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We discuss the polar Kerr effect in a chiral p-wave �px+ ipy-wave� superconductor. It is found that the
off-diagonal component of a current-current correlation function is induced by impurity scattering in the chiral
p-wave condensate, and a nonzero Hall conductivity is obtained using the Kubo formula. We estimate the Kerr
rotation angle by using this impurity-induced Hall conductivity and compare it with experimental results �J.
Xia et al., Phys. Rev. Lett. 97, 167002 �2006��.
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Recently, the quasi-two-dimensional �quasi-2D� supercon-
ductor Sr2RuO4 with Tc=1.5 K has attracted considerable
attention and it has been investigated extensively.1 It is plau-
sible that the order parameter in Sr2RuO4 has the spin triplet
px� ipy-wave symmetry. One of the fascinating properties of
this state is the spontaneous breaking of parity in a two-
dimensional �2D� sense �px→px and py→−py� and in a time-
reversal symmetry due to the presence of nonzero chirality
characterized by lz= �1, where lz is the z component of the
relative orbital angular momentum of the Cooper pair.

The polar Kerr effect �PKE�, in which the direction of
polarization of reflected linearly polarized light is rotated,
has been known as an effective tool for understanding
ferromagnetism.2 Because of the analogy between ferromag-
netic order—for instance, with sz=1 and chiral pair conden-
sation with lz=1—it is naively expected that the PKE is in-
duced in the chiral p-wave state at zero field. In fact, the
PKE has been observed in the superconducting state of
Sr2RuO4.3 Up-to-date theoretical reports on the PKE in the
chiral p-wave state are given in Refs. 4 and 5, in which
interesting mechanisms have been proposed by the field the-
oretical approach; however, obtained results of the Kerr ro-
tation angle are considerably smaller than the experimental
results.

Therefore, it is crucial to elucidate the fundamental nature
of the PKE in the chiral p-wave superconductor. We will
show that a Kerr rotation angle comparable to that obtained
experimentally is obtained by taking into account nonmag-
netic and short-ranged impurity scatterings of quasiparticles
in a chiral p-wave condensate. It is also found that this
impurity-induced PKE is suppressed or is zero for any super-
conducting state other than the chiral p-wave state.6 This
result is contrary to the naive analogy with a ferromagnet,
since the effect is not proportional to chirality analogous to
magnetization but suppressed in higher chirality states with
lz= �2, �3,¯. The natural unit �=c=kB=1 is used
throughout this Rapid Communication.

We reviewed the phenomenology of the PKE in time-
reversal symmetry-breaking superconducting systems, which
is an extension of the argument for itinerant ferromagnetic
systems.2,8 We also refer to the discussion of anyon
superconductivity.9 Let us suppose that z�0 is empty, z�0
is filled by the superconductor, and incident light is linearly
polarized and propagating along the z direction perpendicular
to the superconducting plane with a wave vector q=−ẑqz.

The Maxwell equations inside the material are ẑ�z�E=
−�B /�t and ẑ�z�B= j+�E /�t. It is obvious that for mani-
festly gauge-invariant systems, current ji=� j=x,y�ijEj =

−� j�ij�Ȧj +�� /�xj�—where i=x ,y, �ij is the conductivity
tensor, and Ai and � are the vector and scalar potentials,
respectively. In superconductors,

ji = − �
j
��ij

�v�Ȧj + �ij
�s� ��

�xj
� , �1�

and in general, �ij
�v���ij

�s� because of the spontaneous break-
ing of the gauge symmetry.9,10 The scalar potential becomes
redundant in this problem, and we select a �=0 gauge. In
this gauge, the Maxwell equation inside the superconductor
is

���2 − qz
2 + i��xx

�v�����	ij + i�
ij�xy
�v����	Ajq��� = 0.

Here, we suppose that the long-wavelength limit q��−1,
where � is the coherence length of the superconducting order
parameter, and we omit the q dependence of the conductivity
tensor. It is clear that there are two propagating modes qz

�

=
�2+ i��xx
�v�������xy

�v����. In Ref. 9, the low-frequency
limit ��2�
� has been considered and only the static values
�ij

�v���=0� have been considered. However, this value is not
suitable for the experimental situation in the ruthenate �
=0.8 eV�2�
��10−4 eV.3 Following Ref. 8, we solve the
Maxwell equation with an appropriate boundary condition at
z=0 and obtain the Kerr rotation angle,

�K = − Im���qz
+ − qz

−�
�2 − qz

+qz
− � , �2�

which would be applicable in a wide frequency region. The
factor �qz

+−qz
−� indicates that �xy

�v���� is crucial to the PKE.
Let us calculate �ij

�v����, with ��2�
� in the chiral
p-wave state. We use a quasiparticle Hamiltonian with a cy-
lindrical Fermi surface that models the dominant � band in
Sr2RuO4.1 The electromagnetic interaction and impurity scat-
tering are also taken into account. In the Nambu representa-
tion �p= �cp↑ ,c−p↓

� �T, the Hamiltonian H=H0+Hem+Hi. The
first part H0
� d3p

�2��3 �p
†gp ·��p, where gp= �Re 
p ,

−Im 
p ,
p= p2

2me
−
F�, �= ��1 ,�2 ,�3� is the Pauli matrix in the

Nambu space, and 
p= �
��p̂x+ ip̂y� is the momentum depen-
dent part of a chiral p-wave gap function with p̂=p / �p�. The
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second part Hem=� d3q
�2��3 �jq

�p�+ jq
�d�� ·Aq is the electromagnetic

interaction with the Fourier forms of the paramagnetic cur-
rent jq

�p�=−e� d3p
�2��3 �p

† 2p+q
2me

�p+q
−e� d3p
�2��3 �p

†�p,p+q�p+q and

the diamagnetic current jq
�d�= e2

2me
� d3p

�2��3 �p
†�3�p+qAq. The last

part Hi=�i�
d3q

�2��3 �iq�−q is the nonmagnetic impurity scatter-
ing with the Fourier components of the quasiparticle density
�q=� d3p

�2��3 �p
†�3�p+q and impurity density �iq=� je

iq·Rj �R j:
impurity site�. It is assumed that the scattering potential is
short ranged, and the s-wave channel is dominant.

Let �ij
R��� denote the Fourier component of the two-point

retarded correlation of the paramagnetic current jq→0
�p� . The

Hall conductivity is obtained by the Kubo formula as11

�xy
�v����=�xy

R ��� / i�=�ij
ij�ij
R��� /2i�, where 
ij is the totally

antisymmetric tensor in the 2D plane. To obtain �ij
ij�ij
R���,

we calculate the Matsubara form �ij
ij�ij�i�n�—where �n
=2n�T is the bosonic Matsubara frequency at temperature
T—and use the relation �ij
ij�ij

R���=�ij
ij�ij�i�n→�+ i��,
where � denotes dissipation.11 The Matsubara Green’s func-
tion for quasiparticles is given by

Gp�i
m� =
1

i
m + gp · �

 � Gp�i
m� Fp�i
m�

Fp
��− i
m� − Gp�− i
m� � ,

where 
m= �2m+1��T.

In literature,12–16 it has been pointed out that there is no
contribution of the one-loop diagram to the Matsubara form
�ij
ij�ij�i�n�, i.e., the zeroth-order term of the impurity scat-
tering since �i,p,p= pi /me. Then, vertex corrections must be
taken into account to obtain nonzero contributions. The lead-
ing contribution is shown in Fig. 1, which is in the first order
of the impurity concentration ni and in the third order of the
impurity strength �i. These diagrams are similar to the skew
scattering diagrams in the extrinsic anomalous Hall effect.17

We obtain

�
ij


ij�ij�i�n� = ni�i
3e2 T

V3 �
mpkk1

�
ij


ij

2
�Tr�Gp�i
m��i,p,pGp�i
m+n��3Gk�i
m+n�� j,k,kGk�i
m��3Gk1

�i
m��3�

+ Tr�Gp�i
m��i,p,pGp�i
m+n��3Gk1
�i
m+n��3Gk�i
m+n�� j,k,kGk�i
m��3�	 + O�ni�i

4�

=
T

V3 �
mpkk1

ni�i
3e2vF

2 p̂ � k̂ Tr��3gp · �gk · ���n�
m + 
m+n�2�
m
m+n − Ek1

2 �

�
m
2 + Ep

2��
m+n
2 + Ep

2��
m
2 + Ek

2��
m+n
2 + Ek

2��
m
2 + Ek1

2 ��
m+n
2 + Ek1

2 �
+ O�ni�i

4� , �3�

where Ep= �gp�=

p
2 + �
p�2 and 
m+n

m+�n. We use the

cylindrical coordinate for representing momentum integra-
tion. As observed from the leading term of Eq. �3�, an azi-

muthal dependence p̂� k̂=sin �pk ��pk: angle between p and
k� arises from the contraction of the vertex part
�ij
ij�i,p,p� j,k,k and

Tr��3gp · �gk · �� = − 2i�Re 
pIm 
k − �p ↔ k�� �4�

arises from the impurity scattering at the black dots in Fig. 1.
In the chiral p-wave �px+ ipy-wave� state, Tr��3gp ·�gk ·��
=2i�
�2 sin �pk. Then, the leading term of Eq. �3� survives
after the azimuthal integration. It is obvious that this term
yields the second-order contribution of the gap amplitude
�
�T��2��
�0��2�1−T /Tc� in the Ginzburg-Landau �GL� re-
gime. By using GL expansion, we estimate the large �n part
of the term to perform momentum integral first and Matsub-
ara sum later. By using analytic continuation and the Kubo
formula, we obtain

�xy
�v���� = �BCS

2 �1 −
T

Tc
� li

�0
� 
F

��0
�3/2 �xy

�0�

�� + i/�0�3 , �5�

where �xy
�0�=e2 /2�d �d is the layer distance�, li= �nid�−1/2,

�0
−1=ni�i

2N�0� /2 �N�0�=m /2�d is the density of states at the
Fermi surface per spin�, �0=vF /�Tc is the superconducting
coherence length at T=0, 
F is the Fermi energy, and �BCS
= �
�0�� /Tc�1.8.

In general, when we consider chiral states with lz
= �1, �2,¯—i.e., �px+ ipy�lz-wave states—Eq. �4� be-
comes 2i�
�2 sin lz�pk and then the leading term of Eq. �3�
vanishes after the azimuthal integration—except for lz= �1,
i.e., the chiral p-wave state. If we consider chiral states with
a horizontal line node such as �px+ ipy�lzpz, Eq. �4� becomes
2i�
�2pzkz sin lz�pk and the leading term also vanishes for
any lz after integrating out the z component of the momen-
tums. For nonchiral �lz=0� and time-reversal breaking
states—i.e., d+ is-wave pairing—Eq. �4� is proportional to
cos 2�p−cos 2�k and the leading term will vanish after the

FIG. 1. Leading diagrams of �ij
ij�ij�i�n�. The lines with the
arrows −�−, −�−�−, and −�−�− denote quasiparticle Green’s
functions Gp�i
m�, Fp�i
m�, and Fp

��i
m�, respectively, in Gp�i
m�.
The lower lines have frequency 
m+n=
m+�n, while the upper lines
have 
m. The dashed lines denote the impurity coupling �i. The
scattering at the black dots yields the factor Tr��3gp ·�gk ·�� in Eq.
�3�.
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azimuthal integration. For nonchiral and time-reversal sym-
metric states �s wave, dx2−y2 wave, …�, �xy

�v���� should be
zero because of the symmetrical reason. In fact, it is easy to
confirm that Eq. �4� becomes zero since the gap function can
be made real for these states by using the U�1� phase trans-
formation of fermion fields. To sum up, in this impurity scat-
tering mechanism, �xy

�v���� is suppressed or is zero for any
state other than the chiral p-wave state �see Ref. 6�.

The diagonal component �xx
�v���� is effectively approxi-

mated by the Drude form �xx
�v������p

2�0�1− i��0�−1 in the
high-frequency limit ��2�
�,18 where �p=
nee

2 /me is the
plasma frequency and ne is the electron number density. In
fact, this behavior of �xx

�v���� has been verified experimen-
tally in the superconducting state of Sr2RuO4.19

Let us estimate �K from Eq. �2�. We use suitable param-
eters for the experiment, i.e., d=6.8 Å, �0=660 Å, �
=0.8 eV, �p=1.3 eV, 
F=0.14 eV, and �0

−1=6.6
�10−5 eV.3 The impurity mean distance li is rather ambigu-
ous, and we consider a variation 1000–5000 Å.20 The esti-
mated value of �K from Eq. �2� at T /Tc=0.8 is 6 nrad for
li=1000 Å and 30 nrad for li=5000 Å. The latter case
agrees well with the measurement result of approximately 60
nrad at the same temperature.3

The frequency dependence of �K in Eq. �2� at T /Tc=0.8 is
plotted in Fig. 2. We find that �K behaves as �−1 for �
��p, as indicated by Eqs. �5� and �6�. At �=�p, �K shows a
sharp peak and behaves as �−3 for ���p.

The temperature dependence of �K can be explained as
follows: Equation �2� is effectively approximated by

�K �
�2

�p
3 Re��xy

�v����� , �6�

when �p
2 −�2� ����v����� and ��0�1 �these conditions are

satisfied using suitable parameters in the experiment�. The
approximated form Eq. �6� indicates that �K depends linearly
on the temperature in the GL region �see also Eq. �5��. This
result is not in agreement with the experimental report;3

however, the error bars of the data are large and it appears
that the temperature dependence is difficult to discuss.

The obtained result might be overestimated since it is as-
sumed that every scatterer has the same fixed potential

strength rather than a distribution. We also suppose that the
energy scale of the pairing interaction �D is well above the
laser frequency ��0.8 eV. Although the nature of the pair-
ing interaction is not elucidated, �D is likely to be less than
the used laser frequency. It is pointed out that the Hall con-
ductivity would be suppressed for ���D.5 However, we
believe that the presented mechanism plays an important role
in the PKE in Sr2RuO4.3

We comment on previously proposed theories of the PKE
in the chiral p-wave state. In Ref. 21, �xy

�s� in Eq. �1� is ob-
tained using the relation �xy

�s����= i
2
ij

�
�qi

�0j
R �� ,q� �q=0, where

�0j
R �� ,q� is the correlation between charge and current den-

sities. The calculation has been performed in the case with-
out any impurity, and nonzero values of �xy

�s� have been ob-
tained. However, as shown in Eq. �2�, �xy

�v���� and not �xy
�s����

is responsible for the PKE. In Ref. 21, it is implicitly as-
sumed that �xy

�s����=�xy
�v���� in the high-frequency limit �see

the discussion below Eq. �17� in Ref. 21�. �The same as-
sumption has been made in Ref. 22.� However, this would
not be true since �xy

�v���� is zero without impurity scattering
for an arbitrary frequency.12–15 This problem has also been
pointed out in recent arguments.4,5 In Refs. 4 and 5,
�xy

�s��� ,q� has been discussed. A remarkable finding is that
the finite q effect is responsible for the PKE �a similar argu-
ment has been provided in Ref. 23�; however, the obtained
Kerr angle is about 9 orders of magnitude smaller than that
obtained experimentally.4,5

Let us turn to discuss the Chern-Simons term 
���A���A�

�� ,� ,�=0,1 ,2�, which is generally induced in the low-
energy and long-wavelength effective Lagrangian for gauge
fields obtained by integrating out 2D electrons in a system
with parity and time-reversal symmetry breakings.24 The ori-
gin of the term is closely related to the parity anomaly.25–28 It
has been pointed out that for the chiral p-wave supercon-
ductor, a nonzero value of �xy

�s���=q=0� is obtained without
impurity scattering. At T=0, �xy

�s��0�= e2

4� .12–15 The finite-
temperature effect was investigated in the GL scheme15,29

�see also Ref. 16�. This indicates that a part of the Chern-

Simons term
�xy

�s��0�
2 
ij�A0�iAj +Ai� jA0� is induced in the effec-

tive Lagrangian.12,13 We can conclude that this part has an
“intrinsic” origin since it is induced without impurity scat-
tering while �xy

�v��0�=0, and the other part of the Chern-
Simons term 
ijAi�0Aj is not induced.12–15 As we have em-
phasized, �xy

�v���� becomes nonzero when we take into
account vertex corrections from impurities, shown in Fig. 1.
From the leading term of Eq. �3�, we can observe that in the
static limit the second-order contributions of the gap ampli-
tude vanish occasionally and the fourth-order contributions
give

�xy
�v��0� = �xy

�0�127��7�
128�4

li

�0
� 
F

��0Tc
2�3/2�1 −

T

Tc
�2

�BCS
4 ,

near Tc. This indicates that the other part
�xy

�v��0�
2 
ijAi�0Aj has

an “extrinsic” origin.
In summary, we have discussed the PKE in a chiral

p-wave superconductor. We have estimated the contribution
of impurity scattering in the chiral p-wave condensate. The
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FIG. 2. � dependence of �K in Eq. �2� at T /Tc=0.8, obtained
using parameters d=6.8 Å, li=10000 Å, �0=660 Å, �p=1.3 eV,

F=0.14 eV, and �0

−1=6.6�10−5 eV �Ref. 3�. It is assumed that
the cut-off energy of the pairing interaction �D�10�p.
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skew-scattering-type diagrams �see Fig. 1� show the leading
contribution. In this impurity-induced mechanism, the PKE
would be suppressed or would be zero for any state other
than the chiral p-wave state �the possibility of nonunitary
pairing is not taken into account, see Ref. 6�.
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