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Phase diagram and binding energy of interacting Bose gases
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From the many-body 7 matrix, the condition for a medium-dependent bound state and its binding energy is
derived for a homogeneous interacting Bose gas. This condition provides the critical line in the phase diagram
in terms of the medium-dependent scattering length. Separating the Bose pole from the distribution function,
the influence of a Bose condensate is discussed and a thermal minimum of the critical scattering length is

found.
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I. INTRODUCTION

The discovery of Feshbach resonances in gases of ultra-
cold bosons in 1998 (Refs. 1-3) has provided an important
tool to analyze interacting Bose systems. Near these reso-
nances, it is possible to tune the interaction and especially
the free scattering length a, with an external magnetic field
B. In the vicinity of the resonance at B=B,, the scattering

length is*
AB
a(]:anr(1+ ), (l)

as shown in Fig. 1. Here a,, is the scattering length far away
from the resonance and ABx1/a,, describes the width of the
resonance. A Fermi gas near a Feshbach resonance can be
driven through a transition from a Bose-Einstein condensate
(BEC) of two-particle bound states for a;>0 to a BCS state
of Cooper pairs for ap<0 (Ref. 5). For bosons, the influence
of the interaction on the Bose condensation is of main inter-
est. Interacting Bose gases at ultralow temperatures are ex-
pected to consist of unbound, bound, and condensed bosons.
Furthermore, one expects an influence of the interaction on
the critical temperature and density of Bose condensation
(see citations in Ref. 6). Here we focus on the formation of
bound states in the presence or absence of a Bose conden-
sate. We will derive the condition for bound states in terms
of the medium-dependent scattering length to discuss the
phase diagram and the binding energy.

II. THE MEDIUM-DEPENDENT T MATRIX

The two-particle scattering is described with the many-
body 7 matrix in the ladder and quasiparticle
approximation,®

! .
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The influence of the surrounding particles is represented by
the distribution function f,. The total momentum Q reflects
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the center-of-mass motion of the scattering particles relative
to the medium, while ¢ is their relative momentum. The
medium is assumed to be a homogeneous ideal Bose gas
with a distribution’

1 2m)’n,
o BPP2m=p)IT _ 4 HET

Ip= ap), 3)

and a density

&’p 1

n=Q2F+1) @) S + ny,
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where n is the condensate density and F is the total spin.
Since we assume that the interaction does not change the
spin, there are no degradation factors in the T-matrix (2). In
the normal state, ny=0 and Eq. (4) yields the chemical po-
tential w as a function of the temperature and density. In the
superfluid state, u=0 and Eq. (4) determines the condensate
density n,. At the critical point, ©=0 and n,=0 and from Eq.
(4), the critical temperature T, and the critical density n,
follow. The dependence of the critical properties on the in-
teraction will be neglected.

II1. THE BOUND STATE FOR CONTACT INTERACTION

At low temperatures, only s-wave scattering at small mo-
menta is important. Furthermore, we want to concentrate on
bound states near the continuum edge. Therefore, and for the
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FIG. 1.
resonance.

Scattering length in the vicinity of a Feshbach
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sake of simplicity, we neglect the range of the interaction and
assume the interaction to be a contact interaction for which
the potential is independent of the relative momenta V,,=V.
Accordingly, the T matrix is also independent of the relative
momenta 7,,(Q,0)=7(Q,w) and Eq. (2) simplifies to the
algebraic relation 7=V/(1-GYV) with the two-particle propa-
gator,

d3€] L+ forn—g*fonyg )
Q) - 10 _ i ’
4m

m

G(Q.w) =

+iny

Obviously we can split G into the free propagator G result-
ing in the f— 0 limit and the medium correction G,,* f. The
free propagator diverges and a cutoff is necessary. To
circumvent this cutoff, we introduce the vacuum 7 matrix
To=V/(1-G,V), which determines the free scattering length,

ﬁZQZ
)

m
= mﬂ)(Q’

(6)
The strength of the interaction is now described by the free
scattering length, which is interpreted as the relevant physi-
cal quantity tunable near the Feshbach resonance.

Solving Eq. (6) yields,

lim v . (7)
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The inverse of the cutoff g is proportional to the range of
the interaction, i.e., contact interaction means g, — %. Postu-
lating a finite ay, it is necessary to renormalize the interaction
strength,®8~10 such that

_ 27h? 1
V= lim| - — |, (8)
go—>* mq 1- 2a0d0
which  follows from Eq. (7). Frequently, the
pseudopotential*!!
— 4mh’a
Ve— " )
m

is used to describe the dependence of the interaction strength
on the scattering length for contact interaction.'>!3 The dif-
ference of Eq. (9) to Eq. (8) is that the leading term of Eq.
(8) with respect to a large cutoff g, is always negative and
independent of a, i.e., the contact interaction is always at-
tractive, while the pseudopotential is attractive for a;<0 and
repulsive for ay>0. The reason for this difference is that the
pseudopotential is only valid up to first-order Born
approximation.'' Within this approximation, one neglects G,
i.e., 7=V, such that the diverging terms in the denominators
of Egs. (7) and (8) vanish.

The in-medium 7" matrix can be expressed by the free one
7=7,/(1-G,Ty). Accordingly, the in-medium scattering
length is
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with a.=0. We use here the definition of the many-body
scattering length from Ref. 14 instead of the definition used
in Refs. 6 and 8. Instead of a divergence, the many-body
scattering length for Q=0 therefore has a zero at the critical
point of Bose condensation, i.e., a,=0. Splitting Eq. (5) in
another way,

ﬁzQZ) m
G(Q,w) =G| 0, + J(O,w), 11
(Q, ) (Q am ) a2 (Q,0) (11)
with
ﬁZQZ d36] drwl+fon_g+ fong
J Q7w+ = 3 P 22 5
4m (2’77) q w— h_m‘l_ + i7]
(12)
one obtains for the in-medium 7" matrix,
4ahla 1
, W)= . 13
T(Q, w) I~ al(0.0) (13)
A bound state, i.e., a pole of the 7" matrix, is therefore pos-
sible if
R0\ 1
O<J<Q,w3+ 0 ):—, (14)
4m a

where the corresponding binding energy wp<<0 is measured
relative to the continuum edge, i.e., #20Q%/4m. The binding
energy is shown in Fig. 2. The fixed parameters in the plots
define the corresponding length scale s, i.e., Q=p,=1/s,
T=g,=h%/2 ms?, or n=0.05 s73, respectively. According to
Eq. (10), the condition for the bound state a >0 is satisfied in
two situations. In the first case ay>0, the interaction is
strong enough to form the bound state already in the vacuum.
In the second case ay<—a,., the bound state is induced by the
medium. For —a.<a;<0, the interaction is attractive but
insufficient to form a bound state. For bosons near a Fesh-
bach resonance, this means that in addition to the bound state
in the ay>0 region, a bound state is also possible on the
other side of the resonance for ay<<-a.. The appearance of
the medium-induced bound state is also signaled by the di-
vergence of the medium-dependent scattering length [Eq.
(10)] at ay=—a,. (Ref. 15). From these three cases, the depen-
dence of the bound-state region on the density, temperature,
total momentum, scattering length, and spin follows as
shown in Fig. 3.

IV. DISCUSSION OF THE PHASE DIAGRAM AND THE
BINDING ENERGY

For large |ay|, the binding energy converges toward a fi-
nite value w, as seen in Fig. 2(e), which follows from
J(Q,w.+h*Q?/4m)=1/a,. This convergence can be ex-
plained by the convergence of the medium-dependent scat-
tering length [Eq. (10)] and also by the convergence of the
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FIG. 2. Binding energy for the bound state of a homogeneous
Bose gas with contact interaction. Fixed parameters are given above
the plots. n,=0.06 573, T.=0.90 &,, and a,=0.06 s.

interaction strength [Eq. (8)] for large |a,|. The interaction
strength [Eq. (8)] also shows that the interaction is stronger
for positive a, and, therefore, |wpg| is larger in this case. The
region where a bound state is possible spreads with increas-
ing density, as can be seen in Fig. 3(a). Figure 2(a) shows
that for increasing density, |wp| increases too. This behavior
can be explained by the increasing influence of many-body
effects with increasing density. Due to the Bose enhance-
ment, the formation of bound states is supported. On the
other hand, thermal fluctuations hinder the formation of
bound states, which is shown by the shrinkage of the bound-
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FIG. 3. Phase diagram for the appearance of the bound state
(BS) of a homogeneous Bose gas with contact interaction. The ver-
tical lines mark the onset of Bose condensation for the correspond-
ing parameters.
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FIG. 4. Inverse critical scattering length versus temperature for
different approximations (upper plot) and for different total mo-
menta for a Bose gas with condensate (lower plot).

state region in Fig. 3(b) and the decrease in |wg| in Fig. 2(b)
with increasing temperature. The motion of the scattered par-
ticles relative to the medium has a similar effect as Figs. 2(c)
and 3(c) show. In the limit of vanishing density, the
bound-state condition is ay>0 and the binding energy is
wgo=—h>/ maé. This simple result can only be explained by
the potential (8). If one would follow the philosophy of
pseudopotentials instead, one would have repulsion for
ay>0 and no bound states. In Figs. 2(d) and 3(d), one sees
that with increasing total spin, |wj| decreases and the bound-
state region shrinks. The reason is that with increasing total
spin, the density of states also increases and, therefore, the
occupation of states for a given density decreases. The effect
is therefore similar to that of a decrease in density.

A remarkable feature in Figs. 3(c) and 3(d) is that a maxi-
mum of the critical line appears at some temperature 7,,.
This means that in these cases, the region of bound states
becomes smaller if the temperature is decreased further,
which is in contrast to the behavior above T,,. To understand
this effect, we observe from Egs. (3) and (10) that in the
superfluid state, 1/a, can be split into two parts
1/a.=1/a"+1/a%. The first part 1/aocny/Q® bears
the contribution from the condensate. The second part
1/a%" o f represents the uncondensed Bose gas vanishing as
the temperature approaches zero. While a5* diverges at
T=0 and @ diverges at T=T,, the scattering length a,
remains finite as Figs. 3(c) and 3(d) show. If the momentum
Q is large enough, the extremum appears already above the
critical temperature as seen in Fig. 4. The condensate part
vanishes at T, and the gas part is the only contribution above.
For a large total momentum, the Bose distribution is well
approximated by the Boltzmann distribution. This allows us
to calculate G,, explicitly, which yields that the extremum
appears at T.,~0.22A2Q%/4m. In other words, we have a
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TABLE 1. Binding energies for different species. The singlet (s) and triplet (¢) scattering lengths a are
from Ref. 4, if not marked differently. The length scale s is chosen so that T=g,=0.5 uK kz=43 peV. The
binding energy wpg, as follows from Eq. (14) for Q=0 and n=0.85n,, is compared to its vacuum value
wpo=—h?/ mag and a,~64 X 1073 5. The total spin F is that of the hyperfine state with lowest energy.

s F n ag wg wpo
(nm) (cm™) (1073 s) (neV) (neV)
Li 263 1 82x102 ¢ -555+0.11 No bound state
85Rb 76 2 58x10% ¢ -258+12 —(52+5)x10™ No bound state
133cg 60 3 1.6x1085 ¢ 2100 %90 —(1122+22)x 1073 —(19.6+1.7)x 1073
8Rb 76 2 58X10% 1700 + 500 -0.133+0.023 -0.039+0.022
3¢ 60 3 1.6X10°5 245+9 -1.49+0.11 -1.44+0.11
8Rb 75 1 3.6x10% ¢ 75.1%£29 -154+12 -153+1.2
s 63.8=0.8 -212+06 -212+0.6
“He 348 0 12x102 30+6 -110%50
(Ref. 16)
BNa 145 1 49x108% ¢ 23.8+04 -152+6
s 7.0%+0.8 —1800 =500
Li 263 1 82x102 6.6+0.5 —2000 = 400
'H 696 0 1.5x10'" ¢ 9.1Xx1072 -1.04x 107
s 3.1x 1072 —-8.97 %107

mere thermal effect. When the mean motion characterized by
the total momentum comes in resonance with the thermal
motion, we observe an extremum in the critical scattering
length.

The ladder and quasiparticle approximation proposed in
this paper cannot describe the dynamic formation or break-
ing of bound states. This is due to the fact that for the for-
mation or destruction of a bound state, an exchange of en-
ergy and momentum, either with a third particle or with the
medium, has to be allowed. Therefore, either more diagrams
or a self-consistent spectral function would have to be in-
cluded in the 7 matrix. This is the reason why the pole of Eq.
(13) lies on the real axis, i.e., has no imaginary part and,
therefore, the bound state has an infinite lifetime. On the
other hand, Figs. 2(a), 2(b), and 2(e) show that in the normal
state, |wp| is of the order of the thermal energy for a,<-a,
and for ay>a,, i.e., near the resonance. This makes the
bound states very unstable toward collisions with medium
particles and, therefore, limits their lifetime. However, ex-
perimental experience shows that bound-state and cluster
formation has even to be suppressed by decreasing the den-
sity to be able to directly investigate Bose condensation.!” If
Bose condensation shall be reached by decreasing the tem-
perature, then bound states are always possible before T.. is
reached for any interaction, as Fig. 3(c) shows. The only
exception is the ideal-gas case, i.e., ay=0.

The binding energies at typical conditions for some ele-
ments used for Bose-condensation experiments are compiled
in Table I. These data show that the scattering length can be
positive and its absolute value can be of the magnitude or
even less than a.. In these cases, the binding energy is more
than two orders of magnitude higher than the thermal
energy, i.e., the bound state is stable, although |wg| is too
small compared with experimental values of bound
states near the continuum edge. For example, the energy of
the last vibrational state below the continuum edge for
sodium is (—=13100 =900)neV (Ref. 18). The reason for that

difference is that the contact interaction is a low energy ap-
proximation. One would expect an increase in the binding
energy for an increasing potential range. Table I shows fur-
ther that for stable bound states, i.e., w3| > T, the influence
of the medium on the binding energy is negligible. On the
other hand, since a finite-range potential would stabilize the
bound states, a medium influence on them may be measur-
able.

V. SUMMARY

To summarize, it was shown that the contact interaction
always produces attractive forces if one postulates a finite
scattering length. A bound state appears as soon as the inter-
action is strong enough. Due to the Bose enhancement,
many-body effects support the formation of bound states,
while thermal fluctuations and the motion relative to the me-
dium hinder this formation. The model describes the experi-
mental experience that bound states and cluster formation
appear before the Bose condensation. The calculations show

1 T T
\\ — — strong attractive, a,> 0, one bound state
\\ . — . weak attractive, a,< 0, no bound state
\ .
\ — repulsive, a,> 0, no bound state
= N
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=
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FIG. 5. Scattering phase versus momentum for a finite-range
two-particle interaction with one possible bound state.
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that for bosons at finite density, bound states are possible on
both sides of a Feshbach resonance but they are quite un-
stable near the resonance too. To find better agreement with
the experiment and to make predictions for future experi-
ments, the model has to be improved to describe an interac-
tion with finite range and bound states with finite lifetime.
Our T-matrix approximation shows that in contrast to the
pseudopotential ansatz, the scattering length is not necessar-
ily proportional to the interaction strength and that whether
the interaction is attractive or repulsive does not follow in-
evitably from the sign of the scattering length. Whether an
interaction is repulsive or attractive can be found from the
sign of the scattering phase, the slope of which for small
momenta is related to the scattering length, as shown in
Fig. 5. The contact interaction can only describe the strong
and weak attractive cases, while the pseudopotential can only
describe the weak attractive and repulsive cases. Therefore,
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the sign of the scattering length alone is not decisive whether
the interaction is attractive or repulsive. Otherwise, one
would have to face the paradoxical situation that bound
states also appear for a repulsive interaction. Though the
contact interaction can describe the BEC-BCS transition,!? it
seems that one has to include inevitably the effect of a finite
potential range in order to be able to describe bound states,
pairing, and BEC correctly at the same time.
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