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Superconducting excitations—Bogoliubov quasiparticles—are the quantum-mechanical mixture of nega-
tively charged electron �−e� and positively charged hole �+e�. Depending on the applied voltage bias in
scanning tunneling microscope �STM�, one can sample the particle and hole contents of such a superconduct-
ing excitation. Recent STM experiments offer unique insight into the inner workings of the superconducting
state of superconductors. We propose an observable quantity for STM studies that is a manifestation of the
particle-hole dualism of the quasiparticles. We call it a Bogoliubov angle. This angle measures the relative
weight of particle and hole amplitudes in the superconducting �Bogoliubov� quasiparticle. We argue that this
quantity can be measured locally by comparing the ratios of tunneling currents at positive and negative biases.
This Bogoliubov angle allows one to measure directly the energy and position dependent particle-hole admix-
tures and therefore visualize robustness of superconducting state locally. It may also allow one to measure the
particle-hole admixture of excitations in normal state above critical temperature and thus may be used to
measure superconducting correlations in pseudogap state.

DOI: 10.1103/PhysRevB.78.054510 PACS number�s�: 74.20.�z, 71.27.�a, 68.37.Ef

I. INTRODUCTION

The dual particle wave character of microscopic objects is
one of the most striking phenomena in nature. This dualism
is ubiquitous in the microworld. Most notably, the two slit
experiments of Stern and Gerlach revealed the interference
and, hence, the wave nature of electrons. In the condensed-
matter systems, such an explicit visualization of the wave
nature of the constituent electrons was missing until just re-
cently. The breakthrough came when the researchers from
the IBM laboratories realized that the best way to elucidate
the electrons inside a material is to place an impurity in an
otherwise perfect crystal structure. By building corrals of the
impurities on the clean surface and by observing the gener-
ated patterns through the scanning tunneling microscope
�STM�, the experimenters were able to demonstrate the laws
of the wave optics using the conduction-electron waves.1–3

The analog of the conduction electrons in the supercon-
ductors are the quasiparticles. Unlike electrons, the super-
conducting quasiparticles do not carry definite charge. The
same quantum-mechanical dualism is at play when one con-
siders the Bogoliubov quasiparticles in superconducting
state: the quasiparticle is a coherent combination of an elec-
tron and its absence �hole�:4 its annihilation operator is a
linear combination of particle and hole operators with the
amplitudes uk ,vk: �k,↑=ukck,↑+vk

�c−k,↓
† . Particle-hole dual-

ism of quasiparticles is responsible for a variety of profound
phenomena in superconducting state such as Andreev reflec-
tion, the particle-hole conversion process that is only pos-
sible in superconductor.

In this paper we propose a technique to reveal this coher-
ent particle-hole mixture locally. In order to discuss the
particle-hole mixture we introduce a quantity that param-
etrizes the mixture in terms of an angle, and we call this
angle a Bogoliubov angle �BA�, see Fig. 1. We argue that
STM measurements allow us to visualize the Bogoliubov
angle maps and thus to reveal particle-hole dualism. Bogo-
liubov angle maps as a function of position and energy offer
a tool to investigate strength of superconducting state locally.

To illustrate the point about BA, we can look at the uni-
form BCS case first.4 In the normal state and in the presence
of translational invariance we use plane waves as a basis, and
therefore, amplitudes that are used in Bogoliubov transfor-
mation become functions of momentum uk ,vk. These ampli-
tudes are step functions of momentum and there is no mixing

hole

particle

Bogoliubov
particle-hole mix

�

FIG. 1. �Color online� Circle parametrizing Bogoliubov admix-
ture angle is shown. For �=0,90 deg the mixture reduces to purely
hole-like and particle-like states. At arbitrary angle one deals with
true Bogoliubov quasiparticles.
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between the particle and hole components of Bogoliubov
quasiparticle. Once superconductivity sets in, the mixing be-
tween these components develops, Fig. 1. Using Bogoliubov
amplitudes, we introduce BA as

�k = arctan�� �u�k��2

�v�k��2�1/2� , �1�

with the conventional factors, see Fig. 2. Here we do not
differentiate between s-wave and d-wave superconducting
states. The only difference between these cases will come
from angular dependence of �u�k��2 and �v�k��2.

Next we consider an inhomogeneous superconductor
when translational symmetry is broken by disorder.5 We will
use a mean-field approach and mostly focus on T=0. We
start from a rather general description of nonuniform super-
conductor, which allows three different kinds of random im-
purities: scalar impurity, magnetic impurity, and local super-
conducting gap variations. In the simplified model, the
conduction electrons occupy lattice sites, ri, and can hop to
the neighboring sites, r j, with hopping matrix element tij.

H0 = �
	ri,rj
,�

tijcri,�
† crj,�

+ ��ri,r j�cri,�
† cri,�

†

+ �Vimp
s �ri� − ��n�ri� + Vimp

M cri,�
† �zcri,�

† Sz

+ ���ri,r j�cri,�
† crj,�

† , �2�

were a quantum-mechanical operator cri,�
† creates an electron

on-site i, the operator crj,�
eliminates an electron from the

site j, and n�ri�=cri,↑
† cri,↑+cri,↓

† cri,↓ represents the electron-
density on-site i. The electron spin, �, can point up or down.
Here �z is a Pauli matrix and Sz is a classical spin. The
impurities may be modeled independently from each other
and are given by the correspondent quantities: Vimp

s is a local
scalar potential. This term is the potential of impurity that
couples to the total electronic density on-site i. Vimp

M is a
strength of the coupling of local magnetic impurity Sz with
the electron spin and ���ri ,r j� is a superconducting impu-
rity, which modulates the superconducting gap function. To
model the high-temperature superconductors, we utilize the
highly anisotropic structure of the cuprates and focus on a
single layer of the material.

Given that the pairing of electrons occurs in the spin sin-
glet state, the superconducting order-parameter amplitude
can be expressed in the form,

F�ri,r j� = �
�,�

�i�y��,�	cri,�
crj,�


 . �3�

The relation between the order parameter and the gap func-
tion is given by the self-consistency equation,

��ri,r j� = 	�rij�F�ri,r j� , �4�

where rij = �ri−r j� /2 is the interparticle distance and 	 is the
relative strength of the two-particle interaction.

Since Eq. �2� is quadratic in cri,�
, one can use a linear

canonical transformation to diagonalize. Bogoliubov showed
that fermionic operators are described by the unitary trans-
formation from particle and hole operators to quasiparticles
with the quasiparticle amplitudes un�ri� and vn�ri�:
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FIG. 2. �Color online� BCS factors �u�k��2 �blue� and �v�k��2
�red� are shown as functions of energy. The function C�k�= �u2�k�
−v2�k��= �cos 2��k�� �black� shows substantial departures from
unity only in the energy range on the scale of the gap � near the
Fermi energy where there are substantial pairing correlations.
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cri,↓ = �
n

�un�ri��n,↓ + vn
��ri��n,↑

† � ,

cri,↑ = �
n

�un�ri��n,↑ − vn
��ri��n,↓

† � . �5�

With this unitary transformation, one obtains a diagonal ef-
fective Hamiltonian: Heff=H0+�n,�En�n,�

† �n,�. Here n refers
to the eigenvalue index for the excitations above the ground
state. Each eigenstate n is doubly degenerate �with no mag-
netic impurities� where for each state n there is a time-
reversal partner, which we labeled n�. Pairing involves
paired states with n and n�. Operators �n describe natural
excitations in the superconducting state. Self-consistency
condition implies that ��ri ,r j�=	�rij��nvn

��ri�un�r j�.
In continuum superconductors the amplitudes un�r� ,vn�r�

obey the constraints 
dr�um
� �r�un�r�+vm

� �r�vn�r��=�nm

�normalization� and �n�un
��r�un�r��+vn

��r��vn�r��=��r−r��
�completeness� for any r and r�. The discrete analogs of the
normalization and completeness relations for the amplitudes
un�ri� ,vn�ri�, with ri and r j being the sites in our lattice, are:

dri�um

� �ri�un�ri�+vm
� �ri�vn�ri��=�nm, and �n�un

��ri�un�r j�
+vn

��r j�vn�ri��=0 where �i� j�, �n��un�ri��2+ �vn�ri��2�=1,
and �i= j�. The values �un�ri��2 and �vn�ri��2 will enter into
observable, local density of states �LDOS� in local tunneling
experiments, see below.

Going to the problem at hand we want to focus on a
similar language about amplitudes as a function of position.
We define mixing strength as a position dependent angle,

�n�ri� = arctan�� �un�ri��2

�vn�ri��2
�1/2� , �6�

which is a central quantity we are interested in. We define
this quantity as a Bogoliubov angle. The high-resolution
STM allows us to study the spatial dependence of the BA for
the states whose energy can be selected by tuning STM bias.

Note, we intentionally do not simplify the expression in
Eq. �6� for the reasons that will be clear in the next section.
It represents a local mixture between particle and hole exci-
tations for an eigenstate n at a given site i. For example, for
�n�ri�=0 the Bogoliubov excitation will be a hole. In the
opposite case of �n�ri�=90 deg quasiparticle is essentially
an electron. The angle that corresponds to the strongest ad-
mixture between particle and hole is �n�ri�=90 deg. Obvi-
ously, in case of an inhomogeneous state the BA is a function
of a position where it is measured and also is a function of
energy E. We suggest a way to visualize the BA maps that
allows us to develop a more detailed understanding of the
superconducting state.

Previously the alternation of amplitudes u ,v as functions
of position near impurities has been discussed in Refs. 6–9.
Here we expand this discussion by introducing local BA. We
also will focus more on the spontaneous inhomogeneity
when we use the STM data and not the impurity states that
were the focus of previous studies.

The ideas presented here are quite general and are appli-
cable to a variety of superconductors, including conventional
superconductors. Imaging of BA can be performed in any

inhomogeneous state. One can investigate BA in a variety of
states, including vortex and normal states with superconduct-
ing correlations, e.g., so-called pseudogap �PG� state.10,11

To illustrate this approach, we will use the local STM data
obtained on high-Tc superconductor, namely on
Bi2Sr2CaCu2O8+� material.

The plan of the paper is as follows: In Sec. II we present
a general theoretical background and define BA from the
local tunneling conductance measurements dI /dV�r ,V� at
different bias values V. In Sec. III we briefly discuss imaging
of BA in normal and pseudogap state. In Sec. IV we discuss
BA as seen in the STM data. In Sec. V we present numerical
simulations of BA in superconductor with broken transla-
tional invariance. And in Sec. VI we conclude with the dis-
cussion of the obtained results.

II. THEORETIC DISCUSSION

We now turn to inhomogeneous problem where we can no
longer use translational invariance and plane waves as a ba-
sis. Real-space description5 used here is necessary in case we
consider the effects of disorder in single-particle potential.
Either kind of disorder breaks translational symmetry, and
the real-space representation is more natural in this case. The
self-consistently defined gap amplitude,

��ri,r j� = Vint�
n

un�ri�vn
��r j��1 − 2f�En�� , �7�

with Vint=	�ri ,r j� being an interaction on nearest sites and
f�En� being the Fermi distribution function for a given qua-
siparticle excitation spectrum En. Here En are defined to be
positive only, as En represents the excitation energy for qua-
siparticles above the ground state. We assume that pairing
interaction couples only nearest neighbors on the lattice
r j ,ri.

For a next step in our discussion it is necessary to intro-
duce a tunneling conductance as measured by local STM
tunneling. Let us introduce the tunneling conductance on
positive and negative biases E= 
e�V� as

dI/dV+�ri,E� = − F�z, �eV���
n,s

�un,s�2�ri�f��E − En� ,

dI/dV−�ri,E� = − F�z,− �eV���
n,s

�vn,s�2�ri�f��E + En� , �8�

where F�z , 
 �eV�� is a function that measures the matrix
elements for tunneling as a function of voltage bias and tip
distance z. Hereafter we assume that it is a smooth function
of energy and at small energies E�10–100 meV it is a
constant, thus we will assume that tunneling matrix element
effect will only provide an overall coefficient in the LDOS.
f�E� is the Fermi distribution function. At very low tempera-
tures f��E� becomes nearly −��E� function, a fact that we
will use often. We can simplify the formulas if we introduce
the density of states �DOS� for quasiparticles: ��E�
=�n,s��E−En�. Here we stress that thus defined ��E� is a
density of states of quasiparticles, all of them being excita-
tions above the ground state with E�0 and all of them hav-
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ing a weight unity. As defined this quasiparticle DOS is not
identical to the DOS of real electron and hole excitations.
For simplicity we will assume particle-hole symmetry in the
normal state.

Then, for a given eigenspectrum and eigenfunctions
un�ri� ,vn�ri� we can rewrite Eq. �8� as

dI/dV+�ri, �eV�� = −� dE��E��uE,s�2�ri�f���eV� − E� ,

E 
 0,

dI/dV−�ri, �eV�� = −� dE��E��vE,s�2�ri�f���eV� + E� ,

E � 0. �9�

Here we used the assumption that dI /dV at a given tunneling
point is proportional to the LDOS at this point with the tun-
neling matrix elements F�z , 
e�V�� being simply constants.
LDOS for superconductor is defined �T=0� as

N�ri,E� = − 1/� Im�ri,E� = �
n

�un�ri��2��E − En�, E � 0,

=�
n

�vn�ri��2��E + En�, E � 0. �10�

And we used the Nambu spinor notations to indicate that we
are looking at particle Green’s function, labeled as G11.

4 Us-
ing these equations and quasiparticle density of states ��E�,
we obtain Eq. �9�.

Hence the ratio of dI /dV—taken at the same �E�—that we
label as Z�ri , �eV��, will be

Z�ri, �eV� = E� =
dI/dV+�ri, �eV��
dI/dV−�ri, �eV��

=
�uE,s�2�ri�
�vE,s�2�ri�

= tan 2��ri,E� ,

�11�

where the last step is taken assuming that there are few—
often one state—that contributes to the summation in Eq. �8�,
an energy E= �eV�. Then Eq. �11� can be inverted as

��ri,E� = arctan��dI/dV+�ri, �eV��
dI/dV−�ri, �eV���1/2� . �12�

This result along with Eq. �6� is the main result of this sec-
tion. It allows a direct determination of Bogoliubov angle
��ri ,E� from the experimentally measured tunneling con-
ductances at positive and negative biases.

BA as a measure of particle-hole admixture appears natu-
rally in the Anderson mapping12 of BCS model on the effec-
tive spin model. We briefly recall the mapping in Appendix
A.

To visualize the local quasiparticle states, we employ the
STM technique. Crucial aspect of the electron tunneling into
the superconducting state that makes it qualitatively different
from the tunneling in conventional metals is that the STM tip
contains only the regular electrons that carry a unit of charge
�−e�. We can inject either electrons or holes in supercon-

ductor. On the other hand, as pointed out earlier starting with
Bogoliubov, quasiparticles that live inside the supercon-
ductor do not possess a well defined charge. Upon entering
the superconductor, an electron/hole that arrived from the
normal STM tip must undergo a transformation into the Bo-
goliubov quasiparticles native to the superconductor.4 Hence
electrons that are injected or extracted form superconductor
would need to be “assembled” from Bogoliubov excitations.
At any site and at specific bias this conversion into particles
and holes will depend on relative weights un�ri� ,vn�ri�.
Hence the intensity of a tunneling signal will depend on
these amplitudes.

Qualitatively, the spatial distribution of tunneling inten-
sity can be understood as follows: Respective amplitudes of
particle and hole parts of the Bogoliubov quasiparticle, are
un�ri� and vn�ri� for site i and for particular eigenstate n.
Consider now a site where, say, un�ri� is large and close to
one. It follows from the completeness relation �n��un�ri��2
+ �vn�ri��2�=1 that for the same site the vn�ri� would have to
be small since the completeness condition is almost fulfilled
by �un�ri��2 term alone. Similarly, for the sites where vn�ri�
has large magnitude, un�ri� would have to be small. Recall
now that large un�ri� component would mean that quasipar-
ticle has a large electron component on this site. Hence the
electron will have large probability to tunnel into supercon-
ductor on this site and the tunneling intensity for electrons
�positive bias� will be large. Conversely, for those sites the
hole amplitude is small �v�ri��� �u�ri�� and the hole intensity
�negative bias� will also be small. Similarly, for sites with
large hole amplitudes �v�ri��� �u�ri�� the electron amplitude
will be suppressed and this site will be bright on the hole
bias. We observe alternation of the form,

�vn�ri��2 � 1, �un�ri��2 � 1,

�vn�ri��2 � 1, �un�ri��2 � 1. �13�

Therefore if there is a particular pattern for the large particle
amplitude �sampled on positive bias� on certain sites i, the
complimentary pattern of bright sites for hole tunneling �on
negative bias� will develop as a consequence of the inherent
particle-hole mixture in superconductor. This “antiphase” be-
havior is a clear indication of the “natural quasiparticles”
having both particle and hole characters. It is the main effect
that can be visualized by considering ��ri ,E� maps. An-
tiphase shift in positive and negative bias intensities is ubiq-
uitously seen in tunneling spectra. The antiphase behavior of
the components �uE�ri��2 , �vE�ri��2 is explained here as a
case of BA changing from particle to holelike configuration
on alternating sites. We see that this is the case in our nu-
merical simulations �see numerical simulations below� with-
out any need to assume that only one state dominates the
sum over states in Eq. �9�. So the phenomenon is more gen-
eral. We find it easiest to explain assuming only one term
dominating. However, given numerical results it holds for
broader cases.

We discuss it in more detail below when we turn to
��ri ,E� maps.
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A. Particle-hole asymmetry of normal state

The question of the underlying band particle-hole asym-
metry often comes up in these materials at low doping. One
way to “factor out” this asymmetry that is extrinsic to the
particle-hole mixture measure, is to factor out the normal-
state conductances; namely, one can take a ratio of
dI /dV
�ri ,V ,T� to their proper normal-state values at high
temperatures T�Tc:

dI/dV
�ri,E,T� →
dI/dV
�ri,E,T�

dI/dV
�ri,E,T � Tc�
. �14�

This procedure will factor out the particle-hole asymmetry
for the underlying band and will allow more direct measure
of particle-hole asymmetry.

B. Lattice model of a d-wave superconductor with broken
translation symmetry

One of the most interesting aspects of the response of
superconductors to defects is that the defects can probe the
properties of the superconducting state that may result in
local breaking of the Cooper pairs.13 The simplest example
of such pair breaking defects is magnetic impurities in sin-
glet superconductors, where magnetic scattering disrupts
pairing in the singlet channel. Pair breaking defects are
known to lead to the formation of bound quasiparticle states
in conventional nodeless superconductors.14 These states are
localized in the neighborhood of the defects and can have a
very anisotropic structure, depending on the form of the en-
ergy gap.13,15 States, localized near impurities, can carry spin
and are expected to modify the ground-state properties of the
superconductors as well.

Below we are going to consider a simplified model Eq.
�2� with impurities characterized only by the local scalar po-
tential Vimp

s �i�. The interplay between all three types of the
impurities and their influence on the Bogoliubov angle spa-
tial distribution is an interesting topic by itself, and we are
going to consider it in a separate study. We also report on the
case of uniform hopping parameter ti,j � t.

The superconducting gap function ����ri ,r j�, where ri
and r j are vectors corresponding to the sites i and j. By
making a transformation to variables R= �ri+r j� /2 and rij
= �ri−r j� /2, one can notice that the “center of mass” coordi-
nate R is a “slow” variable, which can be treated as indepen-
dent from the “fast” variable rij.

Making the Fourier transform with respect to the fast vari-
able rij, ��R ,k�=�rij

��R ,rij�exp�−i2krij�, one can establish
the relationship between the order parameter and the gap
function. As is usually done for cuprates, we assume a strong
repulsive on-site interaction and a nearest-neighbor attrac-
tion. This model is known to produce the d-wave pairing
signature in the continuum limit ��R ,k�=2��R��cos�akx�
−cos�aky��, where a is the lattice spacing, for the electron
densities close to one electron per lattice site. It has been
widely and successfully used to describe strong impurities in
a d-wave superconductor, see Ref. 13. In the real space the
d-pairing signature is 	�r�=��=
x,
y�−1�r,r+�

� .
In translational invariant case �no impurities� the model

gives the R-independent solution,

uk = 1/2�1 + �k/��k�� ,

vk = 1/2�1 − �k/��k�� , �15�

where the single-particle energy is given with respect to the
chemical potential in the normal state: �k=−1 /2t�cos�kxa�
+cos�kya��−�. In a general case of the presence of impuri-
ties, inhomogeneity, and vortices—which destroy the trans-
lational invariance—the solutions are R ,r dependent. More-
over to make progress we would need a numerical solution.
We will solve Bogoliubov–de Gennes equations in the real-
space representation and uk ,vk amplitudes become an eigen-
functions with eigenvalue index replacing k, see Sec. V.

We will numerically solve the model described by the
Hamiltonian Eq. �2� in Sec. V. We will investigate the spatial
distribution of BA as a function of position and energy in the
case of randomly generated scalar impurity potential Vimp

s .
The detailed analysis of the effects of other impurities is left
for a later presentation. We believe narrowing our analysis
down to one kind of impurity would be sufficient to address
the spatial inhomogeneity in BA.

III. IMAGING BOGOLIUBOV ANGLE IN NORMAL
AND PSEUDOGAP STATES

The BA, as defined, is not sensitive to the superconduct-
ing �sc� quantum phase fluctuations. Indeed BA is defined as
a function of ratio of the �uE�ri��2 / �vE�ri��2. Therefore
��ri ,E� can be defined even in the presence of such phase
fluctuations.16 Thus, we propose that the discussion about
BA be extended to the normal state.

Imagine we are approaching a normal state of supercon-
ductor by warming it up. We can see that there will be tem-
perature dependence of the BA. There is no reason to expect
an abrupt termination of SC correlations as one crosses Tc.
Remnant superconducting correlations are present above
Tc,

17,18 and hence one can still have excitations that will have
a particle-hole admixture. The difference will be that we are
no longer in the state with well defined superconducting Jo-
sephson phase.

To illustrate this point, let us consider Bogoliubov-Valatin
transformation in the presence of phase fluctuations;

�n,↑ = un�ri�cn,↑ + exp�i��ri��vn�ri�cn�,↓
† . �16�

Here n and n� refer to time-reversal partners that form a pair,
according to Anderson. We then can use the same definition
for BA, Eq. �6� in this case even in the presence of random
Josephson phase �. Since one uses amplitudes of u ,v, spatial
phase disorder does not enter into ��ri ,E�. So for the frozen
and presumably for the slowly varying in time phase fluctua-
tions, one can use the BA as defined and image the local
particle-hole admixture in the normal state.

One would need to take care of thermal broadening of the
tunneling characteristics at higher temperatures. Namely one
could divide the tunneling characteristics by derivatives of
the Fermi thermal distribution function;

�PG�ri,V� = arctan��dI/dV+�ri,V�f��E + �eV��
dI/dV−�ri,V�f��E − �eV���1/2� . �17�
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The problem of dynamic phase fluctuations in the state
with superconducting fluctuations is complicated. A more de-
tailed analysis would require a specific model for the dynam-
ics of the superconducting phase. An approach to phase fluc-
tuations in PG state using localized Cooper pair states with
no long-range phase coherence was advocated in Ref. 19
using STM data.10

One can also study the behavior BA for other states, such
as flux phase20 state and density-wave states.21 Let us con-
sider density-wave states, e.g., d-density-wave state �DDW�.
DDW is often mentioned as a possible state that can explain
PG.21 In any density-wave state, including DDW, particle-
hole symmetry is violated and the poles of single-particle
excitations are not appearing in pairs symmetrically around
chemical potential. Therefore single electron tunneling DOS
does not have the components that appear symmetrically at
positive and negative biases. If there is a particle-hole sym-
metric spectrum for DDW state, it can occur only as a special
case at one doping level.

Absence of particle-hole symmetry will be easily detected
by BA as it will tend to pure hole or particle angle,
�→0, � /2. Thus we think BA can be used as a spectros-
copy tool to detect presence/absence of superconducting cor-
relations in normal state. Another interesting question to ad-

dress is how BA behaves upon rising temperature. At low
energy it will be close to � /2 but then it can quickly move
away to indicate purely particle or hole states at T�Tc for
nonpairing PG state.

These questions go beyond the scope of this paper and
will be addressed in a separate publication.

IV. EXPERIMENT

In order to visualize the BA, we have performed an ex-
perimental investigation of the spectroscopic imaging scan-
ning tunneling microscopy �SI-STM� measurement on high-
temperature superconductor Bi2Sr2CaCu2O8+�.22 A single
crystal of Bi-2212 grown by floating zone method is hole
doped by introducing nonstoichiometric oxygen atoms per
unit cell and its hole concentration is adjusted for slightly
overdoping �Tc=89 K�. The crystal is cleaved in the ultra-
high vacuum and immediately inserted into the STM head at
T=4.2 K. To show the BA, we acquired LDOS images by
measuring the STM tip sample differential tunneling conduc-
tance g�r� ,V��dI /dV �r,V at each location r� and bias voltage
V. Since LDOS �r� ,E=eV��g�r� ,V�, energy and position
dependences of the LDOS are obtained.

In Fig. 3�a�, we show a 54-nm g�r� ,V� map at

FIG. 3. �Color online� g�r� ,V� with 54-nm FOV at �a� V=−18 mV and �b� V= +18 mV with their Fourier transforms in the insets. The
modulations are visible and consist of several wave vectors. �c� Typical averaged spectra taken at different area. �d� Same spectra as �c� but
zoomed at the low-energy feature below the maximum gap. Systematic deviation in spectra between the negative and the positive sample
biases is seen, as indicated by arrows.
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V=−16 mV measured on the Bi-2212 surface, showing the
spatial modulations—which are interpreted as an interfer-
ence of the Bogoliubov quasiparticles.23 A Fourier transform
of g�r� ,−18 mV� in the inset of Fig. 3 exhibits several Fou-
rier spots corresponding to the period of modulation in real
space. These observations are consistent with previous
reports.24,25 Although similar modulations are visible in
g�r� , +18 mV� shown in Fig. 3, which is the same field of
view �FOV� as Fig. 3�a�, one can notice that the spatial phase
of these modulations is different. dI /dV spectra, which are
averaged over the regions with the same gap size, where
g�r� ,−18 mV� in Fig. 3�a� is slightly higher/lower than the
average value, see black/red curves in Fig. 3�c�. Overall
feature of the spectra taken with different intensity of
g�r� ,−18 mV� with the same gap are almost identical. How-
ever, the significant differences at low energies in the spectra
are seen in the Fig. 3�d�. It is obvious that the spectrum with
relatively higher amplitude at the negative sample bias has
the relatively smaller amplitude at the positive sample bias
�and vice versa�. This implies that the particle and the hole in
the superconducting state are entangled with each other.

In Fig. 4�a�, we calculate a local BA ��ri ,V� by taking
the ratio of the positive and the negative sample biases
g�r� ,V�, using the following simple formulas:

Z�ri,V� �

dI

dV
�ri, + V�

dI

dV
�ri,− V�

, �18�

��ri,V� = arctan��Z� . �19�

Taking the ratio has an advantage of canceling out the un-
known matrix element involved in dI /dV.26 Fig. 4�a� is the
BA map at V=18 mV with its Fourier transform, and we
found that the ��ri ,18 mV� shows spatial modulations as
well as dI /dV map in Fig. 3 but with more stronger contrast.
As seen in Fig. 3�d�, the amplitude of dI /dV between posi-
tive and negative biases is anticorrelated so that taking the
ratio enhances such structure, namely, spatial modulations.
BA map is essentially different from the dI /dV map since
BA map exhibits the degree of spatial particle-hole mixture
of the Bogoliubov quasiparticles. However, as evidenced by
the Fourier transform of ��ri ,18 mV� �Fig. 4�b��, the Fou-
rier pattern is qualitatively the same as those of Figs. 3�a�
and 3�b�—indicating that the period of the existing modula-
tion in the BA map is similar to dI /dV modulations. This
similarity supports the claim that the local particle and hole

FIG. 4. �Color online� �a� ��ri ,V� with 54-nm FOV at V=18 mV. �b� Fourier transform of ��ri ,V� in �a�. �c� Distribution of ��ri ,V�
at V=18 mV. �d� Spatial evolution of the Fourier filtered dI /dV at 18 and −18 mV �black, darker� and ��ri ,V=18 mV� �red, lighter� with
2� /q7 modulation along the red �light solid� line starting from the solid �red� circle in �a�.
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amplitudes are modulated by scattering. Taking the ratio of
dI /dV in Eq. �18� and taking the BA map in Eq. �19� can
therefore be important tools to search for the true spatial
modulations and individual Fourier spots in the electron den-
sity of states.

In Fig. 4�c�, we show the distribution of BA at energy,
V=18 mV, which is peaked at �=43 deg, not exactly at 45
deg. One possibility is that the apparent shift of the distribu-
tion is caused by asymmetric background in the tunneling
spectrum27 that is sampled more at higher voltage as we shall
see in the Fig. 5�f�. To visualize the particlelike and holelike
regions more clearly, line cuts of BA at V=18 mV as well as
dI /dV at V= +18 and −18 mV—along the trajectory shown
in Fig. 4�a�—are exhibited in Fig. 4�d�. For simplicity, we
only focus on the specific q vector in Fig. 4�b� so that the
line profiles are taken from the Fourier filtered dI /dV and
��ri ,V=18 mV� with q7 vector highlighted by red circle in
Fig. 4�b�. Particlelike and holelike regions are spatially
modulating along the line and clearly show the antiphase
behavior in modulation between dI /dV at +18 and −18 mV.

Figures 5�a�–5�e� show the ��ri ,V� maps for various bias
voltages and their Fourier transforms. With increasing en-
ergy, the periods of modulation in real space change and
corresponding Fourier spots in the inset of the Figs.
5�a�–5�e� move, following the octet model.23 These observa-
tions are consistent with previous reports.24,25 In addition to
the period of modulation, one can immediately notice that

the pattern of the spatial modulation changes. At low ener-
gies �Figs. 5�a� and 5�b��, spatial modulations are visible all
over the field of view. On the other hand, at V=34 mV �or
V�34 mV�, such modulations tend to be visible in the re-
stricted area. This difference implies that the different type of
scattering might kick in at V=34 mV �or V�34 mV�.

In Fig. 5�f�, we show the 2D distribution of the BA in
which distributions are normalized at each energies. The spa-
tial change in the BA map seems to occur as a crossover, and
it can be realized by deviation of the BA from �=45 deg in
the Fig. 5�f�. The energy, which differentiates the spatially
coherent excitations and the localized excitations, is esti-
mated to be �26 mV �less than mean ��40 mV� where
BA starts to monotonically decrease.

The visualization of the BA will help us to understand the
quasiparticle excitations in the superconducting state. The
interferences of the Bogoliubov quasiparticles can be under-
stood as a spatial variation of relative weight of the particle
and the hole amplitudes, which is represented by the BA.
The BA can be a measure of the energy scale of the coherent
excitations. Moreover, since the spatial modulations in the
electronic structure are revealed much more clearly in the
BA map, this provides an excellent technique to determine
the momentum space �q space� electronic structure using SI-
STM. Hanaguri et al.28 recently demonstrated the power of
this technique with the discovery of the interference of the
Bogoliubov quasiparticles in Na-CCOC.

V. NUMERICAL SIMULATIONS

In this section we implement simple but realistic mean-
field model of an optimally doped cuprate superconductor at
zero temperature with disorder. In real materials the quantum
fluctuations may give rise to spatial inhomogeneity of local
characteristics, including the Bogoliubov angle, without the
presence of any impurities. On the other hand, the mean-field
description cannot capture quantum fluctuations, and without
impurities it will give a perfect translationally invariant so-
lution. In order to model fluctuations of local superconduct-
ing characteristics without going beyond the mean-field
treatment, we assume a disorder in the system.

We use a simple BCS solution to illustrate the approach
on how one can visualize the superconducting admixture of
particles and holes in the natural Bogoliubov excitations in
superconducting state in the case of broken translational in-
variance due to disorder. Even though the model is simplistic
the approach itself is quite general.

Using the Bogoliubov-Valatin transformation to the
quasiparticles operators �n� given by Eq. �5� and by the
mean-field approximation, one can diagonalize the Hamil-
tonian Eq. �2�. The quasiparticle amplitudes on lattice
sites �un�ri� ,vn�ri�� have to satisfy inhomogeneous
Bogoliubov–de Gennes equations;29

� �̂ �̂

�̂� − �̂�
��un�ri�

vn�ri�
� = En�un�ri�

vn�ri�
� , �20�

where the kinetic operator �̂ and superconducting order pa-

rameter �̂ can be represented as

FIG. 5. �Color online� �a�–�e� Images of the BA at each bias
voltages �V=10, 18, 26, 34, and 42 mV� and their Fourier trans-
forms. �f� Distributions of the BA at each bias voltages from 0 to 90
mV. Peak positions of the histogram are traced by black line.
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�̂un�ri� = − t�
�

un�ri + �� + �Vimp
s �ri� − ��un�ri� ,

�̂vn�ri� = �
�

�̂��ri�vn�ri + �� , �21�

where �= 
 x̂ , 
 ŷ are the nearest-neighbor vectors for a

square lattice. In case of translational invariant solutions �̂
becomes �k as defined earlier in Sec. II.

We solve Eq. �20� together with the self-consistency con-
dition;

���ri� =
Vint

2 �
n

�un�ri + ��vn
��ri�

+ un�ri�vn
��ri + ���tanh�En/2kBT� , �22�

where the summation is over the positive eigenvalues En
only.

For a square lattice system with L�L lattice sites, the
solution of the Bogoliubov–de Gennes equations Eq. �20� is
equivalent to the eigenproblem for a 2L2�2L2 Hermite ma-
trix. In order to minimize the boundary effects for a finite-
size system we assume periodic boundary conditions in both
x and y directions.

We have performed numerical simulations on a square
lattice 32�32 at T=0. We assume 40 impurities randomly

FIG. 6. �Color online� �a�–�d� Calculated LDOS on a square
32�32 lattice at T=0. We assume 40 randomly placed impurities
with individual impurity strength Vimp

s =1t. The pairing strength is
set to Vint=−2t and the chemical potential is set to �=0 �see text�.
�a� Calculated local dI

dV tunneling conductance at positive bias
V=0.4t. �b� Calculated local dI

dV tunneling conductance at negative
bias V=−0.4t. �c� Corresponding Bogoliubov angle ��x ,y�.
�d� logarithm of the absolute value of Fourier transform of BA
log10����kx ,ky��� with subtracted average value 	��x ,y�
=45 deg.

FIG. 7. �Color online� �a�–�d� calculated LDOS on a square
32�32 lattice at T=0. We assume 40 randomly placed impurities
with individual impurity strength Vimp

s =1t. The pairing strength is
set to Vint=−2t and chemical potential is set to �=0 �see text�. �a�
Calculated local dI

dV tunneling conductance at positive bias V=0.8t.
�b� Calculated local dI

dV tunneling conductance at negative bias V
=−0.8t. �c� Corresponding Bogoliubov angle ��x ,y�. �d� logarithm
of the absolute value of Fourier transform of BA log10����kx ,ky���
with subtracted average value 	��x ,y�
=45 deg.
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placed on the lattice, each impurity has strength Vimp
s =1t. It

corresponds to approximately 3% doping. We set Vint=−2t
and a half-filled band �=0.

The results of our numerical simulations are summarized
in Figs. 6–8, where we show three panels of plots for calcu-
lated local tunneling conductance dI /dV at positive and
negative biases using Eq. �9�— the corresponding Bogoliu-
bov angle ��x ,y�, using Eq. �12�— and the logarithm of the
absolute value of its Fourier transform. We consider the fol-
lowing values for the bias: V= 
0.4t , 
0.8t , 
1.2t. Note
that at bias V= 
0.4t, which is under the gap value �
�0.8t, the pattern of the local Bogoliubov angle �see Fig.
6�c�� is rotated 45 degrees with respect to the patterns calcu-
lated at higher biases V= 
0.8t �near the gap, see Fig. 7�c��

and V= 
1.2t �above the gap, see Fig. 8�c��. The sites on the
lattice where there is a large particlelike component of the
Bogoliubov excitation, the hole component is small.
Complementary pattern is observed on opposite bias. This
“rotation” is commonly present in the whole field of view.

In addition, in Fig. 9 we plot the calculated eigenvalues
for the random impurity distributions, shown in Figs. 6–8.
Obtained eigenvalues just slightly go beyond the energy in-
terval �−4t ,4t�, which is reproduced for the translational in-
variant case. This is what one would expect for moderate
impurity strength.

To characterize the effect of the local impurities on the
local density of state, we plot in Fig. 10 the LDOS at two
sites as a function of energy �applied local bias�. One site is
chosen to be far from impurity �x ,y�= �2,2� and another is
chosen at the impurity site �x ,y�= �6,6�. Note that LDOS at
the impurity site has relatively lower peaks at energy values
of the order of the gap energy E= 
0.8t.

We also present BA along the diagonal line cut for our
numerical calculation to compare with experimental results.
We observe an out-of-phase angle change for low-energy vs

FIG. 8. �Color online� �a�–�d� Calculated LDOS on a square
32�32 lattice at T=0. We assume 40 randomly placed impurities
with individual impurity strength Vimp

s =1t. The pairing strength is
set to Vint=−2t and chemical potential is set to �=0 �see text�. �a�
Calculated local dI

dV tunneling conductance at positive bias V=1.2t.
�b� Calculated local dI

dV tunneling conductance at negative bias V
=−1.2t. �c� Corresponding Bogoliubov angle ��x ,y�. �d� logarithm
of the absolute value of Fourier transform of BA log10����kx ,ky���
with subtracted average value 	��x ,y�
=45 deg. The Fourier trans-
form we obtain is consistent with FT intensity us seen in the ex-
periment, see inset in Fig. 5�e�. Please note rotation of �qx ,qy� basis.
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FIG. 9. Calculated 2048 eigenvalues for a 32�32 inhomoge-
neous two-dimensional system with 40 randomly laced impurities.
Note that the symmetry of the numerically obtained eigenvalues
with respect to zero and the closed gap for the d-wave pairing
symmetry.
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FIG. 10. �Color online� Local density of states as a function of
energy at the position �2,2� �solid black line� and at the local impu-
rity site, at the position �6,6� �dashed red line�. The difference in
LDOS on impurity vs away from impurity results in spatial varia-
tions in BA is shown in Figs. 6–8 for different bias values V
= 
0.4t , 
0.8t , 
1.2t. The positive bias values are depicted us-
ing arrows.

FUJITA et al. PHYSICAL REVIEW B 78, 054510 �2008�

054510-10



high-energy BAs, Fig. 11. This out-of-phase behavior is con-
sistent with the behavior seen in Fig. 4.

To further elaborate on the utility of the BA in visualizing
particle-hole admixture in paired state, we present here re-
sults of numerical solution for the case where we have two
competing interactions. One is the superconducting pairing
interaction Vint and another one is the single-particle poten-
tial Vimp

s . Single-particle potential Vimp
s modulation is lined up

and forms stripelike patterns, as can be seen in Figs. 12 and
13. For the case when pairing interaction is larger then the
single-particle potential Vint=2Vimp

s =2t we find that Bogoliu-
bov angle is essentially 45 deg across the whole field of
view, Fig. 12. In the opposite case when Vimp

s =2Vint=2t we
see substantial variations of the BA across the sample with
large departures from optimal value of 45 deg, see Fig. 13.

We thus observe that BA as a concept could be useful in
differentiating between states with dominant pairing interac-
tions vs gapped state due to nonsuperconducting order, such
as CDW and SDW.

VI. CONCLUSION

In conclusion, we have introduced a spectroscopic mea-
sure, Bogoliubov angle ��ri ,E�. This measure allows one to

image local particle-hole admixture in the superconducting
state and in the normal state with superconducting correla-
tions.

The Bogoliubov angle can be studied as a function of
position. It can also contain nontrivial Fourier components.
This could allow us to make connection with the spatial in-
terference of quasiparticles in superconducting state.23,28,30,31

Complementary to the momentum space information, one
can look at the energy dependence of BA. Energy depen-
dence observed experimentally clearly indicates that there is
a change in behavior in ��r ,E� at E�20–25 meV, Figs. 4
and 5. This energy range clearly correlates with the changes
in the interference patterns. We interpret these changes as an
evidence for a change in the superconducting coherence that
is weakened at higher energies.

As a future application, we propose that BA be studied as
a function of doping and temperature. One can use this to
investigate BA and particle-hole at temperatures above Tc for
studies of the nature of the pseudogap phase. Using Bogo-
liubov angle, one could identify how robust the particle-hole
mixture is in the normal state and therefore be able to differ-
entiate between different scenarios of PG state.
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APPENDIX A: ANDERSON MAPPING

Here we recall the Anderson12 mapping of reduced BCS
model on the effective spin model. The reduced BCS Hamil-
tonian is taken to be

Hred = − �
k

��k − ���1 − nk − n−k� − �
k�k�

Vk,k�ck
†c−k

† c−k�ck�

= − 2�
k

��k − ��sz,k − 1/2�
k,k�

�sk
+sk�

− + sk�
+ s−k� , �A1�
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FIG. 11. �Color online� Profile of the Bogoliubov angle � along
the line cut for bias values 0.4t as the red �dashed� line and 1.2t as
the black �solid� line. The line cut is taken along the direction �1,1�.
Note the angle inversion effect with respect to the optimal mixing
angle value of 45 deg for low-energy and high-energy BAs.

FIG. 12. �Color online� Profile of the Bogoliubov angle � for
the stripelike pattern of single impurity sites. In this case Vint

=2Vimp
s , and we see in the whole field of view predominantly 45

deg angle reflecting strong superconducting correlations.

FIG. 13. �Color online� Same as above. In this case Vimp
s

=2Vint, and we see substantial modulations of the BA.
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where we assumed translational invariance for simplicity and
omit spin indices. Spin operators are defined as

sz,k = 1 − nk − nk�, �A2�

sk
+ = bk

+ = ck
†c−k

† , �A3�

sk
− = bk = ckc−k, �A4�

and they represent a complete spin algebra over space
nk−n−k=0, the so-called hard-core boson constraint. z com-
ponent of the spin corresponds to state with well defined
particle number and s
 corresponds to pairing correlations.
Anderson showed that this reduced Hamiltonian describes
the spin sk in an “external” field pointing at an angle �k,

�k = 1/2
�k�

Vkk� sin �k

�k − �
. �A5�

One immediately recognizes this as a self-consistency equa-
tion for BCS solution once we assume Vkk� to be constant in
a range near Fermi surface. Excitation spectrum for the ef-
fective spin model is

Ek = ���k − ��2 + 1/4��
k�

Vkk� sin �k��2�1/2
. �A6�

Complete identification with Bogoliubov quasiparticles is
clear if one identifies

sin �k = 2ukvk, cos �k = uk
2 − vk

2 . �A7�

To make a contact with BA, we notice that in the case of
broken translational symmetry we can work out exactly the

same representation based on eigenfunctions in real space
un�ri� , vn�ri�. Then, the mapping on the spin problem will
be done in real space; angle �k is proportional to the BA
defined in the Introduction, and we will have �E�ri� as de-
fined in Eq. �6�. One can immediately see the direct connec-
tion with the Anderson angle used in this effective spin
model.

APPENDIX B: NUMERICAL DETAILS

The numerical solution of Eq. �20� together with the self-
consistency condition Eq. �22� requires iterative solution and
it is organized as follows: �1� For a reasonable initial value
of the order parameter ���ri� we solve the eigenproblem Eq.
�21� to obtain the quasiparticle amplitudes �un�ri� ,vn�ri�� and
the quasiparticle spectrum En. �2� Then, substituting
�un�ri� ,vn�ri�� and En into Eq. �22�, we compute an approxi-
mation of the order parameter ��

�appr��ri�. �3� In order to avoid
numerical instabilities during iterations, we use a mixing
scheme ��

�n+1��ri�=���
�appr��ri�+ �1−����

�n��ri�, where ��
�n��ri�

is the order parameter at the previous iteration step. Adjust-
able parameter � is a number between zero and one. To
ensure convergence, we increase the current value of � by
5% if the relative deviation between two consequent steps
Sn=maxi,����

n�ri�−��
n−1�ri�� /maxi,����

n�ri�� has decreased—
Sn case, Sn�Sn−1. �4� The computed ��

�n+1��ri� is used for the
next iteration step.

We repeat iterations until we achieve the acceptable level
of accuracy ��=10−3�. After the end of the procedure, we
perform an additional step with �=1 to ensure convergence
of the obtained solution. It usually takes 20–40 iterations to
converge.
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