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Molecular dynamics computer simulations are performed to study structure and structural relaxation in the
glassforming metallic alloy Al80Ni20. The interactions between the particles are modeled by an effective
potential of the embedded atom type. Our model of Al80Ni20 exhibits chemical short-range order �CSRO� that
is reflected in a broad prepeak around a wave number of 1.8 Å−1 in the partial static structure factor for the
Ni-Ni correlations. The CSRO is due to the preference of Ni atoms to have Al rather than Ni atoms as nearest
neighbors. By analyzing incoherent and coherent intermediate scattering functions as well as self-diffusion
constants and shear viscosity, we discuss how the chemical ordering is reflected in the dynamics of the deeply
undercooled melt. The q dependence of the � relaxation time as well as the Debye-Waller factor for the Al-Al
correlations show oscillations at the location of the prepeak in the partial static structure factor for the Ni-Ni
correlations. The latter feature of the Debye-Waller factor is well reproduced by a calculation in the framework
of the mode coupling theory �MCT� of the glass transition, using the partial static structure factors from the
simulation as input. We also check the validity of the Stokes-Einstein-Sutherland formula that relates the
self-diffusion coefficients with the shear viscosity. We show that it breaks down already far above the mode
coupling critical temperature Tc. The failure of the Stokes-Einstein-Sutherland relation is not related to the
specific chemical ordering in Al80Ni20.
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I. INTRODUCTION

The chemical ordering in binary metallic melts may lead
to a structural arrangement of the atoms that is different from
that of a closed-packed hard-sphere mixture, resulting in the
occurrence of chemical short-range order �CSRO�,1–3 i.e.,
structural features on length scales that go beyond that of the
typical distance between nearest-neighbor atoms. It is still an
open question how mass transport and structural relaxation
in metallic melts are affected by the presence of CSRO. In a
recent study using a combination of quasielastic neutron
scattering and molecular dynamics �MD� computer
simulation,4 this question was addressed for high-
temperature Al-Ni melts at different compositions. It was
shown that the CSRO indicates a nonadditive packing of Al
and Ni atoms which is directly reflected in the diffusion dy-
namics. The essential structural features and the diffusion
coefficients, as obtained by the simulation, were in good
agreement with the neutron-scattering experiment. In this
work, we extend the latter study to the consideration of a
deeply undercooled Al80Ni20 melt, using MD simulation. The
main aim is to elucidate the relation between chemical order-
ing and glassy dynamics for this system.

A theory that provides the link between the static structure
and the relaxation dynamics in glassforming liquids is the
mode coupling theory �MCT� of the glass transition.5,6 In the
framework of MCT, the dynamics is predicted from struc-
tural input, i.e., essentially from the partial static structure
factors. The central dynamic quantities in MCT are time-
dependent density correlation functions. For these quantities
as well as for different transport coefficients, the theory

makes a lot of detailed predictions that have stimulated many
of the recent experiments on structural relaxation.6,7 MD
computer simulations have been very useful to test the pre-
dictions of MCT for different glassforming systems, in par-
ticular for a glassforming binary 80:20 Lennard-Jones �LJ�
mixture studied extensively by Kob and co-workers.8–14

More recently, analyses within the MCT framework have
been successful for metallic alloys in particular.15–22

As we shall see below, the dynamics of Al80Ni20 is in
many respects similar to that of the binary 80:20 Lennard-
Jones mixture, in particular with respect to the validity of the
MCT predictions. However, there are subtle differences be-
tween the two systems. Whereas the one-particle dynamics
for Al and Ni is very similar in the considered Al-Ni mixture,
the self-diffusion constants and one-particle relaxation times
for A and B particles in the LJ system differ by up to a factor
of 3 above the critical temperature of MCT, Tc. Moreover,
the partial static structure factor for the Ni-Ni correlations,
SNiNi�q�, exhibits a broad prepeak around a wave number of
about 1.8 Å−1, indicating an inhomogeneous distribution of
Ni atoms on intermediate length scales. A similar feature is
not seen in the LJ system. The prepeak in the Al-Ni mixture
is reflected in the collective dynamics. Although the prepeak
is only seen in the static structure factor for the Ni-Ni corre-
lations, it can be identified in the dynamics for the Al-Al
correlations, e.g., in the structural relaxation time �AlAl�q�.
Below, we discuss all these peculiar features in regard to the
chemical ordering in Al80Ni20.

Calculations in the framework of MCT are presented,
based on the partial static structure factors from the MD
simulation. We find that the Debye-Waller �DW� factors
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f �����q� are well reproduced by the theory, at least on a quali-
tative level. In particular, the occurrence of the Ni-Ni pre-
peak in the Al-Al dynamics is obtained by the MCT calcu-
lation. This demonstrates that MCT provides a basis toward
the understanding of the subtle interplay between chemical
ordering and structural relaxation in glassforming liquid mix-
tures.

A fundamental question, also addressed in the following,
is about the relationship between one-particle transport and
collective transport properties. In a recent publication,23 we
have investigated the relation between self-diffusion and in-
terdiffusion, checking the validity of the so-called Darken
equation24 that expresses the interdiffusion constant DAB by
a simple linear combination of the self-diffusion constants.
We found that the Darken equation is a good approximation
for Al80Ni20 �and also for other mixtures such as Al50Ni50, as
shown in another publication25�. In this paper, we consider
the Stokes-Einstein-Sutherland �SES� relation between self-
diffusion and shear viscosity.26,27 Different experiments on
metallic alloys28–30 suggest that the SES relation may work
well above the critical mode coupling temperature Tc
whereas one sees a decoupling of self-diffusion and viscosity
below Tc. However, for a Zr based massive metallic
glassformer,31 it was shown experimentally that the SES re-
lation is also invalidated above Tc. Computer simulations of
the aforementioned LJ mixture32 and of hard-sphere-like col-
loidal glassformers33 as well as of silica34 again indicate that
the SES relation fails already above Tc. Here, we consider
the SES relation for a realistic model of Al80Ni20 and quan-
tify the decoupling of self-diffusion and shear viscosity in
this system.

The rest of the paper is organized as follows: In Sec. II,
we present the model and discuss details of the simulation
technique as well as of the MCT calculations. The results for
the static structure and structural relaxation are presented in
Sec. III. Section IV concludes this paper with a brief sum-
mary and discussion of our results and future scopes.

II. TECHNICAL DETAILS

A. Model and details of the simulation

In order to model the interaction between the atoms in
Al80Ni20, we use a potential of the embedded atom type
�EAM� that has been recently proposed by Mishin et al.35

This model potential has been proven successful to describe
rather accurately various structural and dynamic properties
of Al-Ni melts4,23 as well as the crystallization kinetics from
the melt for B2-Al50Ni50.

25

In the framework of an EAM potential, the total potential
energy of a binary system such as Al80Ni20 reads

V =
1

2�
ij

u�i�j
�rij� + �

i

F�i
��̄i� , �1�

with u�i�j
�rij� as the pair interaction potential between par-

ticles i and j of the ionic species �i and � j, respectively,
separated by a distance rij = �ri−r j�, and F�i

as the embedding
energy of species �i at site i due to the electron density �̄i
from all other atoms. Here, �̄i can be written as

�̄i = �
j�i

��j
�rij� , �2�

with ��j
�rij� as the electron density at i due to the ionic

species � j at a distance rij. For the sake of brevity we do not
write down the exact functional forms of u�� �� ,�=Al,Ni�
as well as the embedding energies and electron densities, but
refer to Ref. 35 for details.

The simulations were performed at zero external pressure
�p=0�, in order to allow for a direct comparison to experi-
ments under ambient pressure. Systems of N=1500 particles
�NAl=1200 and NNi=300� are put in a cubic simulation box
with periodic boundary conditions. First, Monte Carlo �MC�
simulations in the NpT ensemble36 �with p=0� were per-
formed at each temperature, using a combination of standard
particle displacement moves and allowing the volume to
fluctuate. In the particle displacement moves, trial displace-
ments were randomly chosen from the interval �−� /50,
� /50�, where � is the average interatomic separation. At the
end of N trial displacements, an isotropic volume move of
random magnitude �V between �−V /100, V /100� was tried.
In the volume moves the new particle positions were res-
caled with an appropriate factor according to the volume
change. These moves were accepted or rejected according to
a Metropolis criterion �for details see Ref. 36�. Depending
upon the temperature, the length of the MC simulations ex-
tended between 105 to 2�106 cycles, where a MC cycle
consists of N displacement moves and a single volume move.

The average volume was obtained from the asymptotic
flat portion of the curve extending over a reasonable length.
In Fig. 1, we present the total mass density of particles, �m,
as a function of temperature, as obtained from the zero pres-
sure MC simulations. Although the density changes signifi-
cantly from about 2.5 g /cm3 around 4000 K to about
3.5 g /cm3 around 650 K, we shall see below that the relax-
ation dynamics in this temperature range is qualitatively
similar to that found in constant volume simulations of a
binary Lennard-Jones mixture.7–10 Also shown in Fig. 1 are
experimental data around the liquidus temperature TL
=1263 K �Ref. 37� that were obtained by Plevachuk et al.38

using electromagnetic levitation techniques. We find that the
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FIG. 1. Plot of the total mass density vs temperature at zero
pressure, p=0. The dashed line is a guide to the eye. The solid bold
line represents experimental data by Plevachuk et al. �Ref. 38�.

DAS, HORBACH, AND VOIGTMANN PHYSICAL REVIEW B 78, 064208 �2008�

064208-2



MD simulation agrees with experimental data within a
2%–3% margin.

At each temperature, the average volume, as obtained
from the MC runs, was used as an input to the MD simula-
tions. In the latter simulations, Newton’s equations of motion
were integrated with the velocity form of the Verlet
algorithm,36,39 using a time step of 1 fs for T�1500 K and
2.5 fs for lower temperatures. The masses of Al and Ni atoms
were set to mAl=26.981539 amu and mNi=58.693 amu.

First, the system was fully equilibrated at high tempera-
tures �T�2260 K�, by performing runs over 105 time steps
in the NVT ensemble. In order to keep the temperature con-
stant, we applied the Andersen thermostat where after every
50 cycles we have chosen new velocities from a Maxwell-
Boltzmann distribution in accordance with the temperature
of the system.39 Appropriate care was taken to equilibrate the
system at each new temperature: Before starting the produc-
tion runs at each lower temperature, an a priori estimate of
the equilibration time tequ was made by reasonable extrapo-
lation of the relaxation time from higher temperature and in
addition to the MC runs �as described above�, a further ther-
malization was done in the NVT ensemble for times larger
than tequ in the MD simulations. Finally these equilibrated
configurations were used as initial configurations for the pro-
duction runs of MD simulations in the microcanonical en-
semble. The temperatures considered were 4490, 2994, 2260,
1996, 1750, 1496, 1300, 1100, 998, 940, 893, 847, 810, 777,
754, 735, 715, 700, 680, and 665 K. At the lowest tempera-
ture T=665 K, both the length of the equilibration and the
production runs extended over 40�106 time steps, corre-
sponding to 100 ns real time. To improve the statistics, eight
runs over independent initial configurations were performed
at each temperature.

For the calculation of the shear viscosity 	, additional
production runs were done in the temperature range
4490 K�T�715 K that extended the aforementioned pro-
duction runs by a factor of 10. This was necessary in order to
obtain a reasonable statistics for 	. Note that the same runs
were also used to determine the interdiffusion constant DAB.
A detailed study of the temperature dependence of DAB can
be found elsewhere.23

Let us point out that all simulation results presented in the
following are obtained from runs that were fully equilibrated
before any static or time-dependent averages were calcu-
lated.

B. MCT calculations

MCT predicts drastic changes in the dynamics of glass-
forming liquids arising from relatively minor changes in the
average equilibrium structure. In its most common form,
MCT requires the input of partial static structure factors
S���q� to take the information about the liquid structure. The
functions S���q� are defined by40

S���q� =
1

N
�

k�=1

N�

�
l�=1

N�

�exp�iq · �rk�
− rl�

�	
 , �3�

where the indices k�, l� correspond to particles of species �
and �, respectively �� ,�=Al,Ni�. Due to the isotropy of the

considered systems, the structure factors �Eq. �3�� depend on
wave-vector q only through the magnitude q= �q�.

For all but the simplest model potentials, the functions
S���q� have to be determined from computer simulation, or
from scattering experiments, although disentangling the par-
tial contributions in mixtures can be challenging for the lat-
ter. A recent MCT study of a Zr-Ni mixture22 used the S���q�
from a set of neutron-scattering studies, that were, however,
restricted to a single temperature. In our study, we base MCT
calculations for Al80Ni20 on the S���q� obtained from the
MD simulation at the temperatures T=2000 K, 1500 K, and
1000 K, with linear interpolation between those points.

The solution to the MCT equations of motion is the ma-
trix of partial dynamic structure factors S�q , t�. Its elements,
S���q , t�, are a straightforward generalization of the partial
static structure factors:7

S���q,t� =
1

N
�

k�=1

N�

�
l�=1

N�

�exp�iq · �rk�
�t� − rl�

�0��	
 . �4�

At t=0, the functions S���q , t� yield the partial static struc-
ture factors, i.e., S�q , t=0��S�q�. For the diagonal elements
of these matrices, �=�, it is convenient to consider normal-
ized quantities, the so-called coherent intermediate scattering
functions,7 defined by

F�����q,t� = S���q,t�/S���q� . �5�

A similar definition for the unequal correlations, ���, is not
sensible, since the static structure factor S���q� for ��� has
zero-crossings �see Fig. 4�. The one-particle dynamics is
quantified by the self-part of the intermediate scattering
function,

Fs
����q,t� =

1

N�
�
j=1

N�

�exp�iq · �r j�t� − r j�0��	
 . �6�

This function is also called incoherent intermediate scatter-
ing function.

The MCT equations of motion were solved numerically as
outlined in Ref. 41. These equations are given by

J−1�q��t
2S�q,t� + S−1�q�S�q,t�

+ �
0

t

M�q,t − t���t�S�q,t��dt� = 0 , �7�

where J���q�=q2kBT /m�
�� sets the thermal velocities for
the short-time dynamics. M�q , t� is the memory function ma-
trix of generalized fluctuating forces, which in the MCT ap-
proximation is written as

M���q,t� =
1

2q2

n

c�c�
� d3k

�2��3

� �
��������

V������q� ,k��V������q� ,k��

�S�����k,t�S�����p,t� �8�

with p= �q� −k��. Here, n is the number density, and c� are the
number concentrations, cAl=0.8 and cNi=0.2 in our case. The
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vertices V������q� ,k��= �q�k� /q�c����k�
���+ �q�p� /q�c����p�
���
+qnc�c�����

�3� �q� ,k�� contain only equilibrium static correla-
tions, viz. the matrix of direct correlation functions c�q� de-
fined by S�q� through the Ornstein-Zernike relation.40 c�3�

denotes the corresponding static triplet correlation
function,42 which we set to zero in the following. The latter
approximation has been justified in a study of the binary
Lennard-Jones mixture43 �mentioned in the Introduction�
where it was shown that the triplet correlation functions do
not give noticeable contributions to the vertices V�����. We
assume a similar conclusion to hold in dense metallic melts
such as our Al-Ni mixture.

MCT describes the slowing down of the dynamics, con-
nected to an increase in relaxation times for the S�q , t�, as the
coupling described by the V����� increases smoothly through
a variation of control parameters such as the temperature T.
The divergence of relaxation times defines the MCT critical
point Tc. No such divergence is observed in experiment or
simulation, but the scaling laws connected to Tc describing
the asymptotic shape of the correlation functions and a
power-law variation in relaxation times have been seen in
experiments of various systems.6 Hence, the MCT critical
point provides a useful, well-defined concept to discuss the
slow dynamics of glassforming systems.

Equation �8� indicates that the memory kernel is a sym-
metric bilinear form of the density correlators, M�q , t�
=F�S�t� ,S�t���q�. At t→�, the bifurcation, occurring at Tc,
can be identified by the long-time limit F�q�
=limt→� S�q , t�. The F���q� are called the glass form factors
�or Debye-Waller factors� and are solutions of the equation

F�q� = S�q� − �„S�q�…−1 + F�F,F��q�	−1. �9�

From this equation, F�q� can be calculated by an iteration
scheme. For sufficiently small vertices, the liquid solution
F�q�=0 is obtained, while in the glass the solution F�q��0
is found. Below, we present MCT results for the normalized
DW factors f �����q�=F�����q� /S���q�, as well as for fs

����q�
=Fs

����q� /S���q�, the so-called Lamb-Mößbauer �LM� fac-
tors, and compare them with the results from the MD simu-
lation.

III. RESULTS

In this section we present the results for structural and
dynamic quantities of Al80Ni20 from the MD simulations.
The discussion of the chemical ordering in terms of partial
pair correlation functions and various structure factors is fol-
lowed by an analysis of structural relaxation and mass trans-
port properties.

A. Structure

A useful quantity to characterize the short-range order in a
liquid as well as the chemical ordering in a liquid mixture is
the pair correlation function. For a binary AB mixture, three
partial pair correlation functions g���r� �� ,�=A,B� are de-
fined as7

g���r� =
N

�N��N� − 
����
i=1

N�

�
j=1

N�

�
�r − rij�� , �10�

where the prime in the second sum means that i� j if �=�;

�� is the Kronecker delta. Physically g���r� is proportional
to the conditional probability of finding a particle of species
� at a distance r from a particle of species � fixed at the
center. In case of an ideal gas, there are no correlations be-
tween the particles for all distances r. Then, the functions
g���r� are equal to one. For a liquid, the limit g���r�→1 is
approached for r→�.

In Fig. 2, we show functions g���r� for the different cor-
relations ��=AlAl,AlNi,NiNi at various temperatures in
the range 2250 K�T�665 K. For clarity of presentation,
the curves are shifted from each other by a fixed distance on
the ordinate. For the Al-Al correlations, there is an increase
in the height of the first peak with decreasing temperature,
located around 2.84 Å, and, at the lowest temperature, T
=665 K, a splitting of the second peak into two peaks
around 4.73 Å and 5.6 Å is seen, with a slightly larger am-
plitude of the peak at the smaller distance. The function
gAlNi�r� shows a similar behavior. Here, the first peak is lo-
cated around 2.47 Å, i.e., at slightly smaller distance than in
the Al-Al correlations. At T=665 K, the second peak in
gAlNi�r� splits into one around 4.5 Å and another one around
5.13 Å. A different behavior is seen for gNiNi�r�. In this case,
the amplitude of the first peak around 2.42 Å decreases sig-
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FIG. 2. Partial radial distribution function g���r� �� ,�
=Al,Ni� for �a� AlAl, �b� AlNi, and �c� NiNi, at different tempera-
tures, as indicated. For clarity of presentation, the curves at different
temperatures are separated from each other in steps of 0.2.
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nificantly with decreasing temperature and the splitting of
the second peak �with peaks around 4.07 Å and around
4.85 Å� is highly asymmetric, yielding a significantly larger
amplitude of the peak at the larger distance. This indicates
that the effective repulsion between two neighboring Ni par-
ticles is larger than that between AlNi and AlAl pairs. Thus,
Ni particles tend to stay further apart from each other at low
temperatures, preferring Al atoms as nearest neighbors and
this is possible since the Ni atoms are the minority species in
Al80Ni20. This behavior is typical for a liquid mixture with a
strong ordering behavior, i.e., there is no tendency toward a
liquid-liquid demixing. Indeed, it is well known from the
experimental phase diagram that Al-Ni does not exhibit a
miscibility gap.37

Other quantities that characterize the chemical ordering in
a liquid mixture are the coordination number distributions
P���z� ���=AlAl,AlNi,NiNi� that are shown in Fig. 3. The
coordination number z, which corresponds to P���z�, is
given by the number of particles of type � that are in the
first-nearest-neighbor shell around a particle of type �. We
define the radius of the first-nearest-neighbor shell via the
first minima of the pair correlation functions g���r�. For the
following analysis we used the values 3.8 Å, 3.35 Å, and
3.2 Å for the Al-Al, Al-Ni, and Ni-Ni correlations, respec-
tively. As we can infer from PAlAl�z�, the number of Al
neighbors around an Al atom increases up to an average
value between 11 and 12 at low temperatures. The most
likely values for the number of Ni neighbors around an Al
atom are z=2 and z=3 at low temperature. The number of Ni
neighbors around an Ni atom decreases with decreasing tem-

perature, in agreement with the behavior observed for
gNiNi�r�. At T=665 K, about 85% of the Ni atoms have ei-
ther no or only one Ni neighbor. As we shall see in the
following, the “avoidance” of Ni pairs is associated with the
presence of CSRO on an intermediate length scale, i.e., on a
length scale that goes beyond that of nearest-neighbor dis-
tances.

The radial distribution functions are essentially the in-
verse Fourier transforms of the partial static structure factors
S���q� defined in Eq. �3�. In Fig. 4, the three partial structure
factors are displayed for different temperatures. The first
peak in SAlAl�q� is due to the presence of repeating Al-Al
nearest-neighbor units in the real-space structure. As typical
for undercooled liquids, the second peak in SAlAl�q� develops
a shoulder at low temperature �for a discussion of this shoul-
der in various undercooled metallic melts, see Ref. 44�. In
SAlNi�q�, a peak with a negative amplitude, located slightly
above 2.0 Å−1, is seen. This feature is similar to what has
been found for the 80:20 LJ mixture introduced by Kob and
Andersen. Such negative amplitudes in the cross term of the
partial static structure factors, expressing the avoidance of
very long-ranged AB correlations, are already seen in hard-
sphere mixtures, although there the dip before the main peak
is less pronounced. A very peculiar feature is found in
SNiNi�q�: A broad prepeak forms around 1.8 Å−1 that be-
comes more pronounced with decreasing temperature. This
prepeak indicates the preference of Ni atoms in Al80Ni20 for
having Al atoms as nearest neighbors and being well sepa-
rated from other Ni atoms. Thus, the avoidance of neighbor-
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ing Ni pairs leads to structural order on intermediate length
scales, indicated by a prepeak in SNiNi�q�. In a recent publi-
cation, we have described the structure, underlying the latter
prepeak, as a stringlike arrangement of the Ni atoms.4

The specific chemical ordering of Ni atoms in Al80Ni20
can be most clearly seen in the Bhatia-Thornton structure
factors.45 In these functions, the correlations of number den-
sity and concentration fluctuations are considered. For a bi-
nary system, three independent Bhatia-Thornton structure
factors exist, measuring the autocorrelations of number den-
sity �Snn�q�� and concentration density �Scc�q�� as well as the
mixed correlations between number and concentration den-
sity �Snc�q��. The functions can be expressed by linear com-
binations of the partial static structure factors as

Snn�q� = SAlAl�q� + 2SAlNi�q� + SNiNi�q� , �11�

Snc�q� = cNiSAlAl�q� − cAlSNiNi�q� + �cNi − cAl�SAlNi�q� ,

�12�

Scc�q� = cNi
2 SAlAl�q� + cAl

2 SNiNi�q� − 2cAlcNiSAlNi�q� ,

�13�

where cAl=NAl /N and cNi=NNi /N are the total concentra-
tions of Al and Ni atoms, respectively.

In Fig. 5, we present the Bhatia-Thornton structure factors
at different temperatures. Again the curves have been shifted
from each other for clarity of presentation. The function

Snn�q� is very similar to SAlAl�q�; one can hardly identify the
presence of the aforementioned prepeak in Snn�q�. However,
this prepeak, albeit with a different shape than in SNiNi�q�, is
present in Snc�q� and, as a shoulder, also in Scc�q�. The ap-
pearance of the prepeak in Scc�q� clearly indicates that this
feature is due to the specific chemical ordering of Ni atoms
in Al80Ni20.

B. Dynamics

In a highly viscous liquid, time-dependent density corre-
lation functions as well as other correlation functions that
have a coupling to density fluctuations reveal structural re-
laxation processes that show a time-scale separation from
dynamic processes on microscopic scales �e.g., phonons�. In
an atomistic system such as Al80Ni20, the microscopic dy-
namics occurs on a subpicosecond time scale, whereas struc-
tural relaxation can extend to arbitrary time scales, depend-
ing on the considered temperature. A glass is formed if the
typical relaxation time of a system exceeds the accessible
time scale in an experiment or simulation. Note that, as men-
tioned above, we concern ourselves only with fully equili-
brated simulation runs, i.e, states above the glass transition.

We start our discussion with an analysis of the one-
particle dynamics. A simple quantity, which shows already
all the features that characterize the relaxation dynamics of
an undercooled melt, is the mean-squared displacement
�MSD� of a tagged particle. It is defined as

�r�
2�t�
 = ��rt,��0� − rt,��t��2
 , �14�

where rt,��t� denotes the position of a tagged particle of type
� ��=Al,Ni� at time t, and �. . .
 implies the average over
independent runs as well as over particles of the same spe-
cies.

In Fig. 6, we show �r�
2�t�
 for Al and Ni particles for all

simulated temperatures, on a log-log scale. The behavior is
very similar to what has been observed in computer simula-
tions of many other glassforming liquids: At very short
times, a ballistic regime is seen ��r�

2�t�
 t2�. Then, at high
temperatures, a rapid crossover to the linear diffusive regime
occurs, �r�

2�t�
=6D�t �with D� as the self-diffusion constant
for a particle of species ��. At low temperatures, a plateau is
observed at intermediate times, where the MSD does not
increase, but rather stays constant at about �r�

2�t�
�0.2 Å2.
This plateau indicates the onset of the “cage effect:” Each
atom sits in a “cage” formed by its nearest neighbors and the
lower the temperature the more time it takes until the atom
can “escape from the cage.”

As we can infer from Fig. 6, the mean-squared displace-
ments for Al and Ni atoms are almost identical at a given
temperature. This may be explained by the structural ar-
rangement of Al and Ni atoms in Al80Ni20. As we have seen
above, Ni atoms have a strong preference to avoid other Ni
atoms as nearest neighbors. Therefore, Ni atoms are built
into an Al environment and thus, the mean-squared displace-
ments are very similar for Al and Ni atoms. This is also
manifested in the self-diffusion constants D�, as determined
from the mean-squared displacements. The data for the self-
diffusion constants are published elsewhere.23 DAl and DNi
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FIG. 5. Bhatia-Thornton structure factors Snn�q� �a�, Snc�q� �b�,
and Scc�q� �c� at different temperatures, as indicated. The curves at
different temperatures are separated from each other by 0.2 in �a�,
0.04 in �b�, and 0.02 in �c�.
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are in fact almost identical over the whole temperature range
4490 K�T�665 K. The similarity between DAl and DNi
holds only for Al rich Al-Ni alloys. For Ni rich compositions,
the Ni diffusion is significantly faster than the Al diffusion,4

at least for the interaction model used in our simulations.
In contrast to our Al-Ni mixture, the 80:20 LJ mixture of

Kob and Andersen9 shows a significant difference between
the self-diffusion of A and B particles. As a matter of fact,
this LJ system does not show a strong avoidance of the mi-
nority species B and there is no prepeak in the partial struc-
ture factor for the BB correlations, SBB�q�.11 Thus, in this
system the minority species B is not built into the local en-
vironment of A particles and thus the tagged particle dynam-
ics for both species is different. In this respect, the LJ mix-
ture reflects the entropy-driven mixing of particles of
different size, as, e.g., in hard-sphere mixtures. Recent MCT
calculations on Zr2Ni,22 where the diffusivity of both species
was again found to be identical, indicate that the quantitative
similarity in transport coefficients of the individual species
might be a general feature for a larger class of metallic al-
loys.

More information about structural relaxation can be ob-
tained from the incoherent and coherent intermediate scatter-
ing functions that we have defined in Eqs. �6� and �5�, re-
spectively. In Fig. 7, we present Fs

����q , t� for both Al and Ni
atoms as a function of time in the temperature range
2250 K�T�665 K. The results are presented for the fixed
wave number q=2.7 Å−1. This wave number is close to the
location of the first maximum in SAlAl�q�. At high tempera-
tures, the function decays to zero on a picosecond time scale;
here, the decay can be well fitted by an exponential function.
At low temperatures, there is a two-step decay due to the

cage effect. The so-called “�-relaxation” is the time regime
around the plateau, while the final decay from this plateau to
zero is called “�-relaxation.” Note that at the lowest tem-
perature, T=665 K, the functions Fs

����q , t� decay to zero on
a time scale of about 100 ns. Also the incoherent intermedi-
ate scattering functions are very similar for Al and Ni atoms,
thus showing again that with respect to the tagged particle
dynamics one can hardly distinguish between both species.

A two-step decay of intermediate scattering functions, as
the one observed in Fig. 7, is predicted for glassforming
liquids by MCT.5,6 Moreover, MCT makes detailed predic-
tions about the functional form of the intermediate scattering
functions in the vicinity of a critical temperature Tc that
marks the transition to a glassy state. An important predic-
tion of MCT for the � relaxation regime is that close to the
critical temperature the shape of time-dependent correlation
functions does not depend on temperature. This property is
called time-temperature superposition principle �TTSP�. The
TTSP means that a time-dependent correlation function ��t�
can be written as

��t� = �̂„t/��T�… , �15�

where ��T� is the structural relaxation time �or �-relaxation
time� at the temperature T. In order to define an �-relaxation
time for Fs

����q , t�, we follow the definition that for t
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=�s
����q ,T�, the scattering function has decayed to a value of

0.1, i.e., Fs
���(q , t=�s

����q ,T�)=0.1.
In Fig. 8, we demonstrate the validity of the TTSP for the

present system. For the sake of brevity, we present results for
Al only, also because the decay of the correlators for Ni is
almost identical to that of Al. The curves for the different
temperatures collapse nicely onto a master curve, except for
the very high temperatures where the correlators do not ex-
hibit a pronounced two-step decay.

Another prediction of MCT concerns the temperature de-
pendence of the �-relaxation time scale: The relaxation time
� is predicted to diverge at the critical temperature,

��T�  �T − Tc�−�, �16�

with � as a critical exponent which is system dependent.
There is a similar prediction for the self-diffusion constants
that are supposed to vanish at the critical point,

D�  �T − Tc��. �17�

Equations �16� and �17� can be checked by plotting, respec-
tively, �−1/� and D�

1/� as a function of temperature, as done in
Fig. 9 for DAl and �s

�Al��q ,T� at the wave numbers q

=1.9 Å−1, 2.7 Å−1, and 4.4 Å−1. If the MCT prediction is
correct, then the data should be on a straight line, crossing
the abscissa at Tc. Indeed, we find that using a value of �
=2.4, the curves show this behavior in a substantial tempera-
ture interval, as highlighted by the linear fits shown in the
figure �dashed lines�. The value of the exponent is in excel-
lent agreement with the MCT calculation, solving Eq. �9�,
which gives ��0.71, yielding ��2.35. The linear fits inter-
sect the T axis around 700 K, providing the simulation esti-
mate for the critical temperature Tc of our model of Al80Ni20.
The value obtained from the MCT calculations is Tc
�1037 K, some 300 K above the simulation estimate. This
discrepancy is in line with previous findings.11 It seems that
the MCT approximation overestimates the freezing tendency
of dense liquids in general.

Deviations from the power-law predictions �Eqs. �16� and
�17�� can be inferred in Fig. 9 on the one hand for high
temperatures, T�1000 K. This can be expected because the
asymptotic MCT predictions, Eqs. �16� and �17�, require the
vicinity of the critical point and thus do not hold if the tem-
peratures are too high. On the other hand, deviations from
the predicted power law are seen at low temperatures, say for
T�720 K. This is due to the fact that a divergence at Tc, as
predicted by MCT, is not found in reality. Once the relax-
ation times have increased beyond a value of about 10 ns for
atomistic systems such as Al80Ni20, the system starts to relax
via relaxation channels that can be taken into account by the
theory only by “ad hoc” schematic models.5,6,46,47 These re-
laxation channels, often called hopping processes, lead to
finite relaxation times at and below the critical temperature.
However, versions of MCT, which include hopping pro-
cesses in the aforementioned ad hoc manner, yield the inter-
esting result that some predictions for the �-relaxation re-
gime are unaffected by the hopping processes.48 Below, we
discuss these predictions for the Al-Ni alloy considered in
this work.

A closer inspection of Fig. 9 reveals that one would obtain
a significantly lower Tc from the self-diffusion constant, DAl,
than from the relaxation times at the different wave numbers.
This decoupling of the self-diffusion constant from the relax-
ation times has also been found in computer simulations of
other glassforming liquids, such as hard-sphere mixtures,49

the binary Lennard-Jones mixture8 and glassformers with a
tetrahedral network structure such as water,50 silica,51 and
germania.52 In order to quantify the decoupling between the
� relaxation time scale and self-diffusion, we plot in Fig. 10
the product of DAl with the relaxation time �s

�Al��q ,T� for
different values of q. According to MCT, the product �s

�Al�

�DAl should be a constant in the vicinity of Tc. Indeed, this
product is almost constant at high temperatures, but it in-
creases significantly below about 900 K. The inset of Fig. 10
shows the same data, multiplied by a constant factor, such
that the product �s

�Al��DAl approaches about 1 Å2 at high
temperatures. One sees that around the critical temperature
the products of relaxation times with self-diffusion constants
are about a factor of 4 to 5 higher than at high temperatures,
and they are further increasing below Tc.

Recently, the relation between self-diffusion constants D�

and the shear viscosity 	 has been extensively discussed for
glassforming liquids.7,53 The basis for this discussion is the
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so-called Stokes-Einstein-Sutherland relation,27

D� =
kBT

c�	d�

, �18�

which can be derived for a big �macroscopic� sphere of di-
ameter d� that moves through a viscous medium with a shear
viscosity 	. In Eq. �18�, kB is the Boltzmann constant. The
constant c depends upon the specific boundary condition on
the surface of the sphere. For slip boundary conditions c=2
and for no-slip boundary conditions c=3.27

Surprisingly, Eq. �18� is often also found to hold for a
tagged particle in a dense liquid with viscosity 	, where the
tagged particle is identical to its surrounding particles. For
the “normal liquid state,” this can be explained by the fact
that hydrodynamics seems to hold down to the molecular
scale, provided that properties in the long-time limit �or zero-
frequency limit� are considered. This has been demonstrated
in a recent study by Horbach and Succi54 and is not at all
trivial since the hydrodynamic limit is expected to be only
valid for long times and macroscopic length scales.

There is even evidence from different experimental stud-
ies that the Stokes-Einstein-Sutherland relation is also valid
for glassforming liquids just above the mode-coupling tem-
perature Tc, in particular for massive metallic
glassformers.28–30 In order to check the Stokes-Einstein-
Sutherland relation for the model of Al80Ni20 considered in
this work, we have computed the shear viscosity from the
Green-Kubo relation39

	�T� =
1

kBTV
�

0

�

dt�����0�����t�
, � � � , �19�

where the off-diagonal elements of the pressure tensor �i.e.,
those with ���� are given by

����t� = �
k=1

N �mkvk
�vk

� +
1

2 �
l��k�

Fkl
�rkl

�� , �20�

with vk
�, Fkl

� , and rkl
� as the � component of the velocity of

particle k, the force between particles k and l, and the dis-
tance between particles k and l, respectively.

In Fig. 11, the logarithm of the shear viscosity is plotted
as a function of inverse temperature. Also included are recent
experimental data by Kehr et al.55 The simulation is in ex-
cellent agreement with the experiment. Note that in Ref. 55,
an Arrhenius law was fitted to the data; this is shown as a
dashed-dotted line in the figure. Obviously, the simulation
reveals that, similar to the � relaxation times and the self-
diffusion constants, the increase of 	 with decreasing tem-
perature is highly non-Arrhenius. The inset of Fig. 11 shows
the Stokes-Einstein-Sutherland diameter as a function of
temperature, as calculated from the simulation data for 	 and
D� via Eq. �18�. For the constant c in Eq. �18�, we have used
c=2, assuming slip boundary conditions at the “surface” of
the atoms. At high temperature, the Stokes-Einstein-
Sutherland diameter is in fact approximately constant, yield-
ing a value around 2.8 Å both for Al and Ni atoms. This
value corresponds approximately to the location of the first
maximum in gAlAl�r�. Below about 1800 K, the diameter d�

starts to decrease, reaching a value of about 0.5 Å at the
critical MCT temperature Tc. Thus, the Stokes-Einstein-
Sutherland diameter is about a factor of 5 smaller at Tc than
at temperatures above, say 2000 K. Note that a similar find-
ing has been obtained for the binary Lennard-Jones
mixture.32

A comparison between Fig. 10 and Fig. 11 reveals that the
“decoupling” of the self-diffusion constants from the
�-relaxation times seems to be less pronounced than the de-
coupling of self-diffusion and viscosity. At Tc, it is about a
factor of 3 for the former case and a factor of 5 for the latter
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case. But this has probably a rather trivial reason. It can be
explained by the variation due to the factor kBT in SES rela-
tion �18� which leads to a decrease in the SES diameter d�

with decreasing temperature. As mentioned before there is no
reason why SES relation �18� should hold in the undercooled
regime. In the framework of MCT, the self-diffusion constant
and the shear viscosity are predicted to follow power laws of
forms �17� and �16�, respectively. These power laws are sup-
posed to hold as T approaches Tc from above, so that the
product D�	 approaches a finite value and does not diverge.
Farther away from Tc, corrections to scaling usually lead to
minor violations of the SES relation, that are however much
smaller than what is observed in simulation.

In addition to the predictions for the �-relaxation regime,
MCT makes also detailed predictions for the �-relaxation
regime. For the late �-relaxation regime �or the short-time
regime of the �-relaxation�, the following formula for the
time correlator �being either the incoherent or coherent inter-
mediate scattering function� is found:56

��q,t� = fc�q� − hc�q�tb + h2�q�t2b + . . . . �21�

Here, hc�q� is the so-called critical amplitude that depends,
as the amplitude h2�q�, on the wave number q. fc�q� is the
height of the plateau in the intermediate scattering function,
corresponding to the Lamb-Mößbauer �LM� and the DW fac-
tors of the incoherent and coherent intermediate scattering
functions, respectively. fc�q� is also known as the nonergod-
icity parameter. This function expresses the “decorrelation”
of the system from its state at time t=0 due to the rattling
motion of the particles in their cage.

The first two terms of Eq. �21� form the so-called von
Schweidler law �with b as the von Schweidler exponent�.
MCT predicts that b should be the same for all correlators.
Moreover, there is a one-to-one correspondence with the ex-
ponent � via the relations

� =
1

2a
+

1

2b
, � =

�2�1 + b�
��1 + 2b�

=
�2�1 − a�
��1 − 2a�

, �22�

with � as the so-called exponent parameter, ��x� the
Gamma-function and a another critical exponent. In the
analysis of the � relaxation times and self-diffusion con-
stants we have found �=2.4. This value of � corresponds to
b=0.54, using Eq. �22�. The value of the exponent param-
eters that corresponds to these values of � and b is �
�0.76.

In Fig. 12, the dashed curves correspond to fits with Eq.
�22� to Fs

�Al��q , t� as well as to the coherent intermediate scat-
tering functions F�AlAl��q , t� and F�NiNi��q , t� at different val-
ues of q. The temperature is T=680 K. In the fitting process,
the exponent b was kept fixed at 0.54. The quality of the fits
suggests that the prediction �Eq. �21�� is well valid for our
system.

From the fits to the intermediate scattering functions with
Eq. �21�, we have determined the q dependence of DW and
LM factors, f �����q� and fs

���, respectively. The different DW
and LM factors are shown in Fig. 13 for T=680 K. The LM
factors almost coincide for Al and Ni atoms, thus indicating
again that the one-particle dynamics is almost identical for

Al and Ni atoms. The monotonous decay of the LM factors
to zero can be well described by a Gaussian of the form
fs

����q�=exp�−�1 /6��rplat,�
2 
q2� where �rplat,�

2 
 corresponds to
the height of the plateau in the mean-squared displacement
�r�

2�t�
. In fact, fits with the latter Gaussian yield �rplat,Al
2 


= �rplat,Ni
2 
�0.198. This value is indeed the height of the pla-

teau in the mean-squared displacements at T=680 K �see
Fig. 6�.

The DW factors oscillate around the LM factors. These
oscillations reflect features also seen in the partial static
structure factors. In a one-component system, S�q� and f�q�
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FIG. 12. Incoherent intermediate scattering function Fs
�Al��q , t�

�a� as well as coherent intermediate scattering functions F�AlAl��q , t�
�b� and F�NiNi��q , t� �c� for the indicated wave numbers at T
=680 K. The dashed lines are fits to the MCT prediction �Eq. �21��,
using b=0.54 for the von Schweidler exponent.
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are seen to vary strongly in phase as functions of q, while for
mixtures, this strict relation is not necessarily true. Indeed,
the function f �AlAl��q� displays two peaks at q=2.8 Å−1 and
at q=4.7 Å−1 that correspond to the locations of the first two
peaks in the partial static structure factor SAlAl�q� �see Fig.
4�. But f �AlAl��q� shows also a broad shoulder in the range
1.4 Å−1�q�2.0 Å−1, i.e., in the region where a prepeak
appears in SNiNi�q�. This is very remarkable because the lat-
ter prepeak is not seen in SAlAl�q�. Thus, the simple notion
that the oscillations in the DW factors f �����q� are in phase
with the oscillation in the corresponding partial structure fac-
tors S���q� is not true for our system.

As can be also inferred from Fig. 13, the oscillations in
f �AlAl��q� are much more pronounced than in f �NiNi��q�, with
the latter function being close to the LM factors. These dif-
ferences are due to the relatively strong asymmetry of the
concentration in the 80:20 mixture considered in this work.
At small q, collective vibrational excitations �sound modes�
are naturally more strongly revealed in the collective corre-
lations of the majority species Al. Therefore, the function
f �AlAl��q� drops to a relatively small value of about 0.6 at
small q, whereas f �NiNi��q� is close to one here. For larger q,
structural features are reflected in a more pronounced manner
in the majority species, thus yielding the strong oscillations
in f �AlAl��q�.

Also shown in Fig. 13 are the results from the MCT cal-
culations for the DW and LM factors at the temperatures T
=Tc�1037 K and T=1000 K, the former being the predic-
tion of the critical temperature Tc from the theory. The MCT
results for the f �����q� agree qualitatively with the values
obtained from the simulations. In particular, all oscillations
discernible in our data are reproduced. However, the values
of the DW factors at T=Tc are systematically below the
simulation results. Partially, this is related to the overestima-
tion of the freezing tendency in the theory, predicting dy-
namical arrest already at higher temperatures where the lo-
calization of the particles is less pronounced, and also known
from the binary LJ system.11 Note also that the fits to the
simulation data were done at T=680 K, slightly below the
estimated Tc, and that for T�Tc, both the DW and LM fac-
tors rise continuously with lowering T. The MCT-calculated
values for T=1000 K, some 40 K below Tc, in fact agree
nicely with the simulation results, as shown in the figure.

The striking emergence of a shoulder in the AlAl-DW
factors on length scales corresponding to the NiNi prepeak in
the equilibrium static structure is also reproduced by MCT.
There, it arises quite naturally because the memory kernel
appearing in Eq. �9� mixes contributions from all partial den-
sity fluctuations. The fact that such Ni-Ni correlations tran-
scend to the Al-Al dynamics nicely illustrates the difference
between equilibrium properties of the melt �as exhibited by
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the static structure factor� and the structure attained in the
glassy state �as described by the DW factor�.

The relationship between structural features and structural
relaxation can be also investigated by means of the q depen-
dence of the � relaxation times for the coherent intermediate
scattering functions. In Fig. 14, the � relaxation times
��AlAl��q� and ��NiNi��q� are displayed for three different tem-
peratures. Obviously, the functional form of the relaxation
times is very similar for the Al-Al and the Ni-Ni correlations.
It does not change also qualitatively with temperature. In
��AlAl��q�, we see a broad shoulder around a wave number of
q=1.8 Å−1, corresponding to location of the prepeak in
SNiNi�q�. So we observe again this feature in the Al-Al cor-
relations and thus, also ��AlAl��q� is not in phase with the
corresponding static structure factor SAlAl�q�.

As the solid lines in Fig. 14 show, this coupling of the
relaxation times is also captured by MCT. In this calculation,
we have obtained ����q� from the solutions to the dynamical
MCT equations, Eq. �7�, at T=1050 K, slightly above Tc,
and using the same definition for the relaxation times as in
the MD simulation. The relaxation times obtained in this way
are unreasonably high due to the vicinity of the MCT diver-
gence. In order to allow a meaningful comparison, we have
arbitrarily divided the MCT values for ����q� by a constant
factor of 1000. After this rescaling, they demonstrate that the
theory describes reasonably well the spatial dependence of
the relaxation of the different types of density fluctuations in
the system.

IV. SUMMARY AND DISCUSSION

In this paper, results from extensive MD simulations of
undercooled Al80Ni20 at constant pressure �p=0� have been
presented. We have focused on the relation between chemical
ordering and structural relaxation. After having discussed the
behavior of partial pair correlation functions and partial
static structure factors, intermediate scattering functions have
been analyzed in the framework of MCT. Also the relation
between one-particle and collective dynamics has been stud-
ied, in particular checking the validity of the SES relation
between self-diffusion and shear viscosity.

The structure of Al80Ni20 is similar to that of densely
packed system of hard spheres. However, the chemical or-
dering in the Al-Ni system is different from that found in
hard spheres. The Ni atoms tend to avoid other Ni atoms as
nearest neighbors and this leads to the presence of CSRO,
i.e., in this case, to an inhomogeneous distribution of Ni
atoms on intermediate length scales. As a consequence, the
partial static structure factor for the Ni-Ni correlations,
SNiNi�q�, exhibits a broad prepeak around q=1.8 Å−1. Such a
feature is absent in the binary 80:20 LJ mixture that has been
put forward by Kob and Andersen.8

The CSRO has interesting effects on structural relaxation
and transport properties. The one-particle dynamics of Al
and Ni atoms is very similar, as we have shown with respect
to the mean-squared displacements and the incoherent inter-
mediate scattering functions. Therefore, the self-diffusion
constants and the incoherent � relaxation times are almost

the same for Al and Ni atoms. The same holds for the Lamb-
Mößbauer factors which indicates that Al atoms are as local-
ized as Ni atoms, albeit the atomic radius of the two species
is different. The similarity in the structural relaxation of the
two species is also seen in the collective dynamics. The dif-
ferences in the DW factors for the Al-Al and Ni-Ni correla-
tions can be referred to the fact that the considered mixture
has a large asymmetry with respect to the concentrations of
Al and Ni atoms. But the prepeak in SNiNi�q� is also reflected
in the DW factor and � relaxation time for the Al-Al corre-
lations. Thus, the latter features are not in phase with the
partial structure factor for the Al-Al correlations, SAlAl�q�,
contradicting the common folklore.

In this paper, we have studied the dynamics of fully
equilibrated melts on time scales up to 100 ns. The lowest
considered temperature, T=665 K, is slightly below the
critical MCT temperature which is approximately at 700 K
for our system. The relaxation dynamics of Al80Ni20, as seen
by the simulation, is compatible with the predictions of
MCT. However, as in several other glassforming systems,7

the self-diffusion constants show a significantly different
temperature dependence than the � relaxation times and the
shear viscosity. This is in disagreement with MCT. Recently,
Biroli and Bouchaud53 have proposed some ideas to recon-
cile the “breakdown of the SES relation” in the framework of
MCT.53 They have argued that critical dynamical fluctuations
have to be taken into account in order to describe the failure
of SES. The standard version of the theory is a kind of mean-
field theory and thus, such fluctuations are neglected. It has
to be seen whether the explanation proposed by Biroli and
Bouchaud is the correct one.

By applying MCT to the equilibrium static structure fac-
tors obtained from simulation, we could show that the theory
is able to capture the subtle interplay between the different
length scales set by the Ni-Ni and Al-Al interactions. In par-
ticular, the effect that structural correlations appearing only
for the Ni atoms in the equilibrium structure also emerge for
the dynamical Al-Al correlations is quite naturally explained
by the multicomponent MCT equations. While the generic
features found in MCT do not differ qualitatively from those
found for simple hard-sphere mixtures,41,57 our study
complements a recent application of MCT to experimental
structure factors on Zr2Ni �Ref. 22� in showing that the
theory can describe a number of dynamical consequences
arising from strong chemical short-range ordering.
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