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Dynamics of grain boundary motion coupled to shear deformation:
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Many atomically ordered grain boundaries (GBs) couple to applied mechanical stresses and are moved by
them, producing shear deformation of the lattice they traverse. This process does not require atomic diffusion
and can be implemented at low temperatures by deformation and rotation of structural units. This so-called
coupled GB motion occurs by increments and can exhibit dynamics similar to the stick-slip behavior known in
atomic friction. We explore possible dynamic regimes of coupled GB motion by two methods. First, we
analyze a simple one-dimensional model in which the GB is mimicked by a particle attached to an elastic rod
and dragged through a periodic potential. Second, we apply molecular dynamics (MD) with an embedded-atom
potential for Al to simulate coupled motion of a particular tilt GB at different temperatures and velocities. The
stress-velocity-temperature relationships established by both methods are qualitatively similar and indicate
highly nonlinear dynamics at low temperatures and/or large velocities. At high temperatures and/or slow
velocities, the character of the GB motion changes from stick slip to driven random walk and the stress-
velocity relation becomes approximately linear. The MD simulations also reveal multiple GB jumps due to

dynamic correlations at high velocities, and a transition from coupling to sliding at high temperatures.

DOI: 10.1103/PhysRevB.78.064106

I. INTRODUCTION

Many grain boundaries (GBs) have the property that their
normal motion requires a simultaneous relative translation of
the adjacent grains parallel to the GB plane.!~* Conversely,
any relative translation of the grains causes a normal dis-
placement of the boundary. Such GBs are said to be coupled
and their response to applied driving forces can be different
from that of uncoupled GBs. Specifically, if a shear stress is
applied parallel to a coupled GB, it creates a driving force for
its normal motion.> This motion, in turn, produces shear de-
formation of the material swept by the boundary. Conversely,
if a coupled GB is driven by capillary forces or a volume
driving force due to elastic or magnetic anisotropy, the
boundary shears the lattice region it traverses and produces a
rigid translation of the grains. It can be shown that coupled
motion of a curved GB induces grain rotation and vice
versa."' The coupling effect is characterized by a factor 8
equal to the ratio of the tangential grain translation velocity v
to the accompanying normal GB displacement velocity v,,.
The coupling is called perfect if B is a geometric constant
that depends only on the GB crystallography but not on the
GB velocity, driving force or any other physical parameters.

The coupled GB motion is a rather common effect. Ato-
mistic computer simulations have revealed dozens of
coupled GBs.>*6 Stress-induced GB motion has been ob-
served in experiments on bicrystals in both metals’"'? and
ceramic materials.'® The experimental coupling factors were
found”® to match the perfect values predicted by the geomet-
ric theory.>* It is believed that the coupling effect might be
responsible for the stress-driven GB motion and stress-
induced grain growth in nanocrystalline materials.!#-1®

Among the unsolved problems and future work directions
outlined in Ref. 4, it was pointed out that coupled GB motion
can exhibit a rich variety of dynamics that need to be iden-
tified and understood. In particular, it was suggested that the
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stress-velocity relation can change significantly as the stop-
and-go (stick-slip) character of motion observed at low
temperatures>* transforms to driven random walk at high
temperatures. The stress-velocity relation in the stick-slip re-
gime was recently studied by accelerated molecular dynam-
ics (MD) over a wide velocity range!” at one fixed tempera-
ture. The temperature dependence of GB dynamics was not
examined in that work.

In this paper we continue to investigate the dynamics of
coupled GB motion, now focusing on its temperature depen-
dence. We apply two different approaches to the problem:
First, we analyze a one-dimensional analytical model of cou-
pling which, despite its simplistic character, permits a deri-
vation of useful stress-velocity relations that can be tested
against atomistic simulations. Second, we conduct MD simu-
lations of stress-driven and spontaneous coupled motion of a
particular GB over a wide temperature range and reveal the
transition from the stick-slip regime to Brownian dynamics.
This combination of the analytical and MD approaches is the
central point of this paper.

While the previous MD simulations employed cop-
per as a model material, in this work we switch to aluminum
GBs in order to be more compatible with recent’? and
ongoing'® experiments on Al bicrystals. This also guarantees
a seamless connection to our current work focusing on crys-
tallographic aspects of coupling in Al boundaries. We em-
phasize, however, that most of our results are generic and
should not be dependent on the material.

In this paper we treat coupled GB motion as motion
through a periodic energy landscape. To explain the origin of
this landscape, consider an example of a planar tilt boundary
in a pure metal at zero temperature. Assume for simplicity
that the tilt angle @ is such that a coincident site lattice
(CSL)" arises and the GB lies in a CSL plane. Such bound-
aries typically have a periodic structure consisting of poly-
hedral structural units.!” Due to translational symmetry of
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FIG. 1. (a) A gedanken experiment in which a GB (shown as a
dashed line) is moved by a shear stress. The tilt axis of the GB is
normal to the viewer, n is a unit vector normal to the GB plane, and
t is a unit vector normal to both n and the tilt axis. The dashed areas
designate two slabs used as clamps. The stress is applied by moving
the upper slab with a fixed velocity v parallel to t while the lower
slab remains fixed. L is the normal size of the dynamic region,
which plays the role similar to the grain size. (b) If the coupling is
perfect, the GB moves by increments of H accompanied by relative
grain translations S. The stress exhibits a saw-tooth behavior with a
peak value 7, and an average 7.

the bicrystal, there is an infinite number of GBs that have
exactly the same energy and identical atomic structures ob-
tainable from one another by rigid translations. All these
GBs are parallel to each other and only differ in the transla-
tional state of the grains.

Energetically, these equivalent GBs correspond to poten-
tial energy minima in the 3N-dimensional configuration
space of the bicrystal, with N being the number of atoms in
the system. The GB motion can be coupled if the boundary
structure permits translations between neighboring equiva-
lent positions by relatively small atomic displacements with-
out atomic diffusion. These displacements can usually be de-
scribed as deformations and rotations of the structural units
and require overcoming a certain energy barrier Ey. If a driv-
ing force is applied and the GB is set to motion, it moves by
jumping between the equilibrium positions. The critical
stresses required for this process can depend on temperature
and the GB velocity. Investigating these relations is the goal
of this paper.

II. DYNAMICS OF COUPLED BOUNDARY MOTION

In this section we outline some problems related to dy-
namics of coupled GB motion. We will consider a particular
coupling mode, in which neighboring GB positions are a
distance H apart while the coupled grain translations are by S
in a direction t normal to the tilt axis [Fig. 1(a)]. The perfect
coupling factor in this mode is S=S/H.

A. Zero-temperature dynamics

At 0 K and in the absence of applied stresses, the GB is
initially in a particular equilibrium position. Suppose a shear
stress is applied to the bicrystal by holding the lower grain
and moving the upper grain with a constant velocity v par-
allel to t [Fig. 1(a)]. The force acting on the upper grain is
transmitted through the lattice regions and creates a local
stress & at the GB. This stress elastically deforms the GB
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structural units and reduces the energy barrier for the GB
displacement to a new position, simultaneously raising the
barrier in the opposite direction.

We are particularly interested in the shear stress 7
=(6-n)-t resolved in the direction of the grain translation.
When 7 reaches a critical value 7,2 the stress-reduced bar-
rier E turns to zero. The GB becomes mechanically unstable
and jumps to a new position. The accompanying grain trans-
lation produces a permanent shear deformation of the bicrys-
tal and the stress drops. As the upper grain continues to
move, the stress builds up again until it reaches T(C) and the
GB makes another step. As this process continues, the GB
moves forward by increments of H while the stress 7 dis-
plays a saw-tooth behavior as indicated in Fig. 1(b).?! This
incremental motion, in which the GB is trapped in one en-
ergy minimum until it loses stability and jumps to a new
minimum, can be classified as a stick-slip process by analogy
with other similar phenomena.??->

Between the increments of the GB motion, the stress in-
creases as a linear function of time assuming linear elasticity.
The magnitude of the stress drop at each step is then propor-
tional the increment of the shear deformation, S/L, and thus
inversely proportional to the system size L in the normal
direction. It follows that the stress 7° averaged over a cycle
of this process is

P =1 - KS/2L, (1)

where K is the appropriate elastic modulus. If L increases,
the stress drop decreases and in the limit of L— % the GB
moves under a nearly constant stress. In the other limit, when
the grains are small, the stress drops to a small value and can
even become negative.4 In the latter case, the stress arising
immediately after a jump is driving the GB back to the pre-
vious position. Importantly, the value of the peak stress
should be insensitive to L since this value depends only on
the GB structure and the coupling mode. These predictions
regarding the grain-size dependence of the stress behavior
need to be tested by atomistic simulations.

B. Finite temperature dynamics

At finite temperatures, thermal fluctuations assist the GB
in overcoming the barrier and it can jump to a new position
when E is still positive, i.e., before the stress reaches 1'8 This
effectively reduces the critical stress required for the GB
motion, making it 7.< T?. By contrast to T(C), the reduced
critical stress 7. is a stochastic quantity that should be char-
acterized by its average and a statistical distribution around
it. This stress is anticipated to decrease with temperature as
thermal fluctuations intensify. At a fixed temperature, 7,
should increase with v since higher velocities give the GB
less time to overcome the barrier before it vanishes. Under-
standing such relationships among the velocity, stress, and
temperature is an important task of GB dynamics. Some of
these relations will be investigated later in this paper.

At high temperatures, there is a finite probability for the
GB to make a spontaneous jump back to the previous posi-
tion. We expect that such backward jumps, which should
become more frequent as temperature increases, should
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eventually destroy the saw-tooth behavior of the stress and
replace it by random noise with some average 7. In this re-
gime, the critical stress loses its physical significance while 7
becomes the most meaningful measure of the stress driving
the boundary motion. Reducing the GB velocity at a fixed
temperature should produce a similar effect by giving the GB
more time to sample both forward and backward jumps ac-
cording to their probabilities. In fact, if v tends to zero at a
high temperature, the forward and backward jumps become
equally probable, resulting in a random walk of the boundary
between its equilibrium positions.>* In this limit 7 must turn
to zero by symmetry. If coupled GB motion at small veloci-
ties can be treated as a driven Brownian process, one should
expect a linear relation between v and 7. This prediction*
seems to be consistent with recent experiments’-'> but was
never verified by computer simulations.

III. ONE-DIMENSIONAL MODEL OF BOUNDARY
DYNAMICS

Before we explore some of the regimes of coupled GB
motion by atomistic simulations, it is useful to examine a
simple one-dimensional model that predicts some important
relations between the key dynamic parameters. In a recent
paper,!” a simple mechanical analog of coupled GB motion
has been proposed in which the GB is represented by a par-
ticle attached to an elastic rod. The particle is dragged
through a spatially periodic potential U(x) by pulling the
other end of the rod in a direction x. The rod models the
elastically deformed grains while U(x) mimics the potential
energy landscape of the GB in the absence of applied
stresses. The mass m of the particle represents the effective
mass of the moving grains while the particle friction against
the potential surface and the energy dissipation in the rod
capture the damping processes at the GB and inside the
grains, respectively. This simple one-dimensional model is
rich enough to capture a number of dynamic regimes whose
detailed analysis is deferred to a separate publication. Here,
we will limit the analysis to a few particular cases and derive
analytical expressions that will later be compared with ato-
mistic simulations.

Following Refs. 26 and 27, we describe U(x) by a cosine
with a period a (Fig. 2):

U(x)=%[l—cos<%)}. (2)

The minima of U(x) define equilibrium locations of the par-
ticle, which are separated by the energy barrier E,.

Suppose the particle is initially at x=0 and the elastic rod
begins to exert a force 7 on it, pulling the particle to the right.
We approximate the modified potential energy around the
particle by the tilted cosine U(x)— 7x. This approximation is
valid if the rod is soft enough that 2a < 7/k, where k is the
spring constant of the rod (otherwise there is a non-
negligible change of 7 between the right and left maxima
around x=0). This tilt of the potential energy reduces the
barrier E, for the forward jump (to the right) and raises the
barrier E_ for the backward jump (to the left). It also shifts
the equilibrium point of the particle.
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FIG. 2. (a) The potential energy U(x), (b) its derivative U’(x)
and (c) the total force U’(x)—7 (c) in the one-dimensional model of
coupling.

The new maxima and minima of the potential energy sat-
isfy the condition U’ (x)-7=0, i.e.,

2mx
7 sin<—> - 7=0, 3)

a
where we denote 7" = 7E,/a (Fig. 2). From this equation, the
new equilibrium position is

arcsi (T) @)
Xxo= —arcsin| — |,
T on 7'?

and the maxima are at x;=a/2—-x, and x,=—a/2—-x,. The
energy barriers are found as work done when moving the
particle from x, to x; and x,, respectively:

E,= IXI [U'(x) - 7]dx

E { < T )2 777( 1 2 T ) 5)
= -\ =) ——=(1-—arcsin— | |,
0 T(C) 272 T 7'8

E_= JXZ[U’(X) — Tldx

Eo| \/1 (T>2+ 7TT(1+2 i T) (©)
= -1 - —arcsin—; | |.
0 7'? 27'?. T 7'?

Consider limiting cases of these expressions. When 7
reaches 78, the barrier E, turns to zero while x; —xy—a/4.
The equilibrium becomes unstable and the particle is bound
to make a jump forward. This reveals the meaning of Tg as
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the critical force for the particle motion through the potential
landscape at zero temperature. When 7= 78, the barrier of the
backward jump is E_=mE. Thus, the “athermal” motion of
the particle that starts at 7= T(c) occurs by forward jumps only.

To determine exactly how E, tends zero and E_ to wE,

when 7— 7'?, we expand Egs. (5) and (6) in powers of the

small parameter \1—7/ Tg and keep only leading terms, ob-
taining

- T 3/2
E, ~\2E, 1——0> , (7)

7

-
E_= 7TEO_ . (8)
TC
Thus, the barrier E, vanishes as (72— 7)¥2, not as 7. — 7 as one
could expect.?
In the other limit, when 7< 7'8, Eqgs. (5) and (6) give

mT
Et = Eo(l + _>, (9)
27

c

indicating that a small force shifts the forward and backward
jump barriers in opposite directions by the same amount pro-
portional to 7.

At a finite temperature 7, the particle can make jumps
over the barriers by thermal fluctuations. Applying the
transition-state theory, the rates of the forward and back-
ward jumps (number of jumps per unit time) are W,
=vexp(-E,/kgT) and W_=vexp(—E_/kgT), respectively.
Here, v is a jump attempt frequency and kp the Boltzmann
factor. The average velocity of the particle is v=a(W,—W_).

In the small-force limit (7<<77), we can apply Eq. (9) to
obtain

E E
v=2av exp(— —O)sinh< 07770). (10)
2kBTTc

Expanding the hyperbolic sine to the first order in 7 leads to
the linear force-velocity relation

o~ M(T), (11)

where the M(T) needs not to be detailed for this discussion.
This linear relation is valid if

Eymt
2kpTT"

<1, (12)

i.e., when either the driving force is small or the temperature
is high. This regime is best described as driven random walk,
or driven Brownian motion.
In the limit of 7— TS, we have W,>W_ and backward
jumps can be neglected. Then,?3!
_ 312
\"2E0<1 - )

v =aW, =uvg,exp _k—T R (13)
B

r\.‘]ol 2

where vy=va.
We emphasize that the force-velocity relations obtained
are only valid as long as the assumptions of the transition-
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FIG. 3. Velocity-stress relations at high (7;) and low (73) tem-
peratures predicted by the one-dimensional model of coupled GB
motion. The regions of the linear dynamics (mobility regime) and
nonlinear (exponential) dynamics are indicated.

state theory are satisfied. In particular, after each jump the
particle must have enough time to come to thermal equilib-
rium with the environment before the next jump may occur.
This assumption can be violated if the average velocity is too
high and/or the energy dissipation processes are too slow.

Translating this analysis from an abstract particle to a
moving GB, the force 7should be referred to a unit GB area
and becomes the applied shear stress. The attempt frequency,
which for a particle is proportional to VU"(x)/m, for a GB
has a more complex meaning that involves atomic vibrations
both in the GB and in the grains. Since it enters the velocity
expressions as a pre-exponential factor, it is less important
than the jump barriers and for this discussion is assumed to
be constant. Also, instead of fixing 7 and computing the av-
erage velocity, we are interested in the average stress 7 or the
average peak stress 7, under a constant imposed velocity v.
[Note that in the limit of large grains (L — o) these stresses
become almost identical.]

Figure 3 summarizes the stress-velocity relations expected
from this model. In the region of small stresses and small
velocities, we expect the linear dynamics according to Eq.
(11), where M(T) is often referred to as GB mobility.’> The
velocity range dominated by this “mobility regime” expands
with temperature. The GB advances in a jittery manner in
which many forward jumps are retracted. At large velocities
and/or relatively low temperatures, the GB moves by pre-
dominantly (or exclusively) forward jumps. The stress-
velocity relation is then strongly nonlinear and can be de-
scribed by an equation similar to Eq. (13) with either the
peak stress 7. or the average stress 7.

The pre-exponential factor in Eq. (13) establishes the up-
per bounds of the velocity in the limit of 7.— 7'?., but in
reality this equation loses its significance in this limit since
the transition-state theory does not apply when the energy
barrier is smaller than kz7. Thus, this equation is valid as
long as E, is significantly larger than k7 but at the same
time much smaller than E,. Numerical estimates based on
Eq. (5) indicate that even if E, is not much smaller than E,,
v is still an exponential function of stress but the power of
1-7./7) is between 3/2 and 1.
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IV. METHODOLOGY OF MD SIMULATIONS

In the rest of the paper, the dynamic relations based on the
one-dimensional model will be tested against atomistic simu-
lations. The MD simulations were performed with an
embedded-atom method (EAM) potential®® that accurately
reproduces a variety of properties of Al, including the elastic
constants, phonon frequencies, the intrinsic stacking fault en-
ergy, and others. Since the melting temperature of Al with
this EAM potential was not calculated in the original paper,
this was done in this work using a method similar to Ref. 34.
The melting temperature was found to be 7,,=1042 K,
which is approximately 10% higher than the experimental
melting temperature of pure Al (933 K).3 This implies that a
comparison of our simulations with experiment should be
based on homologous temperatures 7/7,,.

To study GB motion, a simulation block with two grains
separated by a flat GB was constructed. The block had an
orthorhombic shape with periodic boundary conditions im-
posed in the directions parallel to the GB plane. To satisfy
these conditions, the GB had to be a CSL boundary. Depend-
ing on the goal of a particular simulation, two types of
boundary condition in the direction normal to the GB plane
were applied. We refer to them as the fixed and free bound-
ary conditions.

For the fixed boundary condition, the grains are sand-
wiched between two slabs parallel to the GB plane, in which
the atoms are fixed in their perfect-lattice positions relative
to each other. Each slab can be either fixed or allowed to
move as a rigid body. All other atoms of the block are dy-
namic. The thickness of each slab is twice the cutoff radius
of atomic interactions, which equals 0.126 nm for this poten-
tial. The thickness L of the dynamic region was chosen to be
12.2 nm, except in a few runs examining the size effect on
the stress behavior as will be explained later.

The fixed boundary condition is convenient for applying a
shear stress parallel to the boundary plane. To this end, the
upper confining slap is moved with a constant velocity v in a
chosen direction parallel to the GB plane, whereas the lower
remains fixed. This boundary condition prohibits spontane-
ous rigid translation of the grains, although lattice regions
adjacent to the GB can still translate relative to each other.
Most of the simulations reported here were performed with
v=1 m/s normal to the tilt axis. Some runs were also made
with smaller velocities down to 0.1 m/s and up to 30 m/s in
order to explore the velocity dependence of the shear stress.

In the free boundary condition, the previously fixed atoms
of the upper slab are made dynamic, so that the upper grain
now terminates at a free surface. The lower grain still re-
mains attached to its fixed slab. Thus, the stress in the simu-
lation block is always zero. This scheme allows free transla-
tions of the upper grain relative to the lower one. This
boundary condition was applied to study spontaneous GB
displacements in a coupled mode.

The MD simulations were implemented in the canonical
(constant temperature, volume and number of atoms) en-
semble using the ITAP Molecular Dynamics Program
(MD).*¢ The MD integration time step was 0.2 fs and the
total simulation time was 0.5-20 ns. Thermal expansion co-
efficients at different temperatures were determined by sepa-
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FIG. 4. Atomic structure of the 321 (241)[112] (44.42°) GB at
0 K. The six different symbols represent atomic rows with different
depth along the tilt axis [112] normal to the viewer. The order of the
alternating (112) planes is as follows: solid triangle—solid square—
solid circle—open triangle—open square—open circle. The open-
circle layer is the deepest from the viewer. The structural units in
the GB (kites) and in the grains (labeled B) are outlined. Note that
their corners lie in different (112) planes.

rate zero-pressure Monte Carlo simulations. Prior to the MD
simulations, the block was uniformly expanded to include
the effect of thermal expansion at the simulated temperature.
That this procedure practically eliminates thermal stresses in
the block was additionally confirmed by computing the av-
erage stress tensor without any applied loads and checking
that all components were much smaller than typical stresses
accompanying GB motion.

The 321 (241) [112] symmetrical tilt GB (9=44.42°) was
chosen as a model.>” Each grain had an approximately cubic
shape and the entire block contained 24,190 atoms. The
ground-state structure of the GB was determined by static
minimization of the total potential energy with respect to
local atomic displacements and relative translations of the
grains. In addition, we checked that the ground state did not
produce any long-range stresses in the grains.

The stress tensor & averaged over all dynamic atoms was
computed using the standard virial expression and was con-
stantly monitored during the simulations. The quantity of
prime interest was the resolved shear stress 7 parallel to the
shear direction. During the simulations, the GB position was
tracked using the centrosymmetry parameter P proposed in
Ref. 38. The atomic layer parallel to the GB plane whose
atoms had the largest value of P was identified with the
boundary position.

V. SIMULATION RESULTS
A. Grain boundary structure and migration mechanism

The atomic structure of the GB at 0 K is shown in Fig. 4.
The boundary consists of identical structural units with the
shape of kites. Each row of such units running parallel to the
tilt axis (and thus normal to the viewer) can be thought of as

an edge dislocation with the Burgers vector b=[110]. This
Burgers vector was determined by a Burgers circuit construc-
tion using the upper grain as the reference lattice. This inter-
pretation of the Burgers vector is consistent with the Cahn-
Taylor work.! The GB energy calculated at 0 K is
0.443 J/m>.
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FIG. 5. Atomic mechanism for the coupled GB motion. (a) Ini-
tial state, (b) transition state, (c) final state. B is the lattice structural
unit converting to the boundary unit A. A’ and B’ indicate the same
structural units after the transformation.

When shear was applied by translating the upper fixed
slab to the right, the GB was found to move up with an
average velocity v, proportional to the grain translation ve-
locity v. Multiple snapshots stored during the MD simula-
tions were analyzed to determine the atomic mechanism of
the boundary motion, which is shown in Fig. 5. Consider the
triangular structural unit B which belongs to the upper grain
and is interlocked with the kite-shaped unit A. Note that B is
a slightly distorted version of the perfect-lattice unit (cf. Fig.
4). Importantly, units A and B are topologically identical and
can be transformed to each other by relatively small in-plane
atomic displacements. At each step of boundary motion, each
unit B changes its shape and transforms to a kite A’, whereas
each unit A simultaneously transforms to a bulk unit B’ in
the lower grain. Note that the latter is a mirror reflection of
the B unit of the upper grain. As a result, the GB position
shifts one step up while the upper grain translates to the right
to accommodate the deformations of the units. This process
can also be viewed as glide of the parallel array of GB dis-

locations along (111) planes of the upper grain.

This mechanism of GB motion was found to operate at
temperatures 100 K and above. At 0 K, the applied shear
stress produced rigid sliding of the upper grain without any
GB displacement. This fact indicates that the critical stress of
sliding at 0 K is smaller than the critical stress of coupled
GB motion. Both stresses decrease with temperature and ap-
parently a crossover occurs at some point below 100 K.

From the geometric theory of coupling,* it can be shown
that the perfect coupling factor for this GB is S
=2 tan(0/2)=(2/3)"2=0.8165.> The actual coupling factor
was determined from the MD simulations as the ratio of the
imposed v and the average GB migration velocity v,. At
temperatures up to 900 K (0.867,,), 8 was found to be prac-
tically independent of temperature and in good agreement
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FIG. 6. Coupling factor B as a function of temperature obtained
by MD simulations with v=1 m/s. The dashed line shows the ideal
geometric value of B. T, is the bulk melting point of Al with this
EAM potential.

with its geometrical value (Fig. 6), indicating that the cou-
pling at these temperatures is nearly perfect. At 1000 K
(0.96T,,), a “dual behavior’3 was observed in which the GB
moved by sporadically switching back and forth between
two coupling modes: the familiar one with 8~0.817 and a
new mode that only appeared at high temperatures. The mul-
tiplicity of coupling modes is a separate topic that will be
discussed elsewhere. In this paper we focus on coupled mo-
tion in one particular mode with 8=0.8165 and thus the tem-
perature interval 100-900 K.

The average step H of the GB motion obtained from the
MD simulations is about 0.133 nm. To find the geometric
value of H for this coupling mode, note in Fig. 5 that the GB

dislocations glide along the (111) planes by increments of

b/4=[110]/4. These planes make the angle #/2 with the GB
normal. Thus, H=(b/4)cos(6/2)=ay(3/28)"?, which using
the Al lattice parameter a;=0.405 nm gives H=0.133 nm in
excellent agreement with our MD results. The average incre-
ment S of grain translations also accurately matches its geo-
metric value S=8H=0.108 nm.

B. Boundary dynamics: temperature dependence

Turning to the dynamics of the coupled GB motion, we
will first discuss the effect of temperature under a fixed ve-
locity v=1 nm/s. Figure 7 indicates that the shear stress
required for moving the GB decreases with temperature. Si-
multaneously, the character of the GB motion changes from
incremental (stop-and-go) at relatively low temperatures to
more stochastic at high temperatures. At low temperatures,
stick-slip dynamics are clearly seen, with a saw-tooth behav-
ior of the stress and a stepwise behavior of the GB position.
Each peak of the stress correlates exactly with an increment
of the GB motion: When a critical stress 7, is reached, the
boundary quickly moves a distance H up and stops, while the
stress drops to a minimum value.

It was interesting to examine the grain-size effect on this
stress behavior. To this end, some of the low-temperature
simulations were repeated with L=6.4, 9.6, 12.8, 16, and
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FIG. 7. GB displacement and shear stress at (a) 100 K, (b) 500
K, (c) 900 K and the imposed grain translation velocity v=1 m/s.
The arrows indicate the correlation between the peaks of stress and
the increments of the GB motion.

19.2 nm while keeping all other simulation conditions iden-
tical. The simulations confirm all trends predicted in Sec.
IT A. We find that the magnitude of the stress drop at each
increment of the GB motion decreases with increasing L. At
the same time, the peak stress hardly changes with L. As an
example, Fig. 8 compares the stress behavior for two se-
lected values of L. All subsequent simulations will be re-
ported for just one grain size L=12.2 nm.

Returning to Fig. 7, we see that at 900 K (0.867T,,) the
stepwise character of the GB motion is almost destroyed by
thermal fluctuations and the saw-tooth behavior of the stress
is much less pronounced than at low temperatures. Although
the GB is still perfectly coupled (8 matches its geometric
value), the boundary dynamics have obviously undergone a
transition.
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FIG. 8. Shear stress as a function of time in MD simulations of
coupled GB motion with two different simulation block sizes L. In
both cases, the temperature is 300 K and the imposed grain trans-
lation velocity is v=1 m/s. Note that the amount of the stress drop
decreases with L whereas the peak stress remains the same.

To understand the nature of this dynamic transition, note
that according to the stick-slip model discussed in Sec. III,
logv is expected to be approximately linear in (7'2
— 7,032/ kyT as long as T, is close to its zero-Kelvin value 7..
At a fixed v, the peak stress is therefore expected to be linear
in T2/3,

T.=1 - BT?3, (14)

where the constant B depends on the attempt frequency, the
energy dissipation rate and other factors.

To test this relation, the peak stress at each temperature
was averaged over 1620 stick-slip events and plotted in Fig.
9 as a function of 723, We also plot the stress 7 averaged
over the entire time interval containing those stick-slip
events. Although the absolute value of 7depends on the grain
size, this average stress should also be linear in 723 in the
stick-slip regime. We observe that both plots are indeed lin-
ear up to at least 500 K (0.48T,,). Together with the very
clean saw-tooth behavior of the stress [cf. Figs. 7(a) and
7(b)], this linearity confirms that this temperature interval is
indeed dominated by stick-slip dynamics.

Extrapolation of the linear relations to 7T—0 gives the
“athermal” values 7°=0.99 GPa and 7=0.87 GPa. Using
this 77, we find that the ratio 7,/ 7" varies between 0.74 at 100
K and 0.21 at 500 K. Recall that Eq. (14) was derived as-
suming that 7, was close to 7 (Sec. III); it may not be ac-
curate for such small values of 7./ T(C). Nevertheless, this
equation does actually describe the MD results fairly well.

At temperatures 600 K (0.57T,,) and higher, both 7. and 7
deviate from the straight lines and tend to level out. Com-
bined with the noisy behavior of the stress and the GB posi-
tion [Fig. 7(c)], these deviations indicate a transition to a
dynamic regime different from stick-slip. We suggest that
this regime is strongly driven Brownian dynamics.
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FIG. 9. Peak stress (solid circles) and average stress (open
circles) as functions of temperature to the power 2/3 obtained by
MD simulations with a constant velocity v=1 m/s. The numbers
indicate the temperatures. The error bars represent the standard de-
viation of averaging over 16-20 stick-slip events. The lines show
the linear correlation at temperatures 100-500 K.

Indeed, while all GB jumps in the stick-slip mode occur
in one direction (in our simulations, only upward), the driven
Brownian regime is characterized by random jumps up and
down, although the jumps up dominate. If the stress is com-
pletely removed, the GB must continue to jump up and
down, implementing a random walk induced by continual
thermal fluctuations. This prediction was tested by stress-free
MD simulations at 900 K (0.867,,) with the free boundary
condition. The GB was indeed found to implement a random
walk (Fig. 10); in fact, given enough time it could wander
quite far away from its initial position. These spontaneous
GB movements were accompanied by simultaneous transla-
tions of the upper grain due to the coupling effect. By con-
trast, at 400 K (0.387,,) (a temperature inside the stick-slip
range) the boundary did not make any spontaneous move-
ments.

Figure 10 demonstrates that there is a close correlation
between the boundary displacements and the upper grain
translations during the random walk at 900 K. To quantify
this correlation, we plot in Fig. 11 the GB displacement rela-
tive to the initial position versus the translation of the center
of mass of the upper grain perpendicular to the tilt axis. An
excellent linear correlation is apparent, with the slope of
0.843 which is close to the geometric coupling factor 0.8165.
These observations are consistent with the fact* that the cou-
pling factor does not depend on whether the GB motion is
induced by thermal fluctuations or driven by an applied
stress.

When a stress is applied at 900 K, it biases the existing
random jumps of the boundary and drives it on average up-
ward. Attempts were made to directly observe backward GB
jumps during the stress-driven simulations at high tempera-
tures. It should be noted that in such simulations, the fixed
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FIG. 10. Spontaneous coupled motion of the GB: (a) upper grain
translation and (b) GB displacement and at 400 K and 900 K. The
simulations were performed with the free boundary condition.

boundary condition constrains spontaneous rigid translations
of the grains, although local translations near the GB are still
possible. Since such local translations come at the expense of
elastic deformation of the surrounding lattice regions, the
spontaneous GB movements cannot be as extensive as they
are with the free boundary condition. Nevertheless, they are
expected to occur at high enough temperatures.
Unfortunately, we were not able to see backward GB
jumps in the stress-driven simulations. Presumably, the bias
imposed by the stress was too strong and made the backward
jumps rare events. Given also the significant distortions of
the GB structure produced by the stress, the few backward
jumps that still happened were not detected by our visualiza-
tion method. One way to reveal them would be to drastically
reduce the GB velocity using accelerated MD methods,'” but
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FIG. 11. Grain boundary displacement as a function of GB
translation during spontaneous coupled GB motion at 900 K. The
slope of the correlation line gives an estimate of the correlation
factor B.
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this was not pursued in this work. We emphasize that under
real conditions, the GB velocities encountered in experi-
ments on bicrystals or during recrystallization and growth in
polycrystalline materials are orders of magnitude smaller
than in our simulations.3> At such small velocities, spontane-
ous GB displacements coupled to lattice translations can oc-
cur much more readily. Thus, in real materials at high tem-
peratures, the coupled GB motion is likely to occur by driven
Brownian motion.

C. Boundary dynamics: velocity dependence

The low- and high-temperature regimes of the GB motion
were also studied by fixing a temperature and varying the
imposed grain translation velocity. Two different tempera-
tures were tested, 400 K (0.387,,) and 900 K (0.867,,), each
with velocities ranging from 0.1 up to 30 m/s. The results
were analyzed in terms of velocity-stress relations at these
temperatures. The average stress 7 was used since it could be
computed more accurately than 7.4

At T=400 K, the GB remained coupled with S=0.817
and exhibited a saw-tooth behavior of the stress over the
entire velocity range. The velocity-stress relation obtained is
highly nonlinear as shown in Fig. 12(a). At low stresses, v
increases with 7 extremely slowly until ~0.18 GPa. Al-
though we expect v to become a linear function of 7 at small
enough velocities, this linear regime was not actually re-
vealed at this temperature. Implementing this regime would
require reducing v significantly below 0.1 m/s. To reach such
small velocities, the MD time had to be longer than 50-100
ns (the time to move the GB over at least a few nanometers).
Implementing this regime was beyond our computational re-
sources.

Above ~0.18 GPa, the growth of v with 7 rapidly accel-
erates and by 7~0.20 GPa (which corresponds to v
~35 m/s) the plot becomes almost vertical. The log v versus
7 plot shown in Fig. 12(b) indicates that at v=5 m/s the
rapid growth of v can be described as approximately expo-
nential in stress. Analysis shows that it can also be described
as exponential with respect to (7°—7)%? within the scatter of
the points. Although the limited statistics do not permit us to
distinguish between the powers of 1 and 3/2, the important
point is that the growth of v is exponentially fast in agree-
ment with the analysis in Sec. III.

The departure from the exponential growth at higher ve-
locities (v>10 m/s) is explained by the effect of dynamic
correlations between the GB jumps. At such high velocities,
the energy dissipation rate cannot catch up with the elastic
strain energy release at each step of the boundary motion.
The undamped energy, existing in the form of sound waves
bouncing back and forth between the two fixed regions, as-
sists the GB in overcoming the next activation barrier. This
produces a decrease in the stress required for moving the GB
in comparison with the low-velocity regime in which the GB
completely thermalizes after each jump. In the strongly un-
derdamped regime observed at high velocities, the transition-
state theory does not apply and the GB motion does not have
to follow the exponential relations derived in Sec. III based
on this theory. At even higher velocities, the curve could turn
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FIG. 12. The GB velocity (a) and its logarithm (b) as functions
of the average shear stress at temperatures 400 and 900 K. The open
squares indicate velocities at which multiple jumps are observed.
The dashed line in (a) indicates the zero velocity; the solid lines are
linear fits.

over and produce a regime in which the velocity decreases
with increasing stress. This regime was indeed found in the
recent MD study of a copper GB.!” We emphasize that, al-
though this effect is generic, the velocity range in which it
occurs depends on the dissipation mechanisms, temperature,
grain size and many other factors.

A convincing proof of the existence of the dynamic cor-
relations is the observation of double jumps of the GB at v
>10 m/s. In such events, illustrated in Fig. 13, the bound-
ary makes a jump by the double amount 2H and the stress
drops to a lower level than it does after a single jump. This
happens because the elastic strain energy released after the
first jump is large enough to immediately produce another
jump. In fact, at velocities higher than 15 m/s we saw triple
and even higher multiple jumps. There is an interesting anal-
ogy between such multiple jumps in coupled GB motion and
the multiple slip events found recently in atomic-scale fric-
tion experiments.?>#142

At the temperature of 900 K, the GB motion remains
perfectly coupled at velocities up to ~10 m/s. Above 10
m/s, the coupled motion begins to be interrupted by occa-
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FIG. 13. Stick-slip GB motion at 400 K and v=7.5 m/s. The
double jumps are indicated by arrows.

sional sliding events as indicated in Fig. 14 (the sliding
events are manifested by nearly horizontal parts of the
curve). Between the sliding events, the GB continues to
move in the coupling mode with S5~0.8165. As v increases
further, the frequency of the sliding events also increases
until at v =30 m/s sliding becomes the dominant response
of the boundary to the applied shear stress. Although the
velocity dependence of sliding was not studied in this work,
these results suggest that the stress required for sliding is less
sensitive to v than 7 is, producing a crossover of the two
stresses at about 0.15 GPa (corresponding to v=10 m/s) at
this temperature.

In the velocity range of perfect coupling at 900 K, the
velocity-stress relation is overall nonlinear but it does exhibit
a nearly linear part below v=3 m/s. This linear regime is
well-consistent with the driven Brownian character of the
GB motion at this temperature (Sec. V B). The nonlinear
behavior exhibited at higher velocities marks a transition to
the stick-slip dynamics, characterized by a rapid (roughly,
exponential) increase in velocity with stress. Overall, the
stress-velocity relations found by the MD simulations [Fig.
12(a)] compare well with predictions of the one-dimensional
model discussed in Sec. III (Fig. 3).
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FIG. 14. Coupled GB motion interrupted by sliding events at
900 K. The imposed grain translation velocity is 12 m/s.

VI. CONCLUSIONS

We have analyzed possible dynamic regimes of coupled
GB motion using two different approaches. The one-
dimensional model discussed in Sec. III is a crude analog of
the complex multidimensional process taking place during
the GB motion, but it can predict simple analytical relations
between the GB velocity, stress, and temperature. The MD
simulations bring us closer to reality, but the results are only
numerical and the simulated conditions are subject to the
time and length-scale limitations of the method. As a result,
only a limited area of the parameter space can be explored by
MBD. Despite these differences, the two methods give quali-
tatively consistent results that can be summarized as follows:

At low temperatures and/or high migration velocities, a
coupled GB exhibits stick-slip behavior characterized by in-
cremental (stop-and-go) motion and a saw-tooth time depen-
dence of the stress. The average velocity increases with the
average stress in a highly nonlinear manner, close to expo-
nential. The GB makes jumps only forward and stops as soon
as the applied stress is removed. As temperature rises and/or
the velocity slows down, the GB begins to make occasional
reverse jumps and eventually switches from the stick-slip
regime to driven Brownian motion. The stress-velocity rela-
tion approaches linear, with a coefficient which is often
called “mobility.”3> When the stress is completely removed,
the GB continues to implement random walk due to thermal
fluctuations. We emphasize that throughout all these dynamic
changes, the boundary motion still remains perfectly
coupled, with the ratio of the normal GB velocity to the grain
translation velocity being a geometric constant. The perfect
coupling remains even for the stress-free random walk at
high temperatures.

Most of the GB migration experiments, as well as atom-
istic simulations, reported in the literature (e.g., Refs. 7, 8,
and 43-45), have been conducted at relatively high tempera-
tures. They typically display a linear stress-velocity relation
indicative of Brownian dynamics. There are cases, however,
when nonlinear dynamics were also observed,”*7 but
their physical origin and atomic mechanisms were not
investigated.
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In the future, the one-dimensional model of Sec. III can
be examined in greater detail by including the effects of in-
ertia and underdamping, perhaps in a manner similar to Refs.
31 and 48. This might help better understand the double
jumps and other interesting dynamic effects observed at high
velocities. Another model that we are exploring is the driven
Frenkel-Kontorova*® model. We will also examine the grain-
size effect on GB dynamics, particularly the effect of the GB
area. The latter could be important since the GB dimensions
in comparison with the critical nucleation size of disconnec-
tion loops* responsible for the coupled motion can affect the
dynamics regimes.
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