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Surface energy and magnetocapacitance of superconductors under electric field bias
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A superconducting layer exposed to a perpendicular electric field and a parallel magnetic field is considered
within the Ginzburg-Landau (GL) approach. The GL equation is solved near the surface and the surface energy
is calculated. The nucleation critical field of superconducting state at the surface depends on the magnetic and
electric fields. Special consideration is paid to the induced magnetic field effect caused by diamagnetic surface
currents. The latter effect is strongly dependent on the thickness of the sample. The effective inverse capaci-
tance determines the effective penetration depth. It is found that the capacitance exhibits a jump at the surface
critical field. An experiment is suggested for determining the change in the effective capacitance of the layer.
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I. INTRODUCTION

The gate voltage can be used to change the carrier density
of superconducting surfaces and therefore the critical tem-
perature in the same manner as in field effect semiconductor
devices. This effect has been investigated for more than 40
years! and has continuously gained experimental interest;>°
see also the overview.” The critical temperature of thin su-
perconducting layers can be controlled in this way by an
electric field applied perpendicular to the layer.!>%89
High-T,. superconductors are characterized by a low density
of carriers such that this field effect is expected to be higher;
this has caused a wide experimental activity.>>»!*13 Such
field effect devices may be made even from organic and
macromolecular films.'*

According to the Anderson theorem, the bias voltage can
change the critical temperature only indirectly via the elec-
tric field dependence of the material parameters.*'>2 The
influence of the electric field on the pairing mechanism is
therefore to be expected in the density of states for very pure
and thin low-dimensional structures,”'~>3 analogous to the
formation of sidebands in the density of states due to high
fields.?* Capacitance measurements on surfaces of high-
temperature superconductors have revealed a so far unknown
mechanism for electric field penetration.?

On the other hand, magnetocapacitance techniques are
used frequently to measure the influence of the magnetic
field,?® e.g., to test spin-dependent electrochemical poten-
tials. Starting from the early reports on an increase in the
capacitance®’ for superconducting tunneling junctions,’® the
residual surface resistance of superconducting resonators is
still under discussion®3! since it becomes important for the
question of how short the electron bunches can be in free-
electron lasers before the generated wake fields disable the
superconducting cavities.>* Different mechanisms for such
electron losses have been discussed in Ref. 31. With respect
to this, it is important to know the explicit dependence on the
magnetic field and the voltage bias.

In this paper we investigate the magnetocapacitance in
dependence on the magnetic field and the external bias by
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the electric field. We focus on magnetic fields around the
surface critical field B.; since we expect that the external
bias, which affects only the surface, has a relatively large
effect on the surface superconductivity. Most experimental
activities are concentrated on the change in the surface criti-
cal magnetic field with temperature.’>>’ In our study we
suggest consideration of these measurements under the influ-
ence of external bias. To this end we will employ the
Ginzburg-Landau (GL) equation with the de Gennes surface
condition, where only the latter condition depends on the
external bias, in agreement with the Anderson theorem.

The experimental setup is shown in Fig. 1. The first elec-
trode of a capacitor is the superconducting slab of thickness
d. Tt is sandwiched between two plates of an ideal metal at
distances L, which form the second electrodes. In real de-
vices it will be necessary to consider that the applied electric
field affects also the end corners. Here we neglect the influ-
ence of the end corners, assuming an infinite plane capacitor.
Our aim is to evaluate the effective capacitance, the surface
critical field, and the surface energy in dependence on the
applied voltage and the magnetic field.

The total energy of the capacitor with area S is given by
%GOEZLS and an additional contribution coming from surface

L d L

+ - +

FIG. 1. The slab superconductor of thickness d placed in two
parallel capacitor plates at distance L. The superconductor extends
infinitely in the z direction. The magnetic field is parallel to the
superconductor surface.
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charges So. Then the inverse capacitance C of the slab is
given by

S L 1&g

C_EO+€§(9E2. (1)
The external magnetic field associated with the z axis and
parallel to the superconducting surface is screened inside the
superconductor by the diamagnetic current j. Thus a mag-
netic field profile is established perpendicular to the surface
induced by the diamagnetic current. This induced diamag-
netic current contributes to the inverse capacitance such that
we have besides a genuine surface contribution Cg, also an
induced part Cj,q,

1o S S )
620 aEz N Csurf " Cind.

It will turn out that the induced capacitance is linearly de-
pendent on the sample width d.

Since the electric field penetrates the superconductor only
near the surface, it is of special interest to understand the
surface superconductivity in the presence of an external elec-
tric field. The change in the upper critical field and the sur-
face nucleation field has already been calculated for strong
coupling.® The surface paraconductivity and the change in
the critical parameters due to an external field has been in-
vestigated t00.3>4? A shift in the critical temperature has been
obtained*' due to a modified GL boundary condition and a
variational solution of the effective Schrodinger equation. In
other words, the critical field B, is changed due to the
change in the GL energy by the electric field.** Here we will
investigate the surface energy problem of domain walls simi-
larly and employ the modified boundary condition to solve
the GL equation variationally. We will obtain that the bulk
critical field B, remains unchanged due to the applied elec-
tric field, while the surface critical field B_; changes with the
electric field.

The paper is organized as follows: First we repeat the
solution of the magnetic field—dependent GL equation under
external bias by electric fields and calculate the surface criti-
cal field B_; and its dependence on the external bias. With the
help of the GL wave function, the surface energy is calcu-
lated in Sec. III and the effective capacitance in Sec. IV.
Special attention is paid to the induced magnetic field effect
there. The self-consistent treatment of the induced magnetic
field is presented in Appendix D 1, which completes the
proposed picture. We present fitting formulas for the mag-
netic and electric field dependence aimed for experimental
verifications. In Sec. V we summarize and discuss possible
experimental realizations.

II. GL WAVE FUNCTION WITH EXTERNAL MAGNETIC
AND ELECTRIC FIELDS

An effective description of superconducting properties
near the critical temperature is provided by the GL equation
for the wave function W,
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1
2—(— ihV—eA)V + oV + BIV[¥ =0, (3)
m

which describes the ratio of the superconducting density to
the total density n by |W|>=n,/2n. Here the mass is twice the
electron mass, m=2m,, and the charge is e=2e,, the one of
the Cooper pairs. The effective potential in GL equation (3),
aV+B|W|*W, is valid only near the critical temperature. If
needed, the effective potential can be extended to tempera-
tures lower than the critical one.*>*

The GL equation is supplemented by the de Gennes sur-
face conditions®

v
v

Loy

- . == (4)
x=0 b v

b
x=d b

where the extrapolation length b is sensitive to the treatment
of the surfaces. The length b describes the extrapolation of
the order parameter out of the surface when the restoring
forces of the surface are neglected. Since the length b is real,
it is assured that no current is flowing through the surface.
Without external bias the typical length b is on the order of
a centimeter and can be neglected.®

This inverse extrapolation length 1/b depends on the den-
sity of states at the surface; therefore it is a function of the
applied electric field E. In linear approximation (see Appen-
dix A), it reads

1 1 E
S —, (5)
b by ¢

with the characteristic potential*®

1 de
—=—"y
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being on the order of a few MeV for conventional supercon-
ductors. The dependence of 1/ ¢y, on the GL parameter « and
the density derivative of the critical temperature suggests
that the field effect is much larger for high-7, superconduct-
ors.

The reduction factor 7 is the ratio of the gap extrapolated
to the surface to the value at the surface.*® Its value is on the
order of unity and it is not essential for our discussion.

A. Nucleation of the surface superconductivity

At the surface critical field the superconductivity nucle-
ates at the surface. Near the surface the effective wave func-
tion ¥ is small and we can work with the linearized GL
equation, omitting in Eq. (3) the cubic term,

1
%(ih V-eA)¥+a¥ =0, (7)

with boundary condition (4).

We consider the geometry of a planar superconductor at
d>x>0 as in Fig. 1 and assume a homogeneous applied
magnetic field B,=(0,0,B,). Since the system in Fig. 1 has
translation invariance along the y direction, we use the Lan-
dau gauge of the form

A =(0,B,x,0). (8)
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The nucleation is possible if the parameter —a in Eq. (7)
becomes equal to an eigenvalue & of the kinetic energy given
by ﬁ(—ihV—eA)zdfzez,b. Since a changes with the tempera-
ture, a=a'(T-T,), the eigenvalue & of the kinetic energy
determines  the  nucleation  temperature T°  as
T*-T.=—¢&/a'.* To avoid dual notation for the same quan-
tity, we will treat Eq. (7) as an eigenvalue problem for &.
Since @ is negative, the nucleation temperature 7 is always
below the critical temperature 7, in the absence of the mag-
netic field.

Assuming the translation invariance along the y and z
axes, we can write the wave function as

W(x,y,2) = h(x)e™eis. 9)

Using Eq. (9) in GL equation (7), we get a one-dimensional
equation,

() = ]
A + k_Tx +q° |+ a=0. (10)

2m ox

Any nonzero value of g results in the kinetic energy
qzhz/ 2m, which lowers the value of @, making the nucle-
ation temperature lower. The nucleation happens on the first
possible occasion, i.e., at the highest allowed temperature.
We thus take g=0.

The value of k determines the minimum of the parabolic
potential and the eigenvalue a depends on the relative posi-
tion of this minimum with respect to the surface of the slab.
We have to find the wave vector k from the requirement of
the highest nucleation temperature.

B. Thick slab limit

First, we assume that the superconducting slab is so thick
that its surface superconductivity forms on both surfaces in-
dependently. In this case we can view the sample as infinite
and take the convergent solution into the bulk. We treat only
the surface at x=0. The surface at x=d is analogous. We
should note that the profile for a general thickness has been
solved by a calculation based on the Eilenberger equation for
finite temperatures but without bias voltage.*” Here we re-
strict ourselves to a simpler approach but include the bias
voltage.

It is advantageous to express the x coordinate with the
help of the dimensionless coordinate 7,

x=7l+2P%k, (11)
such that the wave function reads
X

(x) =CD17(; + To), (12)

with the momentum 7,=-2k/ and the magnetic length
h
L= . 13
2eB, (13)

The parabolic cylinder function D,(7) solves differential
equation (7), i.e.,*
fDAﬂ_(F 1
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FIG. 2. The minimal eigenvalue of the GL equation given by
Eq. (17) as a function of external bias.

D,(7) ! (15)
D (7o) | = 3H7eB, b’
with
1 am
=——— 16
2  ehB, (16)

and the GL coherence length &=-#2/2ma.

Boundary condition (15) leads to a function v(7,). The
maximal nucleation temperature is given by the maximal &
=max[«], which is characterized by the minimum 7
=min[ v(7,)] due to Eq. (16). Besides the obvious numerical
search, we can give directly a nonlinear equation for this
desired minimum 7’ (7,)=0. For this purpose we differentiate
Eq. (15) with respect to 7, using the relations for the para-
bolic cylinder functions, D,=7D,/2-D,,; and D, =D,
—-vD,_,, to arrive at

Dy1(79) \/<~+1)<1+§2>
ol - St — s
-_ 2
D) To=—2\(F+1/2) 1+&/b2) 2 b

—g ’17+%. (17)

With the solution 7] 7,] of Eq. (17), the momentum and cur-
rent is determined due to 7y=-2k/. In Fig. 2 the solution of
Eq. (17) is plotted. There is an asymmetry to be noted with
respect to positive, b>0, and negative, b <0, external bi-
ases. This will lead to very asymmetric curves in the surface
energy later.

C. Surface critical field
The lowest eigenvalue P=min[»(7,)] of Eq. (14) corre-
sponds to the highest attainable critical magnetic field

- B..
B,y=max(B,) = — o = 2 (18)

1 _ D)
ﬁe(17+ —) 2+l
2

where B,, is the upper critical field. The modified boundary
condition does not influence B., but makes it possible that
—1/2<7=0 and a higher critical magnetic field B.;>B,,
appears such that the superconductivity near the surface is
enhanced in dependence on the external electric field.

In Fig. 3 we present the result for surface critical field
(18) versus external bias (4). We see that the external bias
can enhance or decrease the surface critical value depending
on the field direction. Without external bias and at 1/by=0,
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FIG. 3. The surface critical field B.; versus external bias (4)
from linearized GL equation. Solution (18) (solid line) is compared
with the expansion up to first (dotted line) and second (dashed line)
order in 1/b according to Eq. (20). The inset enlarges the area
around zero external bias.

the known GL solution B.;/B.,=1.694 61 is reproduced.*
The strong coupling limit is somewhat larger, resulting in the
value of 1.8.3% We see that the electric field can generate
easily a value larger than 1.695. The experimental values
compared with the GL theory and the theory of Hu and
Korenman?? are discussed in Ref. 50, which shows that the
GL values are too small.

To provide analytical expressions, let us recall a simpler
variational solution of the problem which was contributed by
Kittel for absent external bias.*>*! We can extend this ap-
proach to external voltage bias and choose for the wave func-
tion the ad hoc ansatz =~ C exp(—ax’+x/b), which obeys
the de Gennes boundary condition '/ |y,=1/b automati-
cally. The constants a and 7,=-2k[ have to be determined by
the minimal eigenvalue of Eq. (7). The normalized minimal
mean eigenvalue (@) can be obtained by minimizing the
functional

f dx[l;ﬁn(x + 1) 2 — @' p]
0

(@)= = (19)
f dx¢?
0

with respect to 7, and a. The resulting 2 =2e¢B.;/h yields

Bc3=§_2_ T 2 é
Bo B, V-2+m (-2+m¥b
21+272+ (-4+m7]} €

+ (’)(%) (20)

In the case of vanishing electric fields corresponding to the
boundary condition_l/ b=0, we recover the known results,>’!
a=1/28, xy=1/\2ma, and B;/B.,=\m/(7—-2)~1.66. The
comparison of expansion (20) with solution (18) can be seen
in Fig. 3.

2=2+m) N b

D. Variational wave function

Let us now return to the full solution of Eq. (10). The
wave function (12) specified by the value v=7v describes the
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FIG. 4. The GL wave function of the condensate versus external
bias (4). The normal GL wave function without external bias is
marked as a thick line. The transition curve of &/I at B,=B.3 ac-
cording to Eq. (21) is plotted as a dotted line.

situation for the maximal nucleation temperature correspond-
ing to the maximal magnetic field B,~ B .

In Fig. 4 we see how the external bias 1/b changes the
wave function in dependence on the distance of the surface.
The magnetic field enters merely as a scaling of the spatial
coordinate. For positive electric fields the superconducting
density is diminished on the surface, while for oppositely
directed electric fields the surface superconductivity is en-
hanced.

Since the wave function is strictly valid only near the
transition line B,~ B.;, we have also plotted in Fig. 4 the
transition line

= (21)

for x=¢& as orientation.

We will use wave function (12) as an ansatz for the varia-
tional calculation of the surface energy in such a way that the
amplitude C serves as a variational parameter. This is moti-
vated by the fact that near the surface, the shape of the wave
function is only slightly changed compared to the surface
values but the amplitude decreases exponentially away from
the surface.

II1. SURFACE ENERGY

With the help of the GL wave function, we can now cal-
culate the surface energy. This surface energy is the integral
over the energy difference between the actual Gibbs free
energy and the Gibbs free energy deep in the superconductor.
Since the latter equals the one deep in the normal region
when the field energy is subtracted, G(x—-2)=G,,
—BZ/2,LL0:GS0, we can write the surface energy as
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w B %
a'=f dx[G(x)—GnO"‘ > « } =J dx[G(x) = Gy

0 Mo 0

” B,-B(x)]?
=f dx[a|xp|2+§|«p|4+—[ «—Bl)]
0 2 2
(i V +eA)‘P|2} 42
NGRY + AW

o + %\II(O)\I”(O). (22)

The last counterterm is necessary in order to provide a con-
sistent variational problem with modified GL boundary con-
dition (4); for details see Appendix B.

The surface energy appears only if terms ~|W|* are taken
into account. Since the shape of the GL wave function
changes much less in terms of the applied magnetic field
than the amplitude does, we can now use our solution of the
linearized equation, ¥=CDj, to calculate the surface energy.
For this purpose we determine the constant N,

2= N%, (23)

such that Eq. (22) takes a minimum.

A. Limit of thick samples

Assuming the limit of thick sample, d>1, we neglect in
the first step the space profile of the magnetic field near the
surface. This profile or induced field effect due to diamag-
netic currents will be discussed separately in the next para-
graph. In the same spirit, the upper integration limit is taken
as infinite here at this moment. Nonlinear Gibbs free energy
(22) then reads

BZ
G=Gy-I—=(2NA-N*B). (24)
210

Here we have introduced

““=f d{(?

70

I)D%(r) + f—j[Dg(T)P}

2

+ g—D,;(O)D;(O) =- (1 - g) f ) dDX(7),

2
I 0

B= f ’ dmDy(7) (25)

70

and used @?/B=B2/u,. The minimum of Eq. (24),
N=A/B, (26)

leads to a surface energy o in terms of the condensation
energy expressed in the critical field

2

o= B, (b), (27)
2o

with the wall parameter
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FIG. 5. The surface energy in terms of wall parameter (28)
versus the magnetic field and the external bias 1/b. The solid line
denotes the transition curve B,=B,.; according to Eq. (21), where
the surface energy vanishes.

AZ
8b)=- ZE. (28)

In Fig. 5 the wall parameter is plotted versus the external
bias and the magnetic length. We see that with increasing
magnetic fields, i.e., decreasing magnetic length, the nega-
tive surface energy increases dependently on the external
bias. Therefore the surface energy can be changed by the
applied magnetic field as well as the external bias. The line
of minimal eigenvalues of GL equation (21) called transition
curve is shown as well, where B,=B,_; and the surface energy
vanishes.

It is instructive to derive the wall parameter for the case
without external bias,

2 1 2
5(°°)=—l{f—2(i+ E) - 1:| D
2
{(2%1)\/2— \/2&4
__)\\/E BC B“
= B,

(\/EK)S/Z

D, (29)

with

0 2 e}
D= lj dTDé(T)] /f dTD?;(T). (30)

70 70

The upper critical field is related to the GL parameter B,,
=\2kB, and I/ €=B,,/2B,. With the help of Eq. (18), it is
also easy to check that surface energy (29) is exactly zero for
B,=B_; in the case of absent external bias.

Assuming magnetic fields B,~ B, in order to adapt to the
situation of the superconductor-normal surface-wall param-
eter, we obtain

2.032
lim () =—N=5;(0.417 27 - k)% (31)
Ba_’Bz: K5

An approximate treatment of the wall parameter of the
superconductor-normal region is presented in Appendix C.
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FIG. 6. Surface-wall parameter (29) for superconductor-vacuum
boundary and zero external bias (31) versus the GL parameter (solid
line) compared to the superconductor-normal boundary expression
[Eq. (32)] in the literature (dotted line).

Neglecting induced diamagnetic currents, the wall parameter

& for both type-I and type-II superconductors*=!32 is ap-
proximated by Eq. (C8),
3 42
8in = —x(— - L), (32)
2 3k

in terms of the London penetration depth A\ of the magnetic
field and the GL parameter k=N\/§ with the coherence length
3
Result (31) for the superconductor-vacuum transition can
be compared with this superconductor-normal boundary [Eq.
(32)]. In Fig. 6 we plot Egs. (31) and (32) and in this one
sees the different places where the surface energy vanishes.
This vanishing of surface energy is connected with the tran-
sition from type-I to type-1I superconductivity. In the latter
case the surface energy is negative, indicating an unstable
surface forming a vortex structure. While the
superconductor-normal result [Eq. (32)] leads to

Kol = 81219 = 1.257, (33)

the superconductor-vacuum result [Eq. (31)] suggests a
smaller value,

| 2v+1
Kols-o =7 %
5-U \”2

=0.417 27. (34)

Without external magnetic field, ¥=0, the superconductor-
vacuum result [Eq. (31)] coincides with the transition point
between type-I and type-II superconductivities. In other
words the superconductor-vacuum boundary leads to smaller
values of the transition between type I and type II than those
for the superconductor-normal boundary with respect to the
stability of the surfaces. We find that the applied magnetic
field decreases the transition GL parameter. The type-II su-
perconductivity extends toward values below «=1/12
=0.7071.

B. Finite width of samples

When the applied magnetic field B, exceeds the upper
critical field B,,, no bulk superconductivity is possible any-
more except in a small surface region. The surface supercon-
ductivity occurs up to the surface critical field B_5. This criti-
cal field is dependent on the thickness of the sample.*” We
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have discussed so far the thick sample limit with respect to
London’s penetration depth, d> \. Now we are going to con-
sider the finite sample limit.

Investigating a layer of finite thickness, d <o, Gibbs free
energy (24) with Eq. (25) possesses an upper integration
limit d/l+ 7, instead of %. The superconducting surfaces are
then also characterized by the appearance of diamagnetic
currents. These diamagnetic currents induce magnetic fields;
see Appendix D. These fields contribute to the surface en-
ergy. We solve again the variation problem of Gibbs free
energy (24) in order to obtain the optimum C. The expression
for the surface energy [Eq. (22)] remains the same but the
magnetic profile is now spatially dependent,

B(x) = B, + M (x). (35)

The explicit form of the external magnetic field cancels in
the Gibbs energy and is present only in the vector potential,
which now takes form (D6),

X

Ay(x) =B,x+ ,u,of dx'M(x'"), (36)
0

instead of Eq. (8). As a result, Eq. (24) assumes

B2 N d/l+7'0
G=G(M=0)- 1—‘{ TJ dDy(7)*
0

2p0 | V2K
B. T M(7 2 T M(+
X | = f dT’—MO () +2’rJ d'r'—'uo (')
B, B B
J‘d/l+70 (MOM(T))z
- drl ———
TO BC

70 c TU c

IB?
- 2;: [2NA-N*(B+B') + D'N*]+ O(N%). (37)
0

Here we have used Eq. (D13) in the last line. Besides Eq.
(25), we now obtain additional integrals, B’ given by Eq.
(E7) and D' by Eq. (E17) calculated in Appendix E.

Gibbs free energy (37) now contains now terms ~C° and
the minimization yields a quadratic equation for C2. Instead
of Eq. (26), we have

N= %é(l —\1-2Y), (38)
with
AD’
y=3m. (39)

The resulting surface energy takes the form of Eq. (27) with
the wall parameter

2

B+B'°

Sina(b) == 1 ) (40)

and

g(x)=£[3)€—l+(l—2x)3/2]~1+§+.... (41)
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FIG. 7. The minimal thickness of the sample considered within
the present approach versus the applied magnetic field and the ex-
ternal bias 1/b in units of the coherence length &. The transition line
according to Eq. (21) is given as well.

From Eq. (38) we see that the variational solution is
meaningful only if J)<1/2. This specifies the lower limit on
the thickness d;, of our sample we can consider within this
approximation. From Eq. (39) and with the help of Eqgs. (E7)
and (E17), we obtain

12A7 PP
min = f3 ? + O(d_l)a (42)

where F is given by Eq. (E9) and J by Eq. (E18). This lower
limit is plotted in Fig. 7 in terms of the magnetic length. One
sees that we have practically a visible lower limit only for
strong negative values of the external bias.

Limit toward large sample thickness

It is now interesting to discuss the limit of thick supercon-
ductor probes. As shown in Appendix E, both expressions B’
and C’ are linearly dependent on the thickness d. We obtain
for wall parameter (40)

2k 2 A2 5
Ona(b) == =gt O(d™), (43)

where F is given by Eq. (E9), see Fig. 8. In the case of
absent external bias, one has

28012 & 1 2
@nd<w>:—d<x>2{f—z(a+ 5)—1}

R Y \/E_ /z}z
= d<x>2\6[(2v+1) B, K ZBa , (44)

with €/12=2B,/B,,, B,,=\2«B,, and the mean distance

dll+T, dll+T,
(x)= f drDy(7) / f dtDy(71).  (45)

If B,~B,, we have

A
lim 8,4() =— 744 3265(0.417 27-k)%.  (46)
B,—B,

We see that the surface energy vanishes at the same GL
parameter as without induced fields [Eq. (31)].
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FIG. 8. The induced part of surface energy (43) in terms of wall
parameter (28) versus the magnetic field and the external bias 1/b.
The solid line denotes the transition curve B,=B;3.

IV. EFFECTIVE CAPACITANCE

Now we return to the experimental setup in Fig. 1 and
determine the expected contributions to effective capacitance
(1). Besides the ideal capacitance, Cy=¢€,S/L, we obtain con-
tributions due to the external bias,

S 10 & Fo Lyl & (5

- _ 7 __> _ V- = _ 2
Coi @IE* ¢4 d(Eb) € EI(ED) 1)4(1 )

=4(1 -1 ER

ex

, (47)
0

where the temperature dependence ¢=7/T, arises from
B2/2uy=(€./n)(1-1*)? and «*(T)=2«>/(1+7>) in Eq. (6) and
we have scaled with respect to the temperature-independent
coherence length é=&(T)\1-#* and ¢, in Eq. (6). We abbre-
viate

(48)

L, & B e (mc2)3/21 1
e

€ ‘5(2)9031 20 " ne KS Vnee, SD§||r:0-

Using the BCS expression for the GL parameter S
=24ﬁ2/7§[3]nm(1.76)2§ZBCS, we can rewrite Eq. (48) into an-
other form also,

L T3 dInT,\?
== aﬁ£a§n< 1.76k* 77—)

€ 6 Inn

1 &
V __’
2 E()l
(49)

with Bohr radius ap and the Sommerfeld constant «,.
The contribution due to the external bias consists now of
two contributions,

1 1 1
— =t (50)
Cex Csurf Cind
according to the thick sample limit of surface energy, Egs.
(27) and (28), and the induced contribution due to diamag-
netic currents, Eq. (40). In the following we will discuss
them separately.

A. Limit of thick samples

With the help of the surface energy shown in Fig. 5, we
can calculate the surface part of inverse capacitance (50),
which is seen in Fig. 9. The larger the magnetic field is, the

054525-7



MORAWETZ et al.

1
0 it

/
ot -1

0 &b

1
Ba/Bc2

0.5

FIG. 9. The effective change in inverse capacitance in terms of
Eq. (48) versus the magnetic field and the external bias 1/b in units
of the coherence length &. The transition line is plotted as in Fig. 8.

larger is the inverse capacitance. For orientation we have
plotted the transition line of the minimal eigenvalue of the
GL equation where the surface energy vanishes.

In order to provide easy to use formulas, we can fit in
terms of Eq. (48) to obtain

PR
0o €\§ b

2

S
Csurf

with

h(x) = 1.72(x — 0.39)g~220x - 039) (52)

Using as an estimate the parameters in Table I, one finds
for pure Nb Ly/€)(t=0)=0.248 nm?/pF, while for the
YBa,Cu;0; one gets Ly/€(t=0)=2.547 nm?/fF. This
means that the expected change in the inverse capacitance
would be some nm?/pF. This should be compared to the
trivial part of the inverse capacitance L/¢,. Measuring the
distance L between the capacitor and the superconductor in
millimeters, one obtains L/e,=112.9(L/mm) nm?/pF such
that a relative precision of 10° should be required to resolve
experimentally the measured effect.

B. Finite width of samples

Now we focus on the induced effect by diamagnetic cur-
rents. The contribution to effective capacitance (50) calcu-
lated from Eq. (43) is plotted in Fig. 10. Comparing this to
Fig. 9, one sees a different shape. Dependent on the size of
the sample, the induced effect can be larger than the thick
sample limit.

The induced effect [Eq. (44)] can be fitted analogously to
Eq. (51) as
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FIG. 10. The induced part of the effective inverse capacitance in
units of the inverse sample thickness scaled with x?£. The transition
line is plotted as in Fig. 8.

S 2[ l 3.25
- =K__O<‘> hing £ ; (53)
Cinalo d €\§ b
with
Bipy(x) = — 0.028¢70460 = 01970 19 4 0.43x — 1.5 — 0.16x°
+x4, (54)

valid for £&/b<<1.5.

It is interesting to observe that both results, the external
[Eq. (28)] as well as the induced one [Eq. (43)], show a
nearly quadratic dependence,

Cc~1*"~B7?, (55)

on the external magnetic field. This qualitative dependence
on the magnetic field has been observed in magnetocapaci-
tance measurements.®

V. SUMMARY AND CONCLUSION

In this paper we have considered a superconducting layer
under the influence of external magnetic fields parallel to the
surface and an electric field perpendicular to the surface. We
found a nonlinear dependence of the surface critical mag-
netic field and the surface energy on the magnetic and elec-
tric fields. An effective capacitance is introduced, which al-
lows measurement of these field effects. The diamagnetic
currents induce a magnetic field profile. The self-consistent
equation for the induced magnetization in terms of a super-
conducting density profile is derived. The induced magneti-
zation represents an important contribution to the surface
energy and the effective capacitance. We report an explicit
dependence of the surface energy and the effective capaci-
tance on the layer thickness. The inversely linear dependence
on the thickness as well as the nearly quadratic dependence
on the magnetic field of the inverse capacitance is in quali-

TABLE I. Used material parameters.

€./n Ko n d InT, Jlny 1/ @y Ly/ €
(ueV) (1% m™)  glnn glnn  (/MV)  (nm*/pF)
Nb 4.585 0.78 22 0.74% 0.422% 4.52 0.248
YBa,Cu;04 750 55 0.5 —4.82° —4.13P -207.5 2547

dReference 44.
PReference 33.
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tative agreement with measurements of magnetocapacitance.
We predict a similar behavior to be valid also in capacitor
measurements on superconductors. The effective capacitance
is found to show a jump at the surface critical field. An
experimental setup of such capacitance measurements
supplemented by fit formulas is suggested.
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APPENDIX A: DERIVATION OF MODIFIED GL
BOUNDARY CONDITIONS

Let us outline the appearance of modified boundary con-
dition (4). Therefore we start with the standard GL equation

[Eq. (3)],
L VoA T4 oW+ gFPT =0, (A1)
2m

supplemented by the standard GL boundary condition that no
current flows through the surface,

[ (ih V + eA)\I7:|
Im| ————— | =0.
\I’ x=0

(A2)

The electric field will change the material parameters, i.e.,
the GL parameters « and B. Linearizing GL equation (Al)
with respect to this induced electric field effect results in

¥=V+8¥, where ¥ obeys GL equation (A1) but with dif-
ferent boundary condition. To see this, we assume that the
induced part of the wave function, which is written as oW

=WV (where V¥ is proportional to the square of the Thomas-
Fermi screening length>*), is very small’* such that its ex-
plicit influence can be disregarded. However it affects the
boundary condition, which translates now from Eq. (A2) for

¥ into the form for v,
v
0 1+W¥

(A3)

(5 V - eA)W
o N

x=0

Since W ~ E, the external bias changes the boundary condi-
tion of the GL equation into the form

{ (ih V= eA)W
Im |——————
v

L E

=0 bo ¢

1
, (a4
in linear order of the external bias. Since the vector potential
is real in our case, we obtain Eq. (4). The explicit form [Eq.
(4)] has been derived*® for layered superconductors follow-
ing the de Gennes theory*® or for bulk superconductors.?®
Please note that even without external bias, the term 1/b
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exists due to impurities and is usually small.*

APPENDIX B: SURFACE COUNTERTERM IN GL
EQUATION

For simplicity we consider the one-dimensional problem
with a superconductor in the x>0 direction. The GL free-
energy density reads

109 = fo+ @OV + ¥ 0P+ BV, (B1)

where a(x)=a+ Z%(To+x/l)2 and y=%2/2m. Searching for a
minimum of

5wa(x)dx =0 (B2)
0

with the ansatz W (x)=CD,(x) with respect to the amplitude C
leads to Eq. (23) with Eq. (25) without counterterms and Eq.
(26). This minimum condition can be written also as

0= Jm [YP'? + a(x)V? + pU4]
0

= f ) [— YU + a(x)¥? + B¥*] - yW(0)V'(0).
0
(B3)

This minimum condition differs from the Lagrange equation
of motion as the functional minimization of Eq. (B1),

5f ) 5f
o\ —|-—=-=0, B4
( V') &v (B4)
leading to the GL equation
W+ a(x)V - Y3 =0 (B5)

just by the surface term W' (0)W(0). For standard GL bound-
ary conditions, W'(0)=0, this difference does not matter.
With modified GL boundary condition (4), however, we have
to add a counterterm to compensate for this artifact, i.e.,

f(x) = fx) + y¥'(0)¥(0) &) (B6)

APPENDIX C: DOMAIN-WALL SURFACE ENERGY

Here we outline the derivation of domain-wall parameter
(28) without external bias b—o and for the situation of
normal-superconducting boundaries as it is usually found in
literature.*>31°2 In terms of Eq. (9), nonlinearized equation
(3) reads

é;Z

—§2¢”+@(X+ 7o)+ = ¢ =0. (C1)

and domain-wall parameter (27) for B,~ B, is
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kS 2
5(oo)=f0 dx{ 28+ 1ﬁ2|:f—2(x+ 701)2—2”.
(C2)

One can simplify this expression by noting an additional
conservation law valid for one-dimensional GL equations.”
Multiplying GL equation (C1) by i(x) and integrating over
X, one gets exactly

r dx{ gZB(x/H 7)Y + W] -+ ¢//4} =0. (C3)

0

Subtracting this relation from Eq. (C2), one has the simpler

form
o 2
&) =j dx{— Px)* + {M(x)} }
0 Bc

The domain wall is characterized by an exponential decay
of the magnetic field inside the superconductor and a decay
of the superconductor wave function outside. One can calcu-
late the domain-wall parameter for two extreme cases ana-
Iytically.

In strong type-I superconductivity, k<1, no magnetic
fields are inside, M(x)=-B,. Approximating &/I>~B,~0
and with the boundary condition at the surface #(0)=0 and
deep in the superconductor ¢()=1, linearized equation (7)
has a first integral

(C4)

£y = 511~ o, (Cs)

which can be easily verified by multiplying Eq. (C1) by
24/ (x) and integrating from O to . Taking this first integral
[Eq. (C5)] into account, one finds for Eq. (C2)

() = Jw dx[2892 + (1 - )] =2fc dx(1 - y7)?
0 0

1
=212¢ f dy(1 - y?)* = ‘5‘\55 = 1.89¢, (Co)
0

where we have used Eq. (C5) from the third to the fourth
term once more. We see that in type-I superconductors the
surface energy is proportional to the coherence length.

The other case of extreme type-II superconductor is char-
acterized by =1 and an exponentially damped magnetic
field profile with the London penetration depth . Therefore
Eq. (C2) becomes

() = fo da[(1=e™™)?~1]=~ i)\, (C7)
0 2

and we see that the surface energy is proportional to the
London penetration depth and becomes negative, indicating
instability. We can combine Egs. (C6) and (C7),
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3 42
5%_)\(__;),

2 3k (€8

as an interpolation formula for both type-I and type-II
superconductors.*-1-32

APPENDIX D: INDUCED MAGNETIC FIELD DUE TO
DIAMAGNETIC CURRENTS

1. Self-consistent magnetization

We are now going to investigate the general form of the
magnetization provided a profile of the wave function is
given. The total induction becomes B(x,y)=B,+ uoM(x,y)
due to the induced magnetization uyM(x,y), which is deter-
mined by the supercurrent j. For the sake of completeness,
we discuss also the y dependence.

The external magnetic field and the magnetization are di-
rected in the z direction,

[0,0,B,+ moM(x,y)]=rot A, (D1)

from which one sees that A,=0 and the remaining possible
dependencies of the vector potential are A,(x,y) and A,(x,y)
and

dA, 0A,

— — — =B+ puM(x,y). (D2)
ox dy
The current is given by
1 oM oM
j= (K - eA) <[ y(x.y)P = —rot B= (—,- —,o),
m Mo dy ax
(D3)
from which we get the two equations
oM e’
== _|\P(x’y)|2Am
dy m
oM e’ hk
—_—= —|‘lf(x,y)|2(Ay - —> (D4)
ox m e

Eliminating the vector potential in Eq. (D2) with the help of
Eq. (D4), we arrive at the differential equation for the mag-
netization,

e’ a(la)a(la)

m M= ax\ [P ﬁxM i ay\|[W[*ay )’ (D5)
as the most general equation determining the magnetization
profile. It represents a homogeneous linear differential equa-
tion of second order, which can be solved for the given ge-
ometry and a wave function W(x,y) numerically.

Here we restrict ourselves to a slightly simpler geometry,
where we consider superconductors of large size in the y
direction; see Fig. 1. This means that the dependence is only

A,(x) and consequently M(x), which means A,=0 according
to Eq. (D4) and further
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Ay(x) =B,x+ ,U,OJX dx'M(x"). (D6)
0

Now we introduce the dimensionless coordinates [Eq. (11)]
and

0 = gNDZ(T), (D7)

where the wave function ¢ is given by the parabolic cylinder
functions DZ(T)=D2§(T) of Eq. (12) only in the linearized
ansatz, while here D? stands for the square of the appropri-
ately scaled general wave function. In these coordinates Eq.
(D4) leads then to the integral equation

M N (7
,uo—(x) =—— | d77D*7)
B )
¢ NeKJ 7,
[ [
\2«B, 7 B,

(D8)

Differentiating Eq. (D8) twice and replacing one integral in
the resulting equation by the expression obtained by differ-
entiating Eq. (D8) once, we arrive at the differential equation

h()y"(7) = k' (Dy' (1) + ah*(7)y(7) =

y(r) =1, y'(7)=—-anh(z) (D9)
for the magnetization,
M
vy = 2D (D10)
Ba
where we introduced the abbreviations
h(7)=D*(7),
NB.,.
a=—"2=—. (D11)
V2kB,

Please note that the trivial solution y=0 would mean total
diamagnetism and complete Meissner effect. We see from
the initial conditions in Eq. (D9) that this is ruled out. Instead
we have a complicated profile. We can alternatively trans-
form Eq. (D9) by z(x)=—y’(x)/y(x)h(x) also into a Riccati
equation,

2 () = h(x)2(x)—a =0,

(7)) =am. (D12)

2. Approximate form

Since our wave function [Eq. (12)] serves as a variational
ansatz, we can restrict the expansion here to terms up to the
order C*. Therefore we obtain from Eq. (DS8)
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M =— EJTdT'T,DZ;(T,)
B, 2kl 4,
’B. (7 2D ATy
+4 zBaJTO D;(T)fr0 d7'7'(7 — 7")DA7")
+ O(N). (D13)

This expansion can be alternatively considered as an expan-
sion for large applied fields B,,/ B, and/or large GL parameter
K.

APPENDIX E: INTEGRALS

Here we introduce Eq. (D13) into Eq. (37) to obtain to
additional integral expressions beyond Eq. (24) proportional
to B'N? and D’N>. In order to maintain legibility, we intro-
duce the integrals

H(7) = deT’Dg(r'),

F(r) = f dr' ' D7),
70

G(n) = f dr' 7°Dy(7) (E1)
70
and write Gibb free energy (37) with the abbreviation
w=dll+ 7 (E2)
as
2 N w
G=-1—%|2NA-N’B+— dTDZ;(T)
2IU/O V2K T
BCNZ T 2 T N
X 5 dr' F(7') | +27| d7'y-—=F(7)
2B,k . 7 V2«
N’B,
LT f d7" F(7")[H(7) - (f’)]})
5 N’B,
f (- =5 —F
2K
Xf d7 F(7')[H(7) —H(T’)]}]
70
2
=_ (B+B')+D'N?). (E3)

2#0

In the following the procedure will consist of rewriting
the integrals into expressions which converge for w— o,
separating the terms explicitly dependent on w. This is
achieved by systematically transforming the multidimen-
sional integrals into integrals containing in each integration a
weight of D2,

The additional term in Eq. (E3) proportional to N* reads
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26°B' = f W d{ﬁ(ﬁ +27D(7) J Tdr’]-‘(r’)}. (E4)

0

Rewriting the first integral

T 2
f dT’T’D%(T’)]

0

F7) = l

2 f dr' v DX(") f " dPPDY)  (ES)
7 TO

0

and interchanging integrations twice according to

b 7 b b
f de dT’=f dT'f dr, (E6)

268’ =2f dTTD%(T)f dT’T’DZ;(T')(T— 7 +w—1)
70

70

we arrive at

=wF+1, (E7)
with
IT=- ZJ dTTDé(T)g(T), (E8)
70
where we have used Eq. (E5) once more and abbreviate
H=H(w),
F=Flw),
G=G(w). (E9)

Form (E7) shows that B’ is proportional to the thickness
of the sample since all remaining integrals converge to a
finite value with O(exp(-w)).

Next we calculate the term D’(\s’EK)3Ba/ B.=D' in Egq.
(E3) with

w T 2
ﬁ/=f dTD%(T){[j dq-’]-(q-l):|

0

+2r f Car J " FH() - H()]

+2fw de(T)deT’f(T’)[H(T) - H(7)]. (E10)

70

In the first term we apply Eq. (E5) and interchange twice
according to Eq. (E6) and in the second term we apply Eq.
(E6) once to arrive at

15’=2f de dT{F(n)F (7" ) H(w) — H(7) ]+ F(w) F(r')

X[H(7) - H(7)]}. (E11)

Employing Eq. (E6), it is easy to see that
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JW dTH(7) =wH((w) — F(w),

0

fwdff(r):wf(w)—g(w). (E12)

0

Applying Egs. (E6) and (E12) on Eq. (E11) yields

D' =HWF-G)? - 2w]~"fw dTH(DF(7) + 2]—"JW dTH(7)

X[27F(7) - G(1n)] - ZJ dTH() F(7)[7F(7) - G(7)].

(E13)
Applying Eq. (E6), the first two integrals can be calculated,

IW dTH(7)[27F (1) - G(7)]

0

=w>FH - FG - wGH +2 f W drmDY7)G(7) (E14)
and
JW dTH(NF(1) = FlwH - F) - GH + F*
+ ZJW dTD?;(T)[g(T) - 7F(7)]. (E15)

0

Successive applications of Egs. (E6) and (E12) yield after
some straightforward but tedious steps the following:

f drH(n)F(D)[7F(7) - G(7)]

0

H
= E[W]-—(Wf— 20) + ¢?]

1 w

- EJ eré(r)[g(T) - F(D]. (E16)
70

Using Egs. (E14)—(E16) in Eq. (E13), we arrive finally at

, B,

= m[wfj— K], (E17)
where
JT= .7-'2—2fw dTD%(T)g(T),
K=- fw dTD%(T)[T]:(T) -GN +2FAFG+1].
(E18)

We see that Egs. (E17) and (E7) are linearly proportional to
the thickness of the sample.
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