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We present a careful and thorough microscopic derivation of the anisotropic Kondo Hamiltonian for single-
molecule magnet �SMM� transistors. When the molecule is strongly coupled to metallic leads, we show that by
applying a transverse magnetic field it is possible to topologically induce or quench the Kondo effect in the
conductance of a SMM with either an integer or a half-integer spin S�1 /2. This topological Kondo effect is
due to the Berry-phase interference between multiple quantum tunneling paths of the spin. We calculate the
renormalized Berry-phase oscillations of the two Kondo peaks as a function of the transverse magnetic field by
means of the poor man’s scaling. In particular, we show that the Kondo exchange interaction between itinerant
electrons in the leads and the SMM pseudospin 1/2 depends crucially on the SMM spin selection rules for the
addition and subtraction of an electron and can range from antiferromagnetic to ferromagnetic. We illustrate
our findings with the SMM Ni4, which we propose as a possible candidate for the experimental observation of
the conductance oscillations.
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I. INTRODUCTION

Single-molecule magnets �SMMs�, such as Mn12 �see
Refs. 1 and 2� and Fe8 �see Refs. 3 and 4�, have become the
focus of intense research since experiments on bulk samples
demonstrated the quantum tunneling of a single magnetic
moment on a macroscopic scale. These molecules are char-
acterized by a large total spin, a large magnetic anisotropy
barrier, and a weak in-plane anisotropy, which allow the spin
to tunnel through the barrier. Electronic transport through
SMMs offers several unique features with potentially large
impact on applications such as high-density magnetic storage
as well as quantum computing.5 Recent experiments have
pointed out the importance of the interference between spin
tunneling paths in molecules. For instance, measurements of
the magnetization in bulk Fe8 have observed oscillations in
the tunnel splitting �m,−m between states Sz=m and −m as a
function of a transverse magnetic field at temperatures be-
tween 0.05 and 0.7 K �see Ref. 6�. This effect can be ex-
plained by the interference between Berry phases associated
with spin tunneling paths of opposite windings.7,8 Theoreti-
cally, a coherent spin-state path-integral formulation is used
to account for the coherence of the virtual states over which
the spin tunnels, although the initial and final spin states do
not retain their coherence.

A different approach to the study of SMMs opened up
recently with the first observation of quantized electronic
transport through an isolated Mn12 molecule.9 One expects a
rich interplay between quantum tunneling, phase coherence,
and electronic correlations in the transport properties of
SMMs. In fact, it has been argued that the Kondo effect
would only be observable for SMMs with half-integer
spin10,11 and therefore absent for SMMs, such as Mn12, Fe8,
and Ni4, where the spin is integer. Later, two of us showed
that this is not the case.12 Remarkably, a transverse magnetic
field H� can be tuned to topologically quench the two lowest
levels of a full-integer spin SMM, making them degenerate.
In fact, the same Berry-phase interference also affects trans-

port for SMMs with half-integer spin. In that case, sweeping
H� can lead not only to one but to a series of Kondo reso-
nances. In the case of SMMs, as we show below, the Berry-
phase oscillations of the tunnel splitting �m0,m0�

lead to an
oscillation of the Kondo effect as a function of H�. This
means that, at zero bias, the Kondo effect is observable for
all values of the magnetic field H�,0 such that �m0,m0�

�H�,0�
=0.

It is interesting to note that, at a finite bias, the Kondo
effect in a quantum dot in the presence of a magnetic field
can be restored by tuning the bias to eV= �g�BH� �see Ref.
13�. For SMMs, however, the interference between the Berry
phases of the molecule total spin makes the distance between
the split Kondo peaks, which is equal to eV= ��m0,m0�

and
oscillates as a function of H�. A necessary condition for
observing these oscillations is a large enough tunnel split-
ting. Recently a different SMM based on tetranuclear nickel
clusters Ni4 with a S=4 ground state has been synthesized.14

Our motivation for studying this particular nanomagnet
stems partly from its high symmetry �S4� but, more impor-
tantly, from the large tunnel splittings �m0,−m0

�0.01 K or
larger �depending on the transverse field H�� between the
�m�= �4� and �m��= �−4� ground states.

Recently, some authors have argued that the Kondo effect
is absent at the diabolic points of the Berry-phase
interference.11 This conclusion came from considering a
Kondo Hamiltonian,10,11 which was not derived microscopi-
cally. Moreover, in recent analysis of the sequential tunnel-
ing regime, an exchange Hamiltonian mixed with an
Anderson-type Hamiltonian was also used without a micro-
scopic derivation.15 In this paper, we provide a careful mi-
croscopic derivation of the Kondo Hamiltonian suitable for
full- and half-integer spin single-molecule magnets by means
of a Schrieffer-Wolff transformation.16 By using the exact
eigenstates of the positively and negatively charged single-
molecule magnet, it is sufficient to apply the Schrieffer-
Wolff transformation to the second order in the tunneling
matrix element. The resulting Kondo exchange parameters
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exhibit the interference between the second-order transition
paths going over the two virtual charged states. We show that
this very same interference phenomenon is also responsible
for the Berry-phase blockade of the current through the
SMM in the cotunneling regime, which extends our previous
results obtained for the Berry-phase blockade in the sequen-
tial tunneling regime.17

Our derivation of the Kondo Hamiltonian reveals an im-
portant detail. The Anderson-type Hamiltonian of the SMM
can be mapped onto a spin-1/2 anisotropic Kondo Hamil-
tonian in two different ways. Let Sq=0 be the total spin of the
uncharged single-molecule magnet. �i� If the total spins Sq=1
and Sq=−1 in the ground state of the positively �q=−1� and
negatively �q=1� charged single-molecule magnets are equal
to Sq=�1=Sq=0−1 /2, then the anisotropic Kondo Hamiltonian
exhibits an antiferromagnetic exchange coupling, which cor-
responds to the Kondo problem for spin-1/2 impurities or
spin-1/2 quantum dots. �ii� If Sq=�1=Sq=0+1 /2, then the an-
isotropic Kondo Hamiltonian exhibits a ferromagnetic ex-
change coupling that leads to a vanishing renormalized
transverse exchange coupling �Ising interaction�, in which
case the Kondo effect is absent.18

This dependence of the Kondo exchange coupling on the
change of the spin was found long ago for the isotropic
case,19 where the Berry-phase interference is not present.
Here, we show that this result also holds true for the aniso-
tropic case relevant to SMMs. Thus, in SMMs, the Kondo
effect depends crucially on the spin selection rules for the
addition/subtraction of an electron to/from the molecule.
This result is in contrast to the Kondo effect seen in lateral
quantum dots, where the exchange coupling is always anti-
ferromagnetic due to the fact that spin states are degenerate
in the absence of anisotropies.20

In the following, we provide a complete and detailed de-
scription of the Kondo effect in SMMs. Starting from a mi-
croscopic model �Sec. II�, we derive the effective Kondo
Hamiltonian for a SMM attached to metallic leads through
tunneling barriers �Sec. III�. In Sec. IV, we derive expres-
sions for the conductance through a SMM for both zero and
finite bias as a function of a transverse magnetic field and use
the SMM Ni4 to comment the experimental significance of
our theoretical results. Our conclusions are summarized in
Sec. VI.

II. MICROSCOPIC HAMILTONIAN

The total Anderson-impurity-like Hamiltonian of a system
formed by a SMM attached to two metallic leads can be
separated into three terms �see Fig. 1�,

Htot = HSMM + Hlead + HSMM-lead. �1�

The first term on the right-hand side of Eq. �1� denotes the
SMM part, which can be broken into spin, orbital, charging,
and gate contributions,

HSMM = Hspin
�q� + Horbital +

q2

2
U − qeVg, �2�

where U denotes the charging energy, q is the number of
excess electrons �the charge state of the molecule�, and Vg is

the electric potential due to an external gate voltage.21 In the
presence of an external magnetic field, the spin Hamiltonian
of the SMM reads,

Hspin
�q� = − AqSq,z

2 +
B2,q

2
�Sq,+

2 + Sq,−
2 � +

B4,q

3
�Sq,+

4 + Sq,−
4 �

+
1

2
�h�

� Sq,+ + h�Sq,−� + h�Sq,z, �3�

where the easy axis is taken along the z direction and Sq,�
=Sq,x� iSq,y. The magnetic-field components were rescaled
to h�=g�B�Hx+ iHy� and h� =g�BHz for the transversal and
longitudinal parts, respectively, where g denotes the electron
gyromagnetic factor. Note that the transverse magnetic field
lies in the xy plane. In this Hamiltonian, the dominant lon-
gitudinal anisotropy term creates a ladder structure in the
molecule spectrum where the ��mq� eigenstates of Sq,z are
degenerate. The weak transverse anisotropy terms couple
these states. The total spin, as well as the coupling param-
eters, depend on the charging state of the molecule. For ex-
ample, it is known that Mn12 changes its easy-axis anisotropy
constant �and its total spin� from A0=56 �eV �Sq=0=10� to
A−1=43 �eV �Sq=1=19 /2� and A−2=32 �eV �Sq=2=10�
when singly and doubly charged, respectively.22

The orbital contribution to the SMM energy is given by

Horbital = �
n,�

�n��n�
† �n�, �4�

where �n�
† ��n�� creates �annihilates� electrons in the

molecular-orbital state n with spin orientation � and energy
�n�. Here we neglect any diamagnetic response to external
magnetic fields.

The second and third terms on the right-hand side of Eq.
�1� read,

Hlead = �
a,k,�

	k
�a��k�,a

† �k�,a +
1

2
�h�

� sa,+ + h�sa,−� + h�sa,z,

�5�

and

HSMM-lead = − �
a,k,�,n

�tn,k
�a��k�,a

† �n� + H.c.	 , �6�

respectively, where sa=�k,k�,�,���a=R,L�k�,a
† ����� /2��k���,a

and tn,k
�a� is the lead-molecule tunneling amplitude. The opera-

VL
VR

Vg

qS

source drain

gate

molecule

FIG. 1. �Color online� Schematic illustration of a single-
molecule field-effect transistor formed by a SMM attached to two
metallic leads �source and drain� and controlled by a back gate
voltage.
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tor �k�,a
† ��k�,a� creates �annihilates� electronic states in the a

lead �a=R ,L� with linear momentum k, spin orientation �,
and energy 	k

�a�.

III. KONDO HAMILTONIAN

The weak tunneling amplitudes between the leads and the
molecule and the large charging energy cause an effective
exchange interaction between electrons in the leads and the
spin of the molecule. Although this interaction at first glance
seems to have the familiar Kondo s−d form, it is actually
unusual because the transversal coupling involves only a
subspace of the spin of the molecule. Below, we use pertur-
bation theory to carefully derive an expression for the effec-
tive Kondo Hamiltonian of a SMM.

We begin by considering only the SMM and SMM-lead
terms in Eq. �1�. We divide the Hilbert space into subspaces
corresponding to distinct charge sectors of the SMM. Using a
block matrix representation, we have

HSMM + HSMM-lead =

�

Hq−1 V 0

V† Hq W
0 W† Hq+1

�

� ,

�7�

where Hq is the SMM Hamiltonian for the charge sector q
�see Eq. �2�	, while V and W represent the lead-SMM tun-
neling Hamiltonian �Eq. �6�	. For certain values of the gate
voltage, the charging energy is compensated and the Cou-
lomb blockade is lifted. Away from these resonant points,
there is an energy gap of order U between consecutive diag-
onal elements in Eq. �7�. Since U
 �tn,k�, we can assume that
the off-diagonal elements V and W are small perturbations
and use a Schrieffer-Wolff transformation16 to decouple dis-
tinct charge sectors up to terms of order O��tn,k�2 /U2� �see
Appendix A�.

In the Coulomb blockade valley, when Vg=0 in Eq. �2�,
the eigenstates of the Hamiltonian Hq are expressed in terms
of symmetric and antisymmetric combinations of the eigen-
states of the Sq,z operator, namely,

�s,a�mq
=

1
�2

��mq�0 � �− mq�0� , �8�

with mq=0,1 ,2 , . . . ,Sq if Sq is an integer and mq

= 1
2 , 3

2 , . . . ,Sq if Sq is a half integer.23 Note that since the
matrices W and V represent the addition �subtraction� of an
electron to �from� the SMM, only q=0 states that differ in
spin projection by one are coupled. Conservation of angular
momentum upon electron tunneling requires that the inter-
mediate states in the q=1 or q=−1 sectors obey �S�1−S0�
=1 /2. For instance, when the SMM total spin is lowered by
the addition or subtraction of an electron, longitudinal spin
components satisfy m�1=S�1=S0−1 /2 and −m�1=−S�1=
−S0+1 /2. Therefore, we define the spin states of the ground
state to be �↑q�= �mq� and �↓q�= �−mq�. The corresponding
eigenenergies are presented in Fig. 2.

Let us first consider intermediate states involving the q
=1 sector. This situation corresponds to a small positive gate
voltage �Vg�0�. Using Eq. �A12� we can write the matrix
elements of the reduced Hamiltonian of the q=0 sector in
terms of a product of energy denominators and matrix ele-
ments of W. To obtain the effective Kondo Hamiltonian, we
use the following definition for the operator W:

W = − �
a,k,�,n

tn,k
�a��k�,a

† �n�, �9�

with n being an occupied molecular orbital for a SMM in the
charge state q=1. We will now consider the case when add-
ing or subtracting an electron always decreases the SMM
total spin, namely, Sq=�1=Sq=0−1 /2. This selection rule can
be enforced through the adoption of the following matrix
elements:

0
↑ ��n��↑�1 = �m0,m1−���,↓, �10�

0
↓ ��n��↓�1 = �−m0,−m1−���,↑, �11�

1
↑ ��n�
† �↑�0 = �m0,m1−���,↓, �12�

and

1
↓ ��n�
† �↓�0 = �−m0,−m1−���,↑. �13�

�For the sake of simplicity, we will assume that m0 ,m1�
1
2

and �= �
1
2 hereafter.� By using the above selection rules

and calculating all the matrix elements of the reduced Hamil-
tonian of the q=0 sector �see Appendix A�, one finds the
following effective Kondo Hamiltonian:

H̃0 = H0 + �
k�,a�

�
k,a

�Jk,a;k�,a�
z

�0
z��k↑,a

† �k�↑,a� − �k↓,a
† �k�↓,a��

− Jk,a;k�,a�
� ��0

+�k↓,a
† �k�↑,a� + �0

−�k↑,a
† �k�↓,a��

− jk,a;k�,a�
� ��k↓,a

† �k�↑,a� + �k↑,a
† �k�↓,a��	 , �14�

where the last term in Eq. �14� is a scattering term that does

∆

∆ 1

0

E

E

E
E

E

(0)

(0)

(1)(−1)

(−1)

a,m

s,m

a,m

a,m

s,m
∆ −1

q=−1 q=0 q=1

U
2

U
2

0
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−1

−1
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FIG. 2. �Color online� Energy spectra of consecutive charging
sectors of the SMM Hamiltonian �q=−1,0 ,1�. �q��mq,−mq

is the
tunnel splitting due to the in-plane anisotropy and Es/a,mq

�q� denote
energy eigenstates corresponding to symmetric and antisymmetric
combinations of the ground eigenstates ��sq� of the longitudinal
component of the SMM total spin Sq,z.
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not affect the dynamics of the SMM and can be neglected.
The effective exchange coupling constants that appear in Eq.
�14� are given by the following expressions:

Jk,a;k�,a�
z = 2tk

�a�tk�
�a��� U + �0

�U + �0�2 − �1
2 +

U − �0

�U − �0�2 − �1
2� ,

Jk,a;k�,a�
� = 4tk

�a�tk�
�a��� �1

�U + �0�2 − �1
2 +

�1

�U − �0�2 − �1
2� ,

Jk,a;k�,a�
� = 4tk

�a�tk�
�a��� �1

�U + �0�2 − �1
2 +

�1

�U − �0�2 − �1
2� .

The longitudinal exchange coupling Jk,a;k�,a�
z is positive,

which indicates an antiferromagnetic Kondo exchange. We
have neglected the dependence of the hopping matrix ele-
ments on the SMM molecular-orbital number n. This is jus-
tified when the addition or subtraction of an electron brings
the molecule to the electronic ground state of the particular
charge sector. In this sense, only one orbital state can be
filled �emptied� when an electron is added �removed�.

A diagrammatic representation of the longitudinal and
transverse exchanging interactions is shown in Fig. 3. These
diagrams differ from the usual Kondo effect in the sense that
the transverse spin-flipping interaction in a SMM requires a
quantum tunneling of the total magnetization during its vir-
tual state.

If we consider the case where adding or subtracting an
electron always increases the total spin in the SMM, namely,
Sq=�1=Sq=0+1 /2, we have to modify Eqs. �10�–�13� by
adopting the following matrix elements instead:

0
↑ ��n��↑�1 = �m0,m1+���↑, �15�

0
↓ ��n��↓�1 = �−m0,−m1+���↓, �16�

1
↑ ��n�
† �↑�0 = �m0,m1+���↑, �17�

and

1
↓ ��n�
† �↓�0 = �−m0,−m1+���↓. �18�

Using these selection rules, we arrive at a Kondo Hamil-
tonian with exactly the same form as that in Eq. �14�. The
expressions for the exchange coupling constants are the same
as before, except that the longitudinal coupling Jk,a;k�,a�

z

changes its overall sign and becomes negative, signaling a
ferromagnetic Kondo exchange interaction. However, the
strong anisotropy remains, with the bare longitudinal cou-
pling dominant over the transversal one. This result makes
direct contact with the Bethe ansatz study of Aligia et al.,19

where it was shown that, for an isotropic intermediate-
valence rare-earth impurity embedded in a metal, the sign of
the Kondo exchange coupling depends on the change in the
impurity spin upon charging. Therefore, in our derivation of
the Kondo Hamiltonian for SMMs, we have generalized this
early result to the anisotropic case.

We can summarize our results so far by stating that; �i� if
Sq=�1=Sq=0−1 /2 then Jk,a;k�,a�

z 
Jk,a;k�,a�
�

�0 �antiferromag-
netic exchange coupling�; and �ii� if Sq=�1=Sq=0+1 /2 then
Jk,a;k�,a�

z 
−Jk,a;k�,a�
�

�0 �ferromagnetic exchange coupling�.

IV. CONDUCTANCE AND THE KONDO EFFECT IN A
SMM

Strong evidence now exists for the Berry-phase interfer-
ence between spin paths of opposite windings in molecular
nanomagnets.4 Different quantum spin tunneling trajectories
can combine and give rise to constructive or destructive in-
terference effects, which can be confirmed by measuring the
tunnel splitting � as a function of the transverse magnetic
field applied along the hard axis of the SMM. It turns out that
a magnetic field along the hard anisotropy direction of the
SMM can periodically change the tunnel splitting �Berry-
phase oscillations�.6 In this section we are going to point out
the importance of the topological interference term of the
Berry phase for the problem of the conductance and the
Kondo effect in a single-molecule magnet �SMM� transistor.

In order to evaluate the conductance of the SMM in the
equilibrium regime subjected to the Hamiltonian �14�, we
make use of the standard poor man’s scaling approach to
renormalize the effective exchange coupling constants Jz and
J� and the g factor. This will allow us to qualitatively de-
scribe the important features of the system above the Kondo
temperature. If we want to go below the Kondo temperature
or to address the question of nonequilibrium transport when
T→0, one should use more sophisticated techniques such as
numerical renormalization-group techniques24 that are be-
yond the scope of this paper.

We start by calculating the renormalization flow at the
points where the Kondo effect is observable at zero bias,
namely, where the tunnel splitting vanishes—�0�h�

�l�	=0. For
half-integer spins, it is reasonable to assume that h�

�l�
TK,
except for the first zero �l=0�. The total Hamiltonian reads

t t

U

1

∆ z

~

z

t
2

U

( S = 0, s = 0)∆
zS = mzS = m

zS = m + s

0 0

0 z

s
z

s
z

s
z

s
z

t
~

1 t1

UU

U

t2

∆

S = −mzz
z

S = −m +sz

2

S = m −sz 00

S = m0 0

∆
1

zz

1

∆( S = −2m ,0 s = +1)z∆

(b)

(a)

FIG. 3. �Color online� Diagrams representing the �a� longitudi-
nal and �b� transversal exchange interactions between the SMM
magnetization and the electrons in the leads.
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Htot = �
m
��m +

1

2
��h�

� �+ + h��−�� + �
k,s

	k�ks�ks + H̃0,

�19�

where �m is the eigenvalue of �m� for h�=0 and, due to the
Knight shift, �=1−�0J� /2, with �0 denoting the density of
states of the itinerant electrons at the Fermi energy.20 We do
not include the Zeeman term for the itinerant electrons in Eq.
�19� because at finite values of h�

�l�, one has to cut the edges
of the spin-up and spin-down bands in the leads to make
them symmetric with respect to the Fermi energy.20 We call
D the resulting bandwidth.

The Hamiltonian �19� remains invariant under
renormalization-group transformations. We obtain the fol-
lowing flow equations:

dJ�

d�
= 2�0J�Jz, �20�

dJz

d�
= 2�0�J��2, �21�

and

d�

d�
= − �0

2J�Jz, �22�

where �=ln�D̃ /D� and D̃ is the rescaled bandwidth. Dividing
Eq. �20� by Eq. �21� and integrating by parts gives �Jz�2

− �J��2=C2, where C is a positive constant.25

We have to distinguish between two cases; Jz is either
positive or negative. If Jz is positive, then the exchange cou-
pling constants remain antiferromagnetic during the flow but
the exchange interaction becomes increasingly isotropic.
Solving Eqs. �20� and �21� yields,

1

2�0C
arctan h�C

Jz� = ln� D̃

TK
� . �23�

The solution for J� is determined by Jz=��J��2+C2. The

flow of � is shown in Fig. 4. The flow stops at D̃���T
�TK. In the antiferromagnetic case the Berry-phase oscilla-

tions get strongly renormalized by the scaling of the Knight
shift.

Since �Jz�
J�, when Jz is negative, the transverse ex-
change coupling J� renormalizes to zero. Therefore, in this
case the Kondo resonance cannot form and the interaction
becomes Ising-like. The interesting feature of J�=0 is that
the Knight shift vanishes.

A. Linear conductance

In order to calculate the linear conductance through the
SMM, we use the following well-known expression valid in
the weak-coupling regime when TK
T:20

G�T� = G0�
−�

�

d��−
df

d�
��2�0

2

16
�A����2, �24�

where G0 is the classical �incoherent� conductance of the
molecule, df /d� is the derivative of the Fermi function, and
A��� is the electron-scattering amplitude related to the trans-
mission through the SMM with an energy �� above the
leads’ Fermi energy. At the end of the scaling flow, the tran-
sition amplitude can be calculated in the first-order perturba-
tion theory as

AD̃�� = J�
� = C� ��/TK�2�0C

��/TK�4�0C − 1
� . �25�

The Knight shift is related to the scattering amplitude by

�D̃�� = 1 −
�0AD̃��

2
. �26�

By making the substitution �→T into Eq. �25�, one finds
that the linear conductance diverges when T→TK, signaling
the onset of the Kondo effect. Since C�0, the singularity in
Eq. �25� differs from the usual logarithmic behavior found
for isotropic exchange interactions. We note, however, that in
reality, the conductance does not diverge but is rather
strongly enhanced near the Kondo temperature. The poor
man’s scaling breaks down near the Kondo temperature and
more accurate nonperturbative methods, such as the density-
matrix renormalization group,27 have to be employed for ob-
taining a quantitative description of the conductance depen-
dence on temperature.

Using Eq. �24�, we get for the linear conductance,

G�T�
G0

=
�2�0

2

16
�J

D̃�T

� �2, �27�

which has the same functional form as the result of Ref. 28
for the resistivity of bulk metals in the presence of Kondo
impurities.

All the zero points of the Berry-phase oscillation are res-
caled by the g-factor renormalization b�

�l�=h�
�l� /�D̃�T. Thus,

the zero points become dependent on the contributing states
�m� and �−m�. This result indicates that the period of the
Berry-phase oscillations becomes temperature dependent at
T�TK �see Fig. 5�. This fact allows us to conclude that the
scaling equations can be checked experimentally by measur-
ing the renormalized zero points of the Berry phase. Further-

� � � � � ��
� � �

�

��

���	

�

��	

�

��	
�

FIG. 4. The renormalization of the g factor due to the Knight
shift. As an estimate, we use �0J�=�0Jz=0.15, where �0=9.45
�1020 J−1�see Ref. 26�.
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more, due to the scale invariance of the Kondo effect, the
distance between the zeros should follow a universal func-
tion of T /TK �see Fig. 5�.

B. Nonlinear conductance

Let us now study the conductance for nonzero bias, V
�0. We will assume that eV
kBTK and thus set T
TK. In
this limit, we can make use of the results obtained from the
poor man’s scaling to get a qualitative description of trans-
port through the SMM. We begin from the general expres-
sion of the current generated in response to an applied
voltage,29

I =
e

h
�
�
�

0

�

dE
�L��R�

�L� + �R�

��E��fL�E� − fR�E�	 , �28�

where ��E� is the energy dependent density of states, �L�

��R�� is the escape rate for the left �right� lead, and fL �fR� is
the Fermi function for the left �right� lead. For the sake of
simplicity, we assume �L�=�R�=�. Since, at low tempera-
tures,

fL�E� − fR�E� � �1 if EF − eV/2 � E � EF + eV/2,

0 otherwise,
�
�29�

where EF is the Fermi energy of the leads, we get the fol-
lowing expression for the differential conductance:

G =
dI

dV
=

�e2

2h
�

0

�

dE�A�E��2���E − EF − eV/2�

− ��E − EF + eV/2�	 . �30�

Consider the situation where one moves from the zero
point b�

�n� to the magnetic-field value b�=b�
�l�+�b�, where

�b�=�h� /�. If �eV�
�0�b��
TK, the transmission ampli-
tude is well approximated by Eq. �25�. On the other hand, for
�eV�
TK
�0�b��, the transmission amplitude is given by
AeV=JeV

� . For the case �eV���0�b��
TK, we can expand
AD̃�max�T,�0�b��	 up to the second order in perturbation theory
at the end of the flow, yielding,

AD̃��� = J
D̃

�
+ �0�

−D̃+eV/2

D̃−eV/2
d��

J
D̃

�
J

D̃

z

� − ��

= J
D̃

�
+ �0J

D̃

�
J

D̃

z
ln�� + D̃ − eV/2

� − D̃ + eV/2
� , �31�

where the integration limits account for the asymmetric cut
of the bands �see Fig. 6�. For �eV���0�b���T, the renor-

malization flow stops at D̃=�0�b��. Substituting Eq. �31�
into Eq. �30� and setting EF=0, we obtain the differential
conductance up to third order in JD̃ for both positive and
negative biases eV,

G

G0
=

�2�0
3

16
J

D̃

�2
J

D̃

z
ln� �0

�eV��− �0�� , �32�

which agrees with the corresponding expression found in
Ref. 28. Equation �32� represents the conductance of the
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FIG. 5. The graph shows the temperature dependence of the
zeros for the spin ground state of the SMM Ni4 due to the Berry-
phase oscillation as a function of the transverse magnetic field for
the tunnel splittings between �4� and �−4� states �S0=4� and the
following temperature values: �a� T /TK=1.5, �b� T /TK=1.6, �c�
T /TK=1.7, and �d� T /TK=1.8. We used the following values for the
anisotropy constants Aq=0.000 11 eV, B2,q=2.96 �eV, and B4,q=
−0.25 �eV.
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SMM as a function of temperature and tunnel splittings be-
tween the �4� and �−4� states. In Fig. 7 one can see how the
conductance depends on the temperature and takes a mini-
mum value for those points where the tunnel splitting is zero,
which corresponds to the zeros in Fig. 5. Note that our con-
ductance formula depends only on the bias voltage and not
on the individual chemical potentials of the leads, i.e., our
conductance formula is gauge invariant, which is a result of
the asymmetric band cutting shown in Fig. 6.

The two split Kondo peaks appear at �eV�=�0�b��. Thus,
the distance between the two peaks oscillates with the mag-
netic field, following the renormalized periodic oscillations
of the tunnel splitting �0�b��.

V. CONDUCTANCE AND THE KONDO EFFECT IN A
SMM IN THE COTUNNELING REGIME

At zero temperature, the current in a single-electron tran-
sistor can be understood as a sequential process of single
electrons tunneling in and out of the SMM, where the trans-
port channel is in between the electrochemical potentials of
the source and drain reservoir. The electron transport through
the SMM is also possible for any off-resonant energy, which
is commonly called the cotunneling regime, but it is ex-
pected to be very small compared to the sequential tunneling.
The cotunneling contribution can be calculated by Fermi’s
golden rule in the second-order perturbation theory, i.e.,

wi→f =
2�

�
�
f �H�i� + �

m


f �H�m�
m�H�i�
Em − Ef

�2

��E� , �33�

and plays a dominant role whenever the sequential tunneling
is suppressed, i.e., 
f �H�i�=0, where i and f denote the initial
and final states of the SMM, respectively. Perturbation theory
can be applied when the coupling between the SMM and the
leads is weak, i.e., t
U.20 In contrast to the Kondo effect,
where the tunnel coupling t of the leads is very large, in the
cotunneling regime, t is typically small and, thus, it is nec-
essary to apply a gate voltage Vg in order to get close to the
resonance condition of, for example, the q=1 charged state.
Thus, we need to take only the electron scattering into ac-
count, thereby neglecting the hole scattering contribution.
Using the incoherent spin states for temperatures around 1
K,17 we can calculate the cotunneling contribution by means
of Eq. �33� in the following form:

w↓→↑ =
2�

�
� 0
↓ �Htot�s�
s�Htot�↑�0

Ũ/2 − �1/2

+
0
↓ �Htot�a�
a�Htot�↑�0

Ũ/2 + �1/2
�2

��E� , �34�

FIG. 6. Diagrams showing the asymmetric cut of the left- and
right-contact bands when a finite bias is applied.

0 1 2 3 4 5 60

1

2

3

4

5

6

10

10

0 1 2 3 4 5 60

1

2

3

4

5

6

10

10

0 1 2 3 4 5 60

1

2

3

4

5

6

10

10

0 1 2 3 4 5 60

1

2

3

4

5

6

10

10

(b)

(a)

(c)

(d)

FIG. 7. Plots showing the temperature dependence of the con-
ductance and the zeros for the tunnel splittings between the spin
ground states �4� and �−4� of the SMM Ni4 �S0=4� due to the
Berry-phase oscillation as a function of the transverse magnetic
field for the following temperature values: �a� T /TK=1.5, �b�
T /TK=1.6, �c� T /TK=1.7, and �d� T /TK=1.8. We used a bias volt-
age of Vb=VL−VR=2.7 �V and the following values for the aniso-
tropy constants Aq=0.000 11 eV, B2,q=2.96 �eV, and B4,q=
−0.25 �eV.
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where Ũ=U+Vg and the factor of 1/2 in the denominator is
because of the definition of the energy spectra for the SMM
eigenstates given in Fig. 2. Using Eq. �8� in Eq. �34� we get,

w↓→↑ =
2�

�
� 0
↓ �H̃�↓�00
↑ �H̃�↑�0

Ũ − �1

−
0
↓ �H̃�↓�00
↑ �H̃�↑�0

Ũ + �1

�2

��E� . �35�

After some simple algebra, we arrive at the following expres-
sion for the tunnel rate process:

w↓→↑ =
2�

�
t4� 2�1

Ũ2 − �1
2�2

��E� , �36�

where t is the lead-molecule tunneling amplitude. Comparing
Eq. �36� with Jk,a;k�,a�

� , we see that the second contribution to
Fermi’s golden rule is proportional to the exchange coupling
constant, which is to be expected since the Schrieffer-Wolff
transformation is a perturbative approach of the second or-
der. The advantage of using the Schrieffer-Wolff transforma-
tion is that you can apply the formalism of the renormaliza-
tion theory to get a better description of the physical system
near the Kondo temperature.

Focusing on the Ni4 single-molecule magnet, we use Eq.
�36� to calculate the total cotunneling rate between states
�↑ �= �4� and �↓ �= �−4� that will contribute to the current
flowing through the single-electron transistor,

W4,−4 =
2�t4�1

2

�
�

−eV/2−Ũ

eV/2−Ũ dE

�E2 − �1
2�2 , �37�

where we integrate over all initial and final states that are
available within the range of the bias voltage V. Performing
the integration in Eq. �37� yields,

W4,−4 =
4�t4

� � Ũ − eV/2

�Ũ − eV/2�2 − �1
2

−
Ũ + eV/2

�Ũ + eV/2�2 − �1
2

+
1

2�1
ln� ��1 + eV/2�2 − Ũ2

��1 − eV/2�2 − Ũ2
�� . �38�

The total current flowing through the SMM can be calculated
in terms of the density matrix by using the master equation.
Following the same procedure as in Ref. 17, we obtain the
coupled differential equations,

�̇4 = ��1

�
�2 2�4,−4

Vg
2/�2 + �4,−4

2 ��−4 − �4� + W4,−4�−4 − W−4,4�4,

�39�

and

�̇−4 = ��1

�
�2 2�4,−4

Vg
2/�2 + �4,−4

2 ��4 − �−4� + W−4,4�4 − W4,−4�−4,

�40�

where �4,−4 is the incoherent tunneling rate from the lead to
the molecule. Solving the set of differential equations for �4
and �−4 for the stationary case, we obtain the current flowing
through the SMM for the case where the source and the drain
leads are oppositely spin polarized, as described in Ref. 17,

I = eW4,−4�−4 =
2e�4,−4�1

2W4,−4

W4,−4�Vg
2 + �4,−4

2 �2� + 4�4,−4
2 �1

2 . �41�

Figure 8 shows the cotunneling current as a function of the
transverse magnetic field. Interestingly, the current is sup-
pressed at the zeros of the tunnel splittings �1 and �0, ex-
actly as in the sequential tunneling regime.17

VI. CONCLUSIONS

The main contribution of this paper is to show how the
total Hamiltonian of a SMM transistor can be mapped into
the Kondo Hamiltonian by means of a Schrieffer-Wolff
transformation. While the derivation of the effective Kondo
Hamiltonian in other contexts �such as quantum dots and
ordinary single �nonmagnetic� molecule coupled to leads	 is
well known, the case is different for SMM. The dominant
Kondo effect is unusual for a SMM since it involves a pseu-
dospin of the molecule rather than its total spin. We show
that if the total spin of the molecule is reduced �increased�
for the charged states, then the Kondo Hamiltonian exhibits
an antiferromagnetic �ferromagnetic� coupling, which leads
to the screening �antiscreening� of the total spin of the SMM.
In the case of antiferromagnetic coupling, the renormaliza-
tion leads to a Kondo effect, i.e., the conductance through the
SMM exhibits a resonance at the Fermi energy. In the case of
the ferromagnetic coupling, the transverse exchange is renor-
malized to zero, in which case the Kondo resonance is ab-
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FIG. 8. �Color online� Graph showing log10 I versus the trans-
verse magnetic field for Vb=VL−VR=4�10−3 eV, Vg=0.01 eV,
and �4,−4=1012 s−1. One can see that the current is suppressed at
the zeros of the tunnel splittings �1 and �0.
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sent. This result is in contrast to the case of the Kondo effect
in lateral quantum dots exhibiting only antiferromagnetic ex-
change coupling, which is due to the fact that all the spin
states are degenerate in the absence of anisotropies.20 The
standard Kondo screening of the molecule magnetization by
itinerant electrons in the leads is a very weak effect in this
context, given the large spin of a SMM �its onset is therefore
likely to occur only at exceedingly small temperatures,
which are inaccessible to current experiments�.

A careful derivation of the effective Kondo Hamiltonian
shows the strong dependence of this phenomenon on the
amplitude and orientation of an external magnetic field. The
strong uniaxial magnetic anisotropy of the SMM combined
with the weaker in-plane anisotropy creates a pseudospin 1/2
involving states with opposite magnetization orientation. A
transverse magnetic field modulates the tunnel barrier be-
tween these states through a Berry-phase interference effect.
That, in turn, modulates periodically the Kondo effect in
SMMs.

We have calculated the conductance of the single-
molecule transistor in the presence of the Kondo effect by
using the standard poor man’s scaling approach. We have
shown that in the case of antiferromagnetic Kondo exchange
coupling by applying a transverse magnetic field to a SMM
with a large full- or half-integer spin S�1 /2, it is possible to
topologically induce or quench the Kondo effect of the con-
ductance of a current through the SMM that is sufficiently
well coupled to metallic leads. We have also shown how the
zero points of the Berry-phase oscillation become tempera-
ture dependent above the Kondo temperature and how they
change direction within the plane �Fig. 5�. The latter indi-
cates that the parity of the Berry-phase oscillations7,8

changes from an integer spin S=4 to a half-integer spin S
=7 /2. We have also shown how this motion affects the tem-
perature dependence of the conductance �see Fig. 7�. Inter-
estingly, the maximum value of the conductance encircles
the zeros of the Berry-phase oscillation, providing a mecha-
nism for establishing the location of these zeros when the
orientation of the molecule symmetry axis with respect to the
metallic contacts is not known. We illustrate these features of
the conductance of a SMM using, as an example, the SMM
Ni4. In our view, due to its large ground-state tunnel splitting,
this is currently the best SMM available for the experimental
observation of the Berry-phase oscillations of the Kondo
resonance.
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APPENDIX A: DERIVATION OF THE ANISOTROPIC
KONDO HAMILTONIAN

For simplicity, let us consider the sectors q=−1,0 , +1
only, where q denotes the number of excess electrons and
write,30

H = A + B , �A1�

where

A = 
H−1 0 0

0 H0 0

0 0 H+1
�, B = 
 0 V 0

V† 0 W
0 W† 0

� . �A2�

Using the similarity transformation H̃=eTHe−T, where T is
anti-Hermitian, we have,

H̃ = H + �T,H	 +
1

2
†T,�T,H	‡ + ¯ . �A3�

We want to determine T such that B+ �T ,A	=0. For that
purpose, it is sufficient to assume that T has the form

T = 
 0 C 0

− C† 0 D
0 − D† 0

� , �A4�

with C and D satisfying

H−1C − CH0 = V �A5�

and

H0D − DH+1 = W , �A6�

respectively. Thus,

H̃ = A +
1

2
�T,B	 + O�B3� , �A7�

where

�T,B	 = 
 CV† + VC† 0 CW − VD
0 DW† + WD† − C†V − V†C 0

W†C† − D†V† 0 − D†W − W†D� . �A8�
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Note that the neutral sector �q=0� has been decoupled from
the charged sectors at the expense of adding two contribu-
tions of order O�V ,W�2 to H0. To specify the form of these
contributions, we use the eigenbasis ����q� of Hq, namely,

q
��Hq���q = �Hq	�� = ��,�E�
�q�. �A9�

Equations �A5� and �A6� can be solved in this representation
to yield,

−1
��C���0 = �C	�� =
�V	��

E�
�−1� − E�

�0� , �A10�

and

0
��D���+1 = �D	�� =
�W	��

E�
�0� − E�

�+1� , �A11�

respectively, where �V	��= −1
��V���0 and �W	��

= 0
��W���−1. This allows us to write the following matrix
elements for the neutral sector:

0
��DW†���0 = �
�

�W	���W†	��

E�
�0� − E�

�+1� , �A12�

and

0
��V†C���0 = �
�

�V†	���V	��

E�
�−1� − E�

�0� . �A13�

In order to evaluate the matrix elements of the reduced
Hamiltonian of the q=0 sector �Eqs. �A12� and �A13�	, we
insert complete eigenvector sets for each sector, i.e., I�q�

= �s�qq
s�+ �a�qq
a�, in the following way:

0
↑ �DW† + WD†�↑�0 = 0
↑ �s�00
s�D�s�11
s�W†�↑�0

+ 0
↑ �a�00
a�D�s�11
s�W†�↑�0

+ 0
↑ �s�00
s�D�a�11
a�W†�↑�0

+ 0
↑ �a�00
a�D�a�11
a�W†�↑�0 + H.c.,

�A14�

0
↓ �DW† + WD†�↓�0 = 0
↓ �s�00
s�D�s�11
s�W†�↓�0

+ 0
↓ �a�00
a�D�s�11
s�W†�↓�0

+ 0
↓ �s�00
s�D�a�11
a�W†�↓�0

+ 0
↓ �a�00
a�D�a�11
a�W†�↓�0 + H.c.,

�A15�

and

0
↑ �DW† + WD†�↓�0 = 0
↑ �DW†�↓�0 + �0
↓ �DW†�↑�0�†,

�A16�

where,

0
↑ �DW†�↓�0 = 0
↑ �s�00
s�D�s�11
s�W†�↓�0

+ 0
↑ �a�00
a�D�a�11
a�W†�↓�0

+ 0
↑ �s�00
s�D�a�11
a�W†�↓�0

+ 0
↑ �a�00
a�D�s�11
s�W†�↓�0, �A17�

and

0
↓ �DW†�↑�0 = 0
↓ �s�00
s�D�s�11
s�W†�↑�0

+ 0
↓ �a�00
a�D�s�11
s�W†�↑�0

+ 0
↓ �s�00
s�D�a�11
a�W†�↑�0

+ 0
↓ �a�00
a�D�a�11
a�W†�↑�0. �A18�

Using Eq. �A11� and the fact that Ea
�+1�=Es

�+1�+�1,

0
↑ �s�0= 0
↓ �s�0= 0
↑ �a�0=1 /�2, and 0
↓ �a�0=−1 /�2, we
find, after some algebra,

0
↑ �DW† + WD†�↑�0 =
1

�2�s�sa

�0
s���sWI�1�W†

− �1W�s�11
s�W†��↑�0	

+
1

�2�a�as

�0
a���asWI�1�W†

− �1W�s�11
s�W†��↑�0	 + H.c.,

�A19�

0
↓ �DW† + WD†�↓�0 =
1

�2�s�sa

�0
s���sWI�1�W†

− �1W�s�11
s�W†��↓�0	

−
1

�2�a�as

�0
a���asWI�1�W†

− �1W�s�11
s�W†��↓�0	 + H.c.,

�A20�

0
↑ �DW†�↓�0 =
1

�2�s�sa

�0
s���sWI�1�W†

− �1W�s�11
s�W†��↓�0	

+
1

�2�a�as

�0
a���asWI�1�W†

− �1W�s�11
s�W†��↓�0	 , �A21�

and

0
↓ �DW†�↑�0 =
1

�2�s�sa

�0
s���sWI�1�W†

− �1W�s�11
s�W†��↑�0	

−
1

�2�a�as

�0
a���asWI�1�W†

− �1W�s�11
s�W†��↑�0	 , �A22�

where �s=Es
�0�−Es

�+1�, �sa=Es
�0�−Ea

�+1�, �a=Ea
�0�−Ea

�+1�, and
�as=Ea

�0�−Es
�+1�. To calculate the matrix elements in Eqs.

�A19� and �A15�–�A17�, we use the following definition for

GONZÁLEZ, LEUENBERGER, AND MUCCIOLO PHYSICAL REVIEW B 78, 054445 �2008�

054445-10



the operator W that originates from the lead-SMM Hamil-
tonian in Eq. �6�:

W = − �
a,k,�,n

tn,k
�a��k�,a

† �n�, �A23�

with n being an occupied molecular orbital for a SMM in the
charge state q=1. Similarly, we define,

W† = �
a,k,�,n

tn,k
�a��k�,a�n�

† , �A24�

which leads to

WI�1�W†

= − �
a,k,�,n

�
a�,k�,��,n�

tn,k
�a�tn�,k�

�a�� �k�,a
† �k���,a���n�I�1��n���

† � ,

�A25�

and

W�s�11
s�W†

= − �
a,k,�,n

�
a�,k�,��,n�

tn,k
�a�tn�,k�

�a�� �k�,a
† �k���,a���n��s�11
s��n���

† � .

�A26�

Then, substituting Eqs. �A25� and �A26� into Eqs. �A19� and
�A15�–�A17�, we arrive at

0
↑ �DW† + WD†�↑�0 = − �
k,a,n

�
k�,a�,n�

Jk,a;k�,a�
z�+1� �k↓,a

† �k�↓,a�

− �
k,a,n

�
k�,a�,n�

jk,a;k�,a�
��+1� ��k↑,a

† �k�↓,a�

+ �k↓,a
† �k�↑,a�� , �A27�

0
↓ �DW† + WD†�↓�0 = − �
k,a,n

�
k�,a�,n�

Jk,a;k�,a�
z�+1� �k↑,a

† �k�↑,a�

− �
k,a,n

�
k�,a�,n�

jk,a;k�,a�
��+1� ��k↑,a

† �k�↓,a�

+ �k↓,a
† �k�↑,a�� , �A28�

0
↑ �DW† + WD†�↓�0 = − �
k,a,n

�
k�,a�,n�

Jk,a;k�,a�
��+1� �k↓,a

† �k�↑,a�

− �
k,a,n

�
k�,a�,n�

jk,a;k�,a�
z�+1� ��k↑,a

† �k�↑,a�

+ �k↓,a
† �k�↓,a�� , �A29�

and

0
↓ �DW† + WD†�↑�0 = − �
k,a,n

�
k�,a�,n�

Jk,a;k�,a�
��+1� �k↑,a

† �k�↓,a�

− �
k,a,n

�
k�,a�,n�

jk,a;k�,a�
z�+1� ��k↑,a

† �k�↑,a�

+ �k↓,a
† �k�↓,a�� , �A30�

where we have used the spin selection rules given in the Eqs.

�10�–�13�. Using a similar procedure, we also find,

0
↑ �C†V + V†C�↑�0 = �
k,a,n

�
k�,a�,n�

Jk,a;k�,a�
z�−1� �k�↑,a��k↑,a

†

+ �
k,a,n

�
k�,a�,n�

jk,a;k�,a�
��−1� ��k�↓,a��k↑,a

†

+ �k�↑,a��k↓,a
† � , �A31�

0
↓ �C†V + V†C�↓�0 = �
k,a,n

�
k�,a�,n�

Jk,a;k�,a�
z�−1� �k�↓,a��k↓,a

†

+ �
k,a,n

�
k�,a�,n�

jk,a;k�,a�
��−1� ��k�↓,a��k↑,a

†

+ �k�↑,a��k↓,a
† � , �A32�

0
↑ �C†V + V†C�↓�0 = �
k,a,n

�
k�,a�,n�

Jk,a;k�,a�
��−1� �k�↑,a��k↓,a

†

+ �
k,a,n

�
k�,a�,n�

jk,a;k�,a�
z�−1� ��k�↑,a��k↑,a

†

+ �k�↓,a��k↓,a
† � , �A33�

and

0
↓ �C†V + V†C�↑�0 = �
k,a,n

�
k�,a�,n�

Jk,a;k�,a�
��−1� �k�↓,a��k↑,a

†

+ �
k,a,n

�
k�,a�,n�

jk,a;k�,a�
z�−1� ��k�↑,a��k↑,a

†

+ �k�↓,a��k↓,a
† � , �A34�

where,

Jk,a;k�,a�
z��1� = 2tn,k

�a�tn�,k�
�a�� � U + �0

�U + �0�2 − ��1
2 +

U − �0

�U − �0�2 − ��1
2 � ,

�A35�

Jk,a;k�,a�
���1� = � 2tn,k

�a�tn�,k�
�a�� � ��1

�U + �0�2 − ��1
2

+
��1

�U − �0�2 − ��1
2 � , �A36�

jk,a;k�,a�
z��1� = tn,k

�a�tn�,k�
�a�� � U + �0

�U + �0�2 − ��1
2 −

U − �0

�U − �0�2 − ��1
2 � ,

�A37�

and

jk,a;k�,a�
���1� = � tn,k

�a�tn�,k�
�a�� � ��1

�U + �0�2 − ��1
2 −

��1

�U − �0�2 − ��1
2 � .

�A38�

In order to arrive at each matrix element expressed in Eqs.
�A27�–�A30� and Eqs. �A31�–�A34�, we have only taken into
account the leading terms in the small ratio �q /U. For in-
stance, in Eqs. �A27� and �A28� we have neglected spin-
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flipping terms, which carry an amplitude smaller than the
direct non-spin-flipping terms by �0 /U. Note that the longi-
tudinal exchange coupling is positive, i.e., antiferromagnetic.
Moreover, since U
�0 ,��1, we find that the exchange cou-
plings are strongly anisotropic with,

�Jk,a;k�,a�
���1� � �

��1

U
Jk,a;k�,a�

z��1� . �A39�

Finally, introducing pseudospin operators that act solely on
the q=0 sector of the SMM, namely,

�0
z = �↑�00
↑ � − �↓�00
↓ � , �A40�

�0
+ = �↑�00
↓ � , �A41�

�0
− = �↓�00
↑ � , �A42�

and assuming �for brevity� that �1=�−1, we can write the
effective Hamiltonian of the q=0 charge sector as

H̃0 = H0 + �
k�,a�

�
k,a

�Jk,a;k�,a�
z

�0
z��k↑,a

† �k�↑,a� − �k↓,a
† �k�↓,a��

− Jk,a;k�,a�
� ��0

+�k↓,a
† �k�↑,a� + �0

−�k↑,a
† �k�↓,a��

− jk,a;k�,a�
� ��k↓,a

† �k�↑,a� + �k↑,a
† �k�↓,a��	 . �A43�

Following a similar procedure, one can obtain the anisotropic
Kondo Hamiltonian with the ferromagnetic exchange cou-
pling constants.
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