculation of the electronic and magnetic properties
of diluted local-moment systems A1−xMx described by ferro-
magnetic Kondo-lattice model �s− f model�, where we in-
cluded disorder in the first environment shell by use of
crystal-field parameters between two nonmagnetic, one mag-
netic and nonmagnetic, and two magnetic atoms, respec-
tively, �AA, �AM, and �MM. The electronic self-energy was
derived by the Green’s function formalism �interpolating
self-energy approach� previously developed and tested for
the normal KLM �Ref. 19�. The CPA treatment had to be
generalized to include the crystal-field effects and the result-
ing self-energy turns out to be dependent on the magnetiza-
tion of the disordered local-moment system. This quantity
was determined by mapping the interband exchange interac-
tion of the KLM on an effective Heisenberg model solved in
VCA. Finally we arrived at a closed system of equations,
which could be solved self-consistently for the electronic and
magnetic properties of the diluted local-moment system.

For performing the investigation of the mutual influence
of magnetic correlations and disorder effects in diluted local-
moment systems, we introduced phenomenological crystal-
field parameters ��AA ,�AM ,�MM�. These parameters are act-
ing on of the electronic subsystem of the disordered Kondo-
lattice. In principle, they must be calculated by a self-
consistent procedure together with the effective exchange
Heisenberg constants, for example. But the complexity of the
problem did not yet allow us to realize this strategy. From the
magnon DOS �Fig. 2� we can conclude that for better fitting
of our results to the quantum Monte Carlo calculation10 it is
necessary to support large values of the crystal field between
two magnetic atoms �MM.

The effects of the crystal field from the only magnetic
atom was recently discussed in Ref. 21 for the DMS system.
These was considered a correlation between the on-site
crystal-field potential Vi and the exchange constants in the
effective Heisenberg model16 Jij.

Another important method to introduce the crystal-field
effects is based on a nondiagonal hopping term between the
different kind of atoms and a matrix technique of Ref. 28.
But this technique is more complicated to apply than our
technique. We reformulated the crystal-field potential energy
into a single-site problem, which makes the problem diago-
nal and gives a possibility to apply CPA technique, where we
included the crystal-field effects and their fluctuations in the
binary alloy A1−xMnx for the first coordination shell only. In
the future we plan also to test this technique for other binary
alloys and give a more detailed comparison to standard
approaches.17,25

The crystal-field effects play a crucial role for understand-
ing and controlling key-properties such as the Curie tempera-
ture. We have seen that disorder effects in the first environ-
ment shell had changed the Curie temperature very
drastically. In order to compare our model calculation with
experimental data such as Ga1−xMnxAs, we planned to com-
bine our study with realistic parameters from an ab initio
band-structure calculation.
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APPENDIX: ISA TREATMENT

The approximate expressions for the electronic self-
energy of the low-density KLM used in the paper are the
following:

��

ISA
�E� = −

1

2
Jz��Sz	 +

1

4
J2

a�G0�E − 1
2Jz��Sz	�

1 − 1
2JG0�E − 1

2Jz��Sz	� ,

G0�E� =
1

N
�

k�

1

E − ��k��
,

a� = S�S + 1� − z��Sz	�z��Sz	 + 1� ,

z� = ��↑ − ��↓. �A1�

This result fulfills the zero-bandwidth limit for all tem-
peratures T and arbitrary coupling strengths J, as well as the
exact T=0 result for arbitrary bandwidths and couplings
�Ref. 19�. Exact high-energy expansions helped us to fix the
parameters a�.
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