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We study the temperature dependence of various spatial correlation functions of normal fluid and liquid 4He
along an isochoric line of particle number density �=0.02185 Å−3. The formal and numerical investigation
employs correlated density-matrix theory as currently developed. The formalism permits a clear analysis of
particle exchange �statistical� effects and so-called direct-direct quantum effects that appear only in a many-
body system of interacting particles. At supercritical temperatures T�12 K the helium fluid can be charac-
terized as a perfect quantum Boltzmann system. In such a fluid, quantum statistical correlations are absent and
the particle exchange follows classical Boltzmann statistics despite direct-direct quantum effects being present.
At temperatures below 12 K, statistical quantum correlations begin to appear and are largest at the Bose-
Einstein transition temperature TBE=2.17 K. However, these correlations are considerably smaller than the
statistical exchange correlations existing in a free Bose gas of bosons with helium mass. We present analytical
and numerical results on the radial distribution function, the exchange correlation function, the phase-phase
correlation function, the one-body reduced density matrix, and gross thermal quantities such as specific heat
and total exchange energy. The role of particle exchange in determining their quantum properties is analyzed
and discussed in detail.
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I. INTRODUCTION

Early theoretical investigations of quantum properties of
fluid helium employed virial expansions and phase-shift
analyses involving second- and third-order virial
coefficients.1,2 Reference 3 provides a comprehensive de-
scription of this theoretical and experimental work. Hill and
Lounasmaa4 measured and discussed quite a number of ther-
modynamic properties of fluid helium. Experimental data are
also reported in Ref. 5 and by others.

The present theoretical analysis uses nonperturbative
many-body theory that is applicable to strongly correlated
quantum systems as well as to weakly interacting gases and
charged systems. In this paper we study statistical and quan-
tum properties of normal 4He along an isochore in the liquid
phase as well as in the supercritical region of the fluid. The
latter thermodynamic region is specified by the temperature
and the particle density boundaries T�Tc and ���c to
separate the low density gas region below the critical density
�c from the dense region of the system above the critical
temperature Tc. For the helium system the critical point has
the experimental values �c=0.01 Å−3 and Tc=5.2 K. We
report numerical results along the isochoric line �
=0.02185 Å−3 in the temperature interval TBE�T�12 K
above the experimental transition temperature to the Bose-
Einstein condensed states at TBE=2.17 K.

Complete information on these quantum properties is
stored in the density matrix of the N-body system in ques-
tion. However, the correlations of interest here are already

contained in the reduced components. The diagonal elements
of the reduced two-body density matrix provide the radial
distribution function g�r�. Its Fourier transform yields the
liquid structure function S�k� that can be measured by suit-
able scattering experiments. The off-diagonal elements of the
one-body reduced density matrix n�r� constitute the Fourier
inverse of the single-particle momentum distribution n�k�
which is also accessible experimentally. Related quantities
are the kinetic energy distribution �0�k�n�k� of the fluid,
where �0�k�=�2k2 / �2m�, the total kinetic energy Ekin
=�k�0�k�n�k� �k= �k��, etc. We analyze and evaluate these
quantities and display their quantum structure.

The study builds upon a recent correlated density-matrix
�CDM� analysis of the quantum structure existing in liquid
parahydrogen.6–9 This quantum liquid is well described as a
perfect quantum Boltzmann liquid. For supercritical 4He at
temperatures T�12 K we find quite a similar behavior.
However, in contrast to the H2 liquid we may lower the
temperature down to T=2.17 K, where helium condenses to
the Bose-Einstein superfluid phase. For this reason we may
experimentally and theoretically study the departure from
Boltzmann statistics and the development of quantum statis-
tical exchange correlations and their effect on various corre-
lation functions and thermal quantities.

Within CDM theory the statistical effects of particle ex-
change are most clearly described by an appropriate quasi-
particle picture. The formalism for correlated Bose fluids in
their normal phases has been developed in Ref. 10. The qua-
siparticles are diagrammatically defined by so-called cyclic
exchange �cc� diagrams. They determine the quasiparticle
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momentum distribution nqp�k�, the exchange correlation
function Gcc�r�, the entropy of the system and therewith the
specific heat.

These exchange correlations affect naturally the tempera-
ture dependence of the radial distribution function g�r�, the
phase-phase correlations P�r�, the one-body reduced density
matrix n�r�, and the related Fourier transforms S�k�, P�k�,
and n�k�, respectively. Moreover, they influence the tempera-
ture dependence of the total kinetic energy, the exchange
energy, etc. However, these quantities are strongly influenced
by the quantum-mechanical so-called direct-direct �or dy-
namical� correlations directly induced by the strong particle-
particle interaction potential. The interplay of exchange and
dynamical properties is elucidated and discussed in detail in
the following sections.

Section II collects the necessary formalism of CDM
theory that displays the analytic structure of the correlation
functions of interest that exists in a normal Bose fluid. It also
provides the basic expressions and equations needed for nu-
merical calculations by CDM theory. Section III focuses on
the analytical and numerical results on the quantum statisti-
cal properties of normal fluid 4He. The screening of particle
exchange in the radial distribution function g�r� is then ex-
plored in Sec. IV. Section V reports and discusses the inter-
play between particle exchange and the direct-direct phase-
phase correlations. Their combination determines the
properties of the single-particle momentum distribution and
the kinetic energy components of fluid 4He. A summary and
brief outlook on future work is presented in Sec. VI. The
Appendix lists the elementary contributions that are ac-
counted for in the adopted hypernetted-chain �HNC�/4 ap-
proximation.

II. STRUCTURAL ANALYSIS

We begin with a formal analysis of physical quantities
expressing the microscopic structure of correlated Bose liq-
uids and gases in their normal thermodynamic phase. CDM
theory10–12 provides an adequate and efficient tool for such
an investigation. This formalism expresses the reduced den-
sity matrices characterizing a quantum system such as liquid
or gaseous helium in an appropriate product form. The fac-
tors represent �i� particle exchange effects and �ii� direct-
direct �or dynamical� effects directly induced by the particle
interactions. A physical quantity of primary interest is the
exchange �cc� correlation function Gcc�r�. Its factor decom-
position is6

Gcc�r� = �1 + Gdd�r��Fcc�r� �1�

with the exchange component

Fcc�r� = �cc�r� + Ncc�r� + Ecc�r� . �2�

The cyclic terms �cc�r�, Ncc�r�, and Ecc�r� are, respectively,
the statistical input function, the nodal component, and the
elementary portion of function �1�. These functions are HNC
components and are related by a set of HNC equations to
direct-direct �dd� portions, direct-exchange �de� pieces, and
exchange-exchange �ee� contributions defined in the CDM
formalism. Explicit expressions and associated HNC equa-
tions are reported in Ref. 10.

The Fourier transforms Scc�k� and �cc�k� define the cyclic
momentum distribution

nqp�k� = �cc�k��1 + Scc�k�� �3�

within the quasiparticle concept of CDM theory.10 These
quasiparticles determine the entropy of the correlated boson
fluid by the expression

S�T� = �
k

��1 + nqp�k��ln�1 + nqp�k�� − nqp�k�ln�nqp�k���

�4�

�ignoring the Debye spectrum of the collective excitations
such as phonons�. Consequently, these entities fix the theo-
retical temperature dependence of the specific heat.

In classical thermodynamics particles are completely dis-
tinguishable, thus statistical correlations do not exist, i.e.,
Gcc�r�=0 and Scc�k�=0. In this case the distribution �cc�k�
and its inverse Fourier transform �cc�r� are of the familiar
Gaussian form. In quantum mechanics noninteracting identi-
cal bosons are indistinguishable and are therefore statistically
strongly correlated. In this case the exchange structure func-
tion follows the equality Scc�k�=nqp�k� and is represented by
the familiar Bose function.

For normal fluid 4He and other strongly interacting boson
systems the exchange structure function Scc�k� may differ
very much from the two limiting cases just discussed, since
strong repulsion between and among the particles prevents
their exchange at short relative distances. These properties
are explored in detail in Sec. III.

Equation �1� finds its counterpart in the product
representation6

g�r� = �1 + Gdd�r��F�r� �5�

of the radial distribution function. The factor F�r� embodies
the effects of particle exchange and is of the explicit form

F�r� = Fcc
2 �r� + �1 + Nde�r� + Ede�r��2 + Nee�r� + Eee�r� .

�6�

The nodal �N� and elementary �E� pieces are defined in Ref.
10 and may be numerically evaluated by the HNC technique.
The first factor in expression �5� takes account of the strong
repulsion at short relative distances and therefore governs the
degree of exchange screening existing in the spatial distribu-
tion g�r�. Section IV reports on this screening effect in liquid
and supercritical 4He.

Inelastic neutron-scattering experiments allow to extract
information on the momentum distribution n�k� of a single
particle in the fluid. It is therefore of great interest to analyze
the quantum structure of this quantity and the concomitant
kinetic energy distribution. CDM theory provides the genu-
ine decomposition of the inverse Fourier transform n�r� into
its cyclic exchange factor N0�r� and the phase-phase �dd�
correlation function Q�r�. The product reads10,12

n�r� = N0�r�nC exp�− Q�r�� . �7�

The exchange factor N0�r� is closely related to the quasipar-
ticle distribution nqp�r�. Its decomposition is therefore analo-
gous to expression �2�,
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N0�r� = �cc�r� + NQQcc�r� + EQQcc�r� . �8�

The correlation function Q�r� can be decomposed into a
nodal component and an elementary portion,

Q�r� = NQQdd�r� + EQQdd�r� . �9�

It is shown in Refs. 12 and 10 that the nodal terms appearing
in expressions �8� and �9� are factorizable in momentum
space,

NQQcc�k� = �1 + Scc�k����cc�k� + XQcc�k��2, �10�

NQQdd�k� = �XQdd�k� + XQde�k���XQdd�k� + NQdd�k��

+ XQdd�k��XQde�k� + NQde�k�� . �11�

Equations �10� and �11� permit a numerical evaluation by
employing the HNC technique. The elementary terms in re-
lations �8� and �9� are listed together with other elementary
diagrams needed in the so-called HNC/4 approximation in
the Appendix.

For a gas of noninteracting bosons function �7� specializes
to n�r�=N0�r�=nqp�r� and the quasiparticles are free particles
characterized by the momentum distribution n�k�=�cc�k��1
−�cc�k��−1 with a statistical factor of Gaussian form. In the
high-temperature limit T→� the distribution n�k� is de-
scribed by the classical Boltzmann expression �cc�k�
=�	3 exp�−
�0�k�� with the thermal wavelength 	
= �2�
�2 /m�1/2.

In a strongly interacting fluid such as fluid 4He the statis-
tical correlations can be dynamically suppressed and, there-
fore, the exchange quantities N0�r� and nqp�r� are still fol-
lowing Boltzmann statistics even at relatively low
temperatures where dynamic quantum effects are already ap-
parent. In normal 4He this situation occurs at temperatures
T�12 K. At T=12 K the quantum-mechanical phase-phase
correlations described by function Q�r� are already very
large.

We note that the total number of quasiparticles in the
normal bosonic phase is conserved and equals the total num-
ber N of the ingredient particles. We therefore have the sum
rules

n�r� = N0�r� = nqp�r� = 1 at r = 0 �12�

and

Q�r = 0� = ln�nC� . �13�

Evidently, a boson system where the strength factor nC is
unity does not correlate its phases at zero relative distances.
However, due to the strong repulsion of the helium atoms
fluid 4He develops large phase-phase correlations at dis-
tances r�2 Å with �−Q�r���1. Consequently, the strength
factor nC is small, nC�1.

In addition to sum rules �12� and �13� we have a second-
moment sum rule

−
�2

2m
��2n�r��r=0 = Ekin/N �14�

involving the one-body elements n�r� and the total kinetic
energy per particle, Ekin /N, of the fluid.

III. QUANTUM STATISTICAL PROPERTIES

We employ the CDM formalism of Sec. II for a numerical
study of the thermal and structural properties of fluid 4He at
fixed particle number density �=0.02185 Å−3 in the tem-
perature range TBE�T�12 K. Above these temperatures
helium may be characterized by the absence of statistical
correlations where the functions Gcc�r� and Scc�k� are practi-
cally zero and the statistics of particles and quasiparticles is
classical. Expressions �3�, �5�, and �8� read in this case

g�r� 	 1 + Gdd�r� �15�

and

nqp�r� = N0�r� = �cc�r� = exp�− ��r/	�2� . �16�

The system displays therefore correlation effects only de-
scribed by direct-direct dynamic diagrams contributing to
functions Gdd�r� and Q�r�. These statements are confirmed
by the present numerical results within CDM theory. We
stress that Eq. �16� does not hold for Bose systems where the
screening of particle exchange is incomplete or completely
absent as it is in the case of a system of noninteracting
bosons. In a free Bose gas the particles are completely inter-
changeable in coordinate space and totally indistinguishable.
For this system we still have the equality nqp�r�=N0�r� for
the one-body reduced density matrix or equivalently nqp�k�
=N0�k� for the corresponding Fourier transforms. However,
in contrast to relation �16� the statistical factor �cc�r� differs
from nqp�r�. Free boson exchange instead leads to the Bose
distribution nqp�k�=�cc�k��1−�cc�k��−1 with �cc�k�
=exp�
�
0−�0�k��� involving the associated chemical po-
tential 
0. As a consequence, nqp�r� of free bosons exhibits
quite a different behavior at large distances r compared to the
Gaussian dependence that exists in a system with perfect
screening of particle exchange. For free bosons the
asymptotic r-dependence is instead described by a Yukawa
function13 �cf. Eq. �16� therein�. We may see the differences
in the ranges in Fig. 1. The dotted curve represents the one-
body reduced density-matrix elements nqp�r�=Gcc�r� for a
system of noninteracting 4He atoms at T=4 K. This should
be compared with the result �full curve� that depicts function
Gcc�r� if the screening effect generated by the 4He− 4He in-
teraction is included. This curve is of much shorter range
than the one where the interparticle potential is switched off.

At temperatures in the range TBE�T�12 K the statisti-
cal properties depart from the classical Boltzmann descrip-
tion of the exchange functions nqp�r� and N0�r�. The quantum
statistical effects strongly influence the thermal behavior of
the normal liquid phase of 4He and are largest at the phase
transition temperature TBE=2.17 K.

The present calculations are based on the HFDB2 Aziz
interaction potential14 and on adequate ansätze for the two
input quantities which enter the set of HNC equations em-
ployed by CDM theory.10 The so-called pseudopotential u�r�
that generates the dynamic correlations from the 4He− 4He
potential is calculated from an Euler-Lagrange equation that
optimizes the square root of the radial distribution function.
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This optimization is by now a standard technique and
phrased in terms of an effective Schrödinger equation with
zero-energy eigenvalue.6,15

The input statistical factor �cc�k� may be cast in the gen-
eral exponential form

�cc�k� = �cc�0�exp�− 
��k�� �17�

with an energy ��k�=�2k2 / �2m��. The effective mass m� rep-
resents the mass of a quasiparticle in the fluid and may, in
general, depend on temperature and on momentum, m�

=m��k ,T�.
In principle we may determine the effective mass by a

strict functional optimization.11 However, at present we
adopt a simpler strategy. If the particles are entirely distin-
guishable, Boltzmann statistics would hold and the exact re-
sult for the effective mass would be m��k ,T�=m. The same
result would follow for free indistinguishable bosons.10 As-
suming the equality m��k ,T�=m for fluid/liquid 4He a CDM
calculation at temperatures T�12 K yields also very accu-
rate results on various physical quantities in agreement with
path-integral Monte Carlo �PIMC� simulation results.8,9

However, by retaining this assumption at low tempera-
tures T�5 K the corresponding CDM results yield an unre-
alistic theoretical Bose-Einstein temperature of about T
	3.4 K.11 This deficiency stems from the fact that by as-
suming m��k ,T�=m the quantum statistical correlations em-
bodied in the function Gcc�r� are becoming too large in mag-
nitude and range.

At present we therefore adopt the simple but reasonable
ansatz for the effective mass

m��k,T�
m

=
1

��T�
= 1 + exp
1 −

T

TBE
� . �18�

Ansatz �18� neglects the possible dependence of the effective
mass on wave number k. Its temperature dependence permits

to find adequate physical solutions for the exchange structure
function Scc�k� and the whole set of correlation functions and
related quantities at all temperatures above the experimental
temperature TBE=2.17 K. No solutions of the CDM equa-
tions are found for the normal phase below this transition
temperature. We may add some further arguments in support
of ansatz �18�. To arrive at this explicit and simple expres-
sion we performed a series of CDM calculations of the value
of the statistical parameter �cc�0� appearing in Eq. �17�
adopting the ansatz ��k�=��0�k�. For any given value of the
parameter � we have utilized sum rule �12� to evaluate the
temperature dependence of the associated quantity �cc�0�.
The CDM calculations are performed at various temperatures
but for temperature independent fixed values of � taken from
the range 1���1 /2. We then find a unique solution
�cc�0��T� for any given temperature T above a certain limit-
ing temperature T�. The value of this limiting temperature
depends of course on the particular input datum for �. No
solutions for �cc�0� exist for T�T�. For the choice �= 1

2 the
CDM calculation yields T�=2.17 K. If the value of the pa-
rameter � is increased we find an associated increase in the
limiting temperature T�. For this reason we interpret the lim-
iting case characterized by �= 1

2 as the signature for the tran-
sition from the normal phase to the superfluid phase and
identify the associated T� with the 	-transition temperature
TBE=2.17 K in liquid helium. At this temperature we have
therefore m� /m=2 in agreement with Eq. �18�. At higher
temperatures, T�TBE, CDM theory then permits solutions
for �cc�0� for smaller effective masses, m��2m. Assuming a
monotonous decrease in m��T� with increasing temperature
allows therefore a smooth transition to the temperature re-
gion T�12 K, where the helium fluid is a perfect quantum
Boltzmann system with �=1 or equivalently m�=m. The
simple ansatz �18� reflects these properties quite naturally by
adopting an exponential temperature dependence. To go be-
yond this heuristic approach in a strict systematic fashion
one needs to develop a practical analytic optimization proce-
dure and an appropriate numerical technique. We intend to
develop these tools in the near future.

Numerical calculations within this realization of CDM
theory are fast and efficient. Figure 1 displays numerical re-
sults on the exchange correlation function Gcc�r� at three
temperatures, T=4 K, T=7 K, and T=12 K at particle den-
sity �=0.02185 Å−3. These results are compared with analo-
gous results on quantity Gcc�r� but for a fluid of noninteract-
ing helium atoms at same temperatures and density. We see a
dramatic suppression of quantum statistical exchange corre-
lations in the interacting helium fluid at distances r�2 Å.
The effect is caused by the hard-core repulsion between and
among the atoms that keeps them distinguishable. Even at
intermediate distances the magnitude and the range of the
statistical correlation functions for 4He are distinctly smaller.
Their maxima are located at about r	3 Å where the helium
potential is most attractive.

The amplitude decreases with increasing temperature and
the correlations vanish in the supercritical 4He fluid at tem-
peratures above 12 K. In this region the statistical factor
�cc�r� is of the classical Gaussian form �Eq. �16�� and the
particles are completely distinguishable.

Figure 2 displays the influence of the quasiparticle effec-
tive mass �Eq. �18�� on the size of the quantum statistical
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FIG. 1. Numerical results on the exchange correlation function
Gcc�r� of fluid 4He at three different temperatures. The CDM results
are compared with the statistical correlations existing in a free gas
of noninteracting helium atoms at the same temperatures and den-
sity. The comparison reveals the strong screening of particle ex-
change in fluid 4He due to the repulsion between the atoms at
relative distances r�2 Å. Note also the large difference between
the correlation lengths at low temperature.
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exchange. At T=4.5 K the effective mass is m�=1.384 m
leading to a correlation function Gcc�r� with a maximum of
about Gcc�r	3 Å�=0.15 �full line�. This result should be
compared with the corresponding numerical data by CDM if
we replace m� by the bare atomic mass m at the same tem-
perature �broken line�. We observe that the effective mass m�

causes an increased screening of the particle exchange reduc-
ing the magnitude and the range of the quantum statistical
correlations. An important consequence of the temperature
dependence of the effective mass �Eq. �18�� is therefore the
lowering of the theoretical Bose-Einstein transition tempera-
ture to the value TBE=2.17 K that very well agrees with the
experimental result for liquid 4He.

The quantum properties of particle exchange are, evi-
dently, reflected in the shape of the momentum distribution
�Eq. �3�� and in the associated kinetic energy distribution
�0�k�nqp�k� of the quasiparticles. At T�12 K this distribu-
tion is of the familiar Maxwell-Gauß form and contributes an
energy 3

2TN �Boltzmann constant kB=1� to the total energy
of the fluid. The departure from classical behavior at T
�12 K is, of course, due to the quantum statistical correla-
tions and may be measured by the difference

�qp�k� = �0�k��nqp�k� − nqp
B �k�� . �19�

The Boltzmann distribution nqp
B �k� is chosen such that the

associated kinetic energy �k�0�k�nqp
B �k� equals the total qua-

siparticle energy

Eqp = �
k

�0�k�nqp�k� �20�

at same density and temperature.
This quantum-mechanical feature is also seen �Fig. 3� in

the inverse Fourier transform �qp�r�. The shift from the clas-
sical to the quantum distribution in r-space is represented at
five temperatures, T=10 K, 7 K, 4.5 K, 3 K, and at TBE
=2.17 K. In the supercritical region T�12 K we have

�qp�r�	0. The quantum deviations increase with decreasing
temperature. The difference �qp�r� is negative in the repul-
sive range of the interaction and enlarged at intermediate
distances.

Moreover, the temperature dependence of the effective
mass �Eq. �18�� shapes the entropy �Eq. �4�� and therewith
the specific heat of the normal 4He fluid and liquid. Figure 4
exhibits the CDM results on the specific heat at constant
volume,

cV�T� =
T

N

 �S�T�

�T
�

V

, �21�

as a function of temperature �full line�. The resulting curve
approaches the classical constant cV�T�=3 /2 at large tem-
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FIG. 2. The two curves display the effect caused by the effective
mass m��T� that increases with decreasing temperature in liquid
4He. The broken line represents CDM results on function Gcc�r� if
the mass is kept fixed at m��T�=m. The full line is the result where
the temperature effect on m��T� is taken into account �T=4.5 K and
m� /m=1.384�.
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FIG. 3. Numerical results on function �qp�r� of expression �19�
within CDM theory that measures the quantum-mechanical depar-
ture from classical Boltzmann statistics in r-space experienced by
the quasiparticles in liquid/fluid 4He. The quantum statistical effect
decreases with increasing temperature and vanishes at about T
	12 K.
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FIG. 4. CDM results on the specific heat per particle at constant
volume carried by the quasiparticles with momentum distribution
nqp�k�. The theoretical results are compared with experimental data
taken from Refs. 4, 5, and 16. The semiquantitative CDM results
resemble the measured temperature dependence �see text for more
comments�.
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peratures and decreases with decreasing temperature. At T
	3.5 K it reaches a minimum and rises again by further
lowering of the temperature. This is in qualitative accordance
with the experimental data on the heat capacity of liquid 4He
and distinctively different from the monotonous temperature
dependence of the specific heat of a free Bose gas. Our the-
oretical results are compared in Fig. 4 with experimental data
reported by Hill and Lounasmaa,4 Wilks,5 and recent NIST
data.16 We suspect that the difference between the theoretical
results on the specific heat and the experimental data may, in
part, be due to the present neglect of contributions by collec-
tive excitations �phonons/rotons� which dominate in the su-
perfluid phase but may possibly appear as remnants in the
normal phase.

IV. RADIAL DISTRIBUTION FUNCTION

The diagonal two-body reduced density-matrix elements
g�r� are a measure of the probability to find two atoms at a
distance r in fluid 4He. Due to the very strong repulsion
between these atoms at distances r�2 Å the radial distribu-
tion function �Eq. �5�� vanishes there. Thus, the exchange
function F�r�−1 can only affect the dynamic component
Gdd�r� if its range exceeds the hard-core region.

In Fig. 5 we plot numerical results on functions Gdd�r�,
F�r�, and the radial distribution function g�r� at the lowest
possible temperature T=2.17 K. Even at this temperature we
find merely marginal differences between the CDM results
for the radial distribution function and its direct-direct com-
ponent 1+Gdd�r�. We also display function F�r�−1 by CDM
at the same temperature. Functions 1+Gdd�r� and F�r�−1
overlap only in the interval 2 Å�r�5 Å with very small
amplitude. The area of overlap decreases rapidly with in-
creasing temperature. We may therefore conclude that par-
ticle exchange effects are practically absent from distribution
g�r� at all temperatures T�2.17 K. Moreover, the very

small exchange contributions in the normal liquid region of
the 4He phase space �Fig. 5� will, presumably, be more than
compensated by effects from triplet correlations17 ignored in
the present realization of CDM theory. This suggestion is
supported by numerical results on the radial distribution
function g�r� of fluid 4He by PIMC �Refs. 18–20� calcula-
tions where triplet correlations are accounted for. Figure 6
shows numerical results by CDM on function g�r� for super-
critical 4He at T=10 K and density �=0.02185 Å−3 and
compares them with data calculated by PIMC under same
thermodynamic conditions. As expected, triplet correlations
strengthen the correlated shell structure in contrast to the
small effects generated by the exchange of 4He atoms that
weakens the correlation structure of function g�r�.

At the present stage CDM theory does not incorporate
three-body correlations which in comparison to the PIMC
simulations is a drawback. The PIMC calculations automati-
cally embody dynamical n-body correlations of any order n
and in this sense are exact for given interactions between the
particles. However, the Fourier �or continuous imaginary
time� path-integral Monte Carlo �FPIMC� method employed
here and in earlier studies6,18–20 uses Boltzmannon statistics
that does not distinguish between bosons and fermions. Else,
all other quantum-mechanical effects are fully taken into ac-
count in the FPIMC computations. CDM theory on the other
hand can clearly distinguish between dynamical and quan-
tum statistical correlations and contains the Bose statistics
correctly, although with increasing temperature the quantum
statistics is increasingly screened by the interparticle interac-
tions. The neglect of quantum statistics in FPIMC becomes
an issue at much lower temperatures than the one for which
the comparison between FPIMC and CDM is shown in Figs.
6 and 7. At very low temperatures CDM has the advantage of
incorporating the quantum statistical exchange correlations
correctly. Discrete imaginary time PIMC �DPIMC� methods
can be adapted to include Bose statistics.21 More detailed
discussions concerning the quantum statistics in FPIMC and
discrete imaginary time PIMC may be found in Refs. 18–20.

A further issue concerning any computer simulation of
physical systems, whether quantum or classical, FPIMC or
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FIG. 5. Radial distribution function g�r� of liquid 4He at T
=2.17 K by CDM theory �full line�. The dynamical �dd� compo-
nent 1+Gdd�r� cuts off the particle exchange contributions. Only at
temperatures T close to the Bose-Einstein transition there is a very
small area where the exchange function F�r�−1 overlaps with func-
tion 1+Gdd�r�. This overlap leads to an insignificant slight reduc-
tion in the peak height of function g�r�. For temperatures T�4 K
the screening of particle exchange is complete.
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FIG. 6. Represented are numerical results on the radial distribu-
tion function g�r� at T=10 K calculated by CDM in comparison
with PIMC simulation data. As expected the Monte Carlo results
show a little more shell structure than the CDM results that may be
affected by the neglect of triplet correlations in the present realiza-
tion of CDM theory.
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DPIMC, Monte Carlo or molecular dynamics, are finite-size
effects due to the only finite number of particles in such
simulations. In contrast to computational simulation proce-
dures the thermodynamic limit is automatically built into the
CDM method. The PIMC results shown here for g�r� in Fig.
6 and S�k� in Fig. 7 have been obtained with 384 particles,
for which particle number the finite-size effects in g�r� are
already fairly small. Yet the finiteness of the simulated sys-
tem still takes a vengeance when it comes to computing the
liquid structure function S�k� by means of the Fourier trans-
form �FT� of the simulated g�r�−1. Because the maximum
radial distance r up to which the simulated g�r� is computed
is only 13.0402 Å the associated S�k�, when the
r-integration to obtain S�k� by means of the FT of g�r�−1 is
simply cut off at that maximum value of r, is inaccurate for
small k, although the location and height of the main peak
agrees at T=10 K and �=0.02185 Å−3 reasonably well with
the corresponding CDM result. This comparison between
S�k� from PIMC simulation and S�k� from CDM is shown in
Fig. 7 for T=10 K and �=0.02185 Å−3. Despite compara-
tively large differences between the two S�k� for k less than
about 1.25 Å−1 the agreement between the PIMC and the
CDM S�k� is still much better in the present case than for
liquid parahydrogen at 16.5 K �cf. Fig. 4 in Ref. 6�. We
ascribe this to the fact that for the 4He systems considered
here the spatial structure of the radial distribution function
g�r� is less pronounced and decays quicker as a function of r
than is the case for the H2 systems treated in Ref. 6. A com-
parison between the PIMC and the CDM 4He S�k� for T
=12 K at the same density �=0.02185 Å−3 yields similarly
good agreement, this agreement being even better for k
above about 1.25 Å−1 in comparison to the situation at the
lower temperature T=10 K. In case of liquid H2 the PIMC
S�k� displays due to finite-size effects even an unphysical
behavior and becomes negative for k smaller than about
0.25 Å−1 �cf. Ref. 6�.

It must be said, however, that both in CDM theory as well
as in Monte Carlo simulations it is the small-k behavior of
physical quantities that is notoriously difficult to compute

accurately by means of the methods sketched above. This
problem is reminiscent of experimental difficulties encoun-
tered at long wavelengths. In CDM these problems can be
remedied much easier by simply extending the range of r in
the numerical programs, which can be done easily at hardly
any mentionable expense in terms of CPU time, random ac-
cess memory �RAM�, or hard drive space. This is very dif-
ferent from the scaling behavior of computer simulations.
Increasing the range of r means an increase in the number of
particles used in a simulation, which very quickly entails
drastic increases in the demands on CPU time, RAM, and
hard drive, the latter demand depending on which final re-
sults one opts to store for later use. Barring an ever further
increase in the number of particles in simulations, one may
alternatively resort to finite-size scaling methods or suitable
extrapolations beyond the computed range to determine the
long-range behavior in r-space and concomitantly the short-
range behavior in k-space.

Speed of computation is clearly one of the major advan-
tages of the CDM method. Due to the complexity of the
CDM equations and the number of various quantities in-
volved it indeed poses a programming challenge to develop a
reliable numerical code that solves the CDM equations nu-
merically. In the present applications the numerical CDM
code typically runs by about a factor 1000 faster than the
PIMC simulations. How much faster depends in the current
situation mainly on the temperature. Whereas a CDM com-
putation takes pretty much the same time regardless of tem-
perature and density, FPIMC simulation time increases with
decreasing temperature �and with decreasing particle mass
and with increasing density�, which is among other things
due to the fact that at lower temperatures more points are
needed in the FPIMC method to discretize continuous imagi-
nary time on the interval �0,1� �see Refs. 18–20 for details�.
FPIMC simulation time scales linearly with the number of
grid points used to represent continuous imaginary time. Fur-
thermore, at present the FPIMC codes compute “only” ener-
gies and diagonal one- and two-body quantities18–20 for sol-
ids and liquids alike but no other quantities such as the
momentum distribution n�k� or the spectrum of elementary
excitations not to mention the host of other physical quanti-
ties that follow from CDM theory within a single coherent
framework and that are all computed in one go.

To compare with available experimental results22,23 for
the liquid structure function S�k� we have calculated the Fou-
rier transform of the theoretical CDM results for the radial
distribution function g�r� at temperature T=13.3 K and den-
sity �=0.022 Å−3. The numerical results are shown in Fig. 8
�full curve�. They may be compared with results of measure-
ments performed under the same thermal conditions reported
in Ref. 22 and displayed by the data in the middle of Fig.
1�a� therein. For comparison we have plotted in Fig. 8 some
experimental data of this reference. They are indicated by
crosses. Obviously, the theoretical and experimental results
are in excellent agreement.

V. KINETIC ENERGY COMPONENTS

In a classical many-body system each degree of freedom
contributes an energy portion T /2 �in units of kelvin� to the
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FIG. 7. Static liquid structure function S�k� at T=10 K and at
bulk particle number density �=0.02185 Å−3. The full curve dis-
plays the CDM result and the long-dashed curve the PIMC one
�detailed discussion in text�.
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total energy. However, even at relatively high temperatures
quantum correlations in fluid 4He produce a significant de-
parture from the classical result 3

2TN for the total kinetic
energy.

In CDM theory we may use the factor representation �7�
to arrive at a decomposition of the energy expression �14�
into an exchange component and a direct-direct quantum
portion. The latter term is generated by the phase-phase dy-
namic correlations. The result is6

Ekin

N
=

E0

N
+ p0

Ep

N
. �22�

The first term represents the exchange energy per particle,

E0

N
=

1

N
�
k

�0�k�N0�k� = −
�2

2m
��2N0�r��r=0, �23�

and the second term is the kinetic energy contribution gen-
erated by the direct-direct correlation function �9�,

Ep

N
=

1

N
�
k

�0�k�P�k� = −
�2

2m
��2P�r��r=0, �24�

with the unit-normalized function P�r�=Q�r� /Q�r=0�. The
value �Q�r=0�� gives the strength factor p0=−ln�nC�. In the
high-temperature limit the energy �Eq. �23�� approaches the
classical result. The quantum portion �Eq. �24�� has no clas-
sical analog.

In Fig. 9 we have plotted the CDM results on the ex-
change energy component �Eq. �23�� of normal helium as a
function of temperature at density �=0.02185 Å−3 �full
line�. Lowering the temperature leads to a continuous in-
crease of the quantum exchange part E0 /N− 3

2T. At TBE
=2.17 K we find a quantum energy of about 2.5 K added to
the classical value 3

2TBE=3.26 K. The kinetic energy of the
quasiparticles defined by Eq. �20� almost coincides with the

exchange kinetic energy E0 at all temperatures �broken
curve� thus indicating the close relationship between the dis-
tributions nqp�k� and N0�k�.

The relationship between the distributions can be also
seen in the corresponding energy distributions �0�k�nqp�k�
and �0�k�N0�k� of the quasiparticles and the exchange energy
distribution, respectively, of the 4He atoms in the fluid. Em-
ploying the analog of Eq. �19�,

�0�k� = �0�k��N0�k� − N0
B�k�� , �25�

for measuring the departure of the exchange distribution
N0�k� from its corresponding Maxwell distribution N0

B�k� the
CDM calculations reveal a dependence of expression �25� on
wave number k and temperature T very similar to the results
on function �qp�k�. Figure 10 displays the quantum statistical
properties of the one-body reduced density matrix �Eq. �7��
embodied in the measure �Eq. �25��. The exchange quantity
�0�k�N0�k� oscillates around the classical Maxwell distribu-
tion represented by �0�k�=0. The amplitude of the damped
quantum oscillations decreases with increasing temperature.
At T=4.5 K the magnitude is cut down by a factor of 0.5
from the value at T=2.17 K. The classical limit is reached in
the supercritical region at T	12 K as is the case for the
quantum deviation �qp�k� of the quasiparticle energy distri-
bution.

The quantum properties of the phase-phase correlations
are embodied in the dd function Q�r� and differ qualitatively
and quantitatively from the exchange functions. The phase-
phase correlations persist to much higher temperatures in
contrast to the quantum exchange correlations. Numerical
results on the unit-normalized function P�r�=Q�r� /Q�0� are
plotted in Fig. 11 at two temperatures. The numerical results
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FIG. 8. Theoretical results on the liquid structure function S�k�
at temperature T=13.3 K and particle number density �
=0.022 Å−3 for supercritical 4He by CDM. The crosses indicate the
experimental results of Ref. 22 at selected wave numbers k taken
from Fig. 1�a� therein.
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FIG. 9. Exchange energy E0 /N of fluid 4He as function of tem-
perature calculated by CDM �full line�. At temperatures T�12 K
the results merge with the classical result 3T /2 for the total kinetic
energy per particle. The quantum corrections at temperatures T
�12 K �difference between full and dot-dashed line� increase with
decreasing temperature. At TBE=2.17 K they are of the same size
as the classical portion. The broken line represents the CDM results
for the kinetic energy of a quasiparticle, Eqp /N. We see that the
exchange energy is almost completely generated by the
quasiparticles.
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are almost independent of temperature at small values of r
and depend only weakly on temperature at distances 1 Å
�r�5 Å. As a consequence, the phase-phase correlation
energy �Eq. �24�� is still large at a temperature of T=12 K
and at higher temperatures. CDM theory yields the energy
component p0�Ep /N�=9.82 K at T=12 K. This correlation
energy decreases only slowly by a further increase in tem-
perature. These properties of the phase-phase correlations in
fluid 4He resemble very much the analogous properties stud-
ied theoretically and experimentally in liquid
parahydrogen.6,7

We are now prepared to study the one-body reduced den-
sity matrix �Eq. �7�� with properties that are determined by
the interplay of the exchange factor N0�r� with the phase-

phase correlation function Q�r�. Employing the numerical
results on both functions obtained by CDM theory we have
calculated function n�r� and its Fourier transform n�k�. Re-
sults on the momentum distribution n�k� are displayed in Fig.
12 for fluid 4He at T=10 K and T=12 K and density �
=0.02185 Å−3. At these temperatures the distribution n�k� is
very well represented by a classical Gaussian form despite
the presence of large phase-phase correlations at this tem-
perature. The property is documented by the results on the
quantum measure

��k� = �0�k��n�k� − nB�k�� �26�

for the momentum distribution n�k� of the �true� particles.
Expression �26� is the analog of the quantities �qp�k� and
�0�k�. The numerical results on measure ��k� for the helium
system at temperatures 10 K and 12 K are shown in Fig. 13.
We see a deviation from the classical distribution �0�k�nB�k�
but its magnitude is very small. The maximum departure
���k�� is only on the order of 0.05 K. This contrasts very
much with the corresponding maximum values of ��qp�k��
and ��0�k�� being about ten times larger.

Comparing this finding with theoretical and experimental
data on function �26� for liquid parahydrogen at T=16.5 K
we see a large discrepancy between the small values ���k��
for supercritical helium and corresponding values ���k�� for
liquid paraH2, ���k��	0.4 K �theory� and ���k��	0.3 K
�experiment� at maximum �cf. Ref. 6, Fig. 9 therein�.

The smallness of quantum measure �26� for fluid 4He may
be explained by the larger atomic mass of the 4He atom
compared to the mass of a H2 molecule. This difference leads
to a smaller thermal wavelength 	 compared to the corre-
sponding value of 	 for H2 at same temperature. It goes
along with a shorter correlation length of the exchange func-
tion N0�r� in fluid 4He. Thus, the short-range exchange acts
as a cut-off factor in the product �Eq. �7��. It cuts off the
relatively long-ranged phase-phase correlations in fluid 4He
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FIG. 10. CDM results on function �0�k� that exhibits the quan-
tum statistical effects contained in the exchange function N0�k� of a
single 4He atom in the helium fluid. Quantum mechanics leads to
damped oscillations about the corresponding classical Maxwell dis-
tribution N0

B�k�. They have a correlation length of about 5 Å in the
liquid phase and vanish in supercritical 4He.
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FIG. 11. The unit-normalized phase-phase correlation function
P�r� of fluid 4He by CDM. The curvature at small distances is
practically independent of temperature in the entire range 2.17 K
�T�12 K considered. The very small differences between the
results for P�r� at T=10 K and T=12 K are displayed in the in-
serted diagram.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

k [A-1]
0

0.05

0.1

0.15

0.2

0.25

n(
k)

10 K
12 K

o

FIG. 12. Theoretical results on the momentum distribution n�k�
of fluid 4He at T=10 K and T=12 K. Despite that large phase-
phase correlations exist at these and higher temperatures the mo-
mentum distribution is of classical Gaussian form, since the influ-
ence of the phase-phase correlations at fixed momentum �k is
small.
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and reduces therefore the “quantumness” of function n�r�
and the momentum distribution n�k�. We mention that ex-
perimental measurements on function n�k� are presently un-
der way to analyze these quantum properties of fluid and
liquid 4He.

VI. SUMMARY AND OUTLOOK

We have presented a detailed theoretical investigation of
the quantum structure of liquid and supercritical 4He as a
function of temperature. The study emphasizes the particular
role of quantum statistical correlations that originates in the
strongly repulsive 4He− 4He interaction at short interparticle
distances. The analysis employs correlated density-matrix
theory providing the appropriate method of choice.

Noninteracting bosons are characterized by strong
quantum-mechanical statistical correlations due to their in-
distinguishability. However, in the helium system these ex-
change correlations are very much suppressed and are non-
zero only at intermediate interparticle distances. They
increase, however, if the temperature is lowered. This in-
crease is controlled by an appropriate temperature depen-
dence of an effective mass. The temperature dependence of
this mass determines the location of the Bose-Einstein tran-
sition temperature and the shape of the specific heat curve at
constant volume.

The quantum statistical effects fall off in the supercritical
phase region of fluid 4He around a temperature T	12 K
and the system can be characterized as a quantum Boltzmann
fluid. We further studied the effects of statistical correlations
on the behavior of the one-body reduced density matrix n�r�
and the diagonal two-body reduced matrix elements g�r�.
CDM theory reveals that the particle exchange is very much
suppressed in the entire temperature range of normal helium.
Only very close to the transition temperature TBE one finds
very small deviations of g�r� from the dynamic component

1+Gdd�r�. The liquid structure function S�k�, which follows
from the Fourier transform of g�r�, is therefore not affected
by exchange correlations.

The momentum distribution and the kinetic energy distri-
bution in k-space have been decomposed into statistical
components and dynamic portions. The first component is
characterized by the distribution N0�k�, the latter one by the
phase-phase correlation function P�r� or Q�r�. The exchange
function N0�k� has many features in common with the qua-
siparticle momentum distribution nqp�k�. Both functions de-
part from the classical Boltzmann behavior at temperatures
T�12 K. The dynamic effects embodied in the correlation
function Q�r� in 4He do not exist in classical many-body
systems, since they characterize the off-diagonal elements of
the density matrix. In fluid 4He this quantum contribution
persists to rather high temperatures exceeding 12 K and its
large strength p0 could be experimentally detected.

The numerical results are derived by CDM in the so-
called HNC/4 approximation. The HNC summation tech-
nique has been exploited with great success for studying the
correlated ground and excited states at zero temperatures
within correlated basis functions �CBF� theory.24 The gener-
alization to nonzero temperature takes account of the contri-
butions described by a set of exchange diagrams.10,25 The
HNC/4 approximation includes all dynamic and exchange
diagrams which can be constructed by series and parallel
connections from basic elements involving renormalized el-
ementary four-point diagrams.

The present study does not include contributions from
triplet correlations generated by a three-body
pseudopotential17 and/or by a three-body statistical exchange
factor.15 If desired for a more sophisticated investigation of
specific effects the CDM formalism can be carried �at least in
principle� to the next level of approximation within a system-
atic formal procedure.

However, in our opinion, it would at present be of prior
interest to �i� apply CDM theory to other interesting quantum
systems such as liquid deuterium and �-matter. The latter
boson system is studied in nuclear physics;26 �ii� generalize
the CDM approach for application to the Bose-Einstein con-
densed phase of liquid 4He,25 and perform neutron-scattering
experiments on liquid and supercritical 4He to measure the
momentum distribution and other physical quantities of in-
terest along isochoric lines or along an isotherm to compare
with here presented theoretical results at same temperatures
and densities.
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APPENDIX: ELEMENTARY FOUR-POINT DIAGRAMS

The HNC/4 approximation includes the contributions of a
complete set of elementary diagrams with four field points
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FIG. 13. CDM results on function ��k�, Eq. �26�, that measures
the influence of quantum effects on the kinetic energy distribution
�0�k�n�k� in supercritical 4He at T=10 K and T=12 K. At these
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within the HNC classification scheme. These components are
Edd�r�, Ede�r�, Eee�r�, Ecc�r�, EQdd�r�, EQde�r�, EQcc�r�,
EQQdd�r�, and EQQcc�r�. They may be characterized by gen-
eralized Ursell-Mayer diagrams12,25 representing the follow-
ing double integrals over the entire volumes V:

EQdd�r� =
1

2
�2� Gdd�r13�Gdd�r14�GQdd�r23�GQdd�r24�

� �Gdd�r34� + Gee�r34��dr3dr4, �A1�

EQde�r� = �2� GQdd�r23�GQdd�r24�

� �Gee�r13�Gdd�r14�Gdd�r34�

+ Gcc�r13�Gcc�r14�Gcc�r34��dr3dr4, �A2�

EQcc�r� = �2� GQdd�r23�GQcc�r24�

� �Gcc�r13�Gdd�r14�Gcc�r34�

+ Gdd�r13�Gcc�r14�Gdd�r34��dr3dr4, �A3�

EQQdd�r� =
1

2
�2� GQdd�r13�GQdd�r23�GQdd�r14�GQdd�r24�

� �Gdd�r34� + Gee�r34��dr3dr4, �A4�

EQQcc�r� = �2� GQdd�r23�GQcc�r24�

� �GQdd�r14�GQcc�r13�Gcc�r34�

+ GQcc�r14�GQdd�r13�Gdd�r34��dr3dr4, �A5�

Eee�r� = �2� Gdd�r34��Gdd�r14�Gdd�r23�Gee�r13�Gee�r24�

+ Gcc�r14�Gcc�r23�Gcc�r13�Gcc�r24��dr3dr4. �A6�

Omission of the subscripts Q in Eqs. �A1�–�A3� yields the
explicit expressions for the elementary components Edd�r�,
Ede�r�, and Eee�r�, respectively.

We rescale the elementary components EQQcc and EQQdd
by the replacements �cEQQcc and �dEQQdd, respectively. The
scaling factors �c and �d are chosen such that the sum rule
N0�r=0�=1 and the kinetic energy rule �Eq. �14�� with
Ekin /N calculated by PIMC simulation are exactly fulfilled.
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