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In the present paper we analyze the critical properties of a quantum spherical spin-glass model with short-
range random interactions. Since the model allows for rigorous detailed calculations, we can show how the
effective partition function calculated with the help of the replica method for the spin-glass fluctuating fields
Q���k��1�2� separates into a mean-field contribution for Q���0;� ;−�� and a strictly short-range partition
function for the fields Q����k��1�2�. Here � ,�=1, . . . ,n are replica indices. The mean-field part WMF coin-
cides with previous results. The short-range part WSR describes a phase transition in a Q3-field theory, where
the fluctuating fields depend on a space variable r� and times �1 and �2. This we analyze using the renormal-
ization group with dimensional regularization and minimal subtraction of dimensional poles. By generalizing
standard field theory methods to our particular situation, we can identify the critical dimensionality as dc=5 at
very low temperatures due to the dimensionality shift Dc=dc+1=6. We then perform an �� expansion to order
one loop to calculate the critical exponents by solving the renormalization-group equations.
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I. INTRODUCTION

After the formulation of the renormalization-group theory
to explain the critical behavior and scaling properties of
phase transitions, the natural question emerged of how this
theory would apply to phase transitions in quantum systems.
In these systems, time plays an essential role through the
equations of motion of the operators even in equilibrium
quantum statistical mechanics. Then a natural conjecture was
that there would be a dimensional shift from the space di-
mension d to the effective D=d+1 and that the scaling be-
havior in the critical region would require the introduction of
a new critical dynamical exponent z.1,2 This is evident when
the quantum-mechanical partition function is written as a
functional integral in terms of fields that are functions of
position and imaginary time � variables, where 0���� and
�= 1

T is the inverse temperature in units with �=kB=1, as
phase transitions occur in infinite systems when the correla-
tion length 	 becomes infinite at the critical temperature Tc.
If Tc
0, the “length” �c in the imaginary time direction is
finite and the associated correlation length 	z
�c, then the
transition would be classical in d space dimensions. How-
ever, if quantum fluctuations drive the critical temperature to
Tc=0, at this point the time length �c is infinite and a tran-
sition with a dimensional shift D=d+1 is expected at a quan-
tum critical point �QCP�.3

Physical realizations of quantum phase transitions occur
in strongly correlated systems4 and other physical systems as
described extensively in Ref. 5. A particular class of systems
that present a quantum critical point are quantum spin
glasses such as the insulating LiHoxY1−xF4.6 In this system a
magnetic field applied perpendicular to the magnetic easy
axis yields a splitting of the ground-state doublet. This split-
ting plays the role of a transverse field and the system is well
represented by the Ising spin-glass model in a transverse
field. The phase diagram6 on the transverse field-temperature
plane shows a reduction in the critical temperature with the
increase in the transverse field up to a vanishing Tc��c�=0.

The critical exponent �eff of the nonlinear susceptibility dif-
fers from its classical mean-field value corresponding to
infinite-range interactions, suggesting the presence of short-
range forces. Quantum phase transitions are also studied in
the M-component spin-glass model in a transverse field7 or
by using the spin-glass model of M-component quantum
rotors.5,8 In the limit M→�, the quantum rotor model9 re-
duces to the quantum spherical model for a spin glass that
has been studied before10 in the mean-field limit of infinite-
range interactions, following the classical spin-glass theory
of Sherrington and Kirkpatrick �SK�.11 It was also shown
that the effective action of the quantum spherical spin glass
is invariant12 under the Becchi-Rouet-Stora-Tyutin super-
symmetry. Consequently the spin-glass order parameter van-
ishes, while replica symmetry �RS� is exact. The p-spin
quantum spherical model was also studied by using the bo-
son operator representation for the harmonic oscillator.13,14 It
was shown that the systems with p=2 and p
3 belong to
different universality classes. For p
3 there is replica sym-
metry breaking �RSB� and the system belongs to the same
universality class as the SK model, with a finite order param-
eter Q�0 below the critical temperature.

Since the formulation of SK spin-glass theory with
infinite-range interactions, the natural question has been
asked of how finite-range random interactions would modify
the critical properties of spin glasses and which would be the
critical exponent associated with them. To answer this ques-
tion, renormalization-group calculations were performed
above criticality15 in an expansion in �=6−d for short-range
interactions, from where emerges dc=6 as the critical dimen-
sionality of the classical spin glass. Renormalization-group
calculations for long-range interactions decaying as r−�d+�� in
the classical spin glass were also performed.16,17 Below the
critical temperature there is RSB and a nonvanishing order
parameter that is in fact a matrix in replica space. Then a
more difficult renormalization group in replica space should
be performed, as discussed in detail in Ref. 18. Here also the
critical dimensionality appears to be dc=6, thus completing
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the description of the short-range classical spin glass below
the critical temperature.

It is the purpose of this paper to analyze the critical prop-
erties of a quantum spherical spin glass with random short-
range interactions by using renormalized perturbation theory
with dimensional regularization and minimal subtraction of
dimensional poles.19 This task is far from trivial as the struc-
ture of the resulting field theory differs from standard theo-
ries. To start with, the quantum rotor model without disorder
is covariant in space and time,5 the frequency appearing
just as a new momentum component to form a
�d+1�-dimensional vector with modulus k2+�2, giving thus
the value of the exponent z=1. But this is not the case in the
disordered model. The disorder has no dynamical fluctua-
tions and if average over disorder restores space translational
invariance, this is not necessarily so in the time direction.
Consequently, we are forced to consider an effective action
in terms of a spin-glass field that depends on position r� and
on two imaginary times �1 and �2 �not on the two times’
difference�. This carries on the need to formulate in this pa-
per new rules for the calculation of diagrams in the loop
expansion.19 We find accordingly that under renormalization
the relation between space and imaginary time changes and
as a result the exponent z differs from unity.

The quantum spherical model for a spin glass is the ideal
testing ground for these ideas, as its formulation in terms of
functional integrals allows for rigorous analytic calculations.
As a difference with the infinite-range quantum spherical
spin glass,12 in the case of short-range interactions we have
to use the replica method to derive the effective action, and
this we do in Sec. II. In Sec. III we derive the renormalized
perturbation theory to order one loop in an expansion in ��
=6−D=5−d. Then our critical space dimension is effec-
tively dc=5. We calculate the critical exponents by solving
the renormalization-group equations in the critical region.
We leave the discussions for Sec. IV. The detailed and far
from trivial calculations are described in the Appendix to
keep the natural flow of calculations in the paper.

II. MODEL

We consider a spin glass of quantum rotors with moment
of inertia I in the spherical limit9,10,12 with Hamiltonian

HSG + ��
i

Si
2 =

1

2I
�

i

Pi
2 −

1

2�
i,j

JijSiSj + ��
i

Si
2, �1�

where the spin variables at each site are continuous, −�
�Si��, and we introduced the canonical momentum Pi
with commutation rules:

�Sj,Pk� = i� j,k. �2�

The sum in Eq. �1� runs over sites i , j=1, . . . ,N. The bond
coupling Jij in Eq. �1� is an independent random variable
with the Gaussian distribution15,16

P�Jij� = e−Jij
2 /2J2Vij� 1

2�J2Vij
, �3�

and Vij =V�R� i−R� j� is a short-range interaction with Fourier
transform at low momentum k,

V�k� � 1 − k2. �4�

The chemical potential � is a Lagrange multiplier that in-
sures the mean spherical condition

−
��ln W	

����
= �

i



0

�

d��Si
2	 = �N , �5�

and �=1 /T is the inverse temperature. We work in units
where the Boltzmann constant kB=�=1 and W is the quan-
tum partition function,

W = Tr exp�− ��HSG + ��
i

Si
2
� , �6�

which can be expressed as a functional integral,12,20,21

W =
 �
i

DSi exp�− AO − ASG� , �7�

where the noninteracting action AO is given by

AO = 

0

�

d��
i
� I

2
� �Si

��

2

+ �Si
2���� �8�

and the interacting part by

ASG =
1

2�
i,j

Jij

0

�

d�Si���Sj��� . �9�

The free energy may be calculated with the replica method,

F = −
1

�N
lim
n→0

Wn − 1

n
, �10�

where �Wn	ca=Wn is the partition functional for n-identical
replicas, configurationally averaged over the probability dis-
tribution of Jij in Eq. �3�. It is shown in the Appendix that Wn
may be expressed as a functional over fluctuating spin-glass
fields Q���k� ,� ,���, where �= 2�m

� is a discrete Matsubara
frequency for finite temperature and � ,�=1, . . . ,n are rep-
lica indices. The result obtained in Eq. �A10� of the Appen-
dix is that the partition functional separates into two parts,

Wn = WMFWSR, �11�

where WMF in Eq. �A11� is the mean-field functional for the
fields Q���0,� ,−�� obtained in Ref. 12, which determines
the critical temperature Tc�I� shown in the phase diagram in
Fig. 1. On the other hand WSR depends on the spin-glass
fluctuations Q����k� ,� ,��� for short-range interactions and
determines the critical behavior. We remark that these fields
depend naturally on two independent times �frequencies� and
not on the difference between the two times because the
disorder is not time correlated and it restores translational
invariance in space but not in time.8 We obtain from Eq.
�A13�

WSR =
 �
���

DQ���k�,�,���exp�− ASR�Q�� , �12�

where � ,�=1, . . . ,n are replica indices and
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ASR�Q� = �
���

�
�1�2


 dk��� − �c

�c
+ k2 + s2��1

2 + �2
2��

�Q���k�,�1,�2�Q���− k�,− �1,− �2�

+
�

3! �
�����

�
�1�2�3


 dk�1dk�2Q���k�1,�1,�2�

�Q���k�2,− �2,�3�Q���− k�1 − k�2,− �3,− �1� .

�13�

Having in mind a renormalization-group calculation, the fre-
quency term in the noninteracting inverse propagator is af-
fected by the coefficient s, as it will turn out that momentum
and frequency renormalize differently and they cannot be
kept both equal to unity. The infinite-volume limit was taken
in Eq. �13�, but for the moment the temperature is kept finite
and the sums are over discrete Matsubara frequencies. In all
the following work, it is implicit that Q�� means Q���, while
Q���� means Q���0,� ,−��. There is also a coupling
Q���q� �0�Q���Q��� that generates an internal propagator
line G���q� �0� in the loops in Fig. 2, where the internal line
has �=�. The contribution of these diagrams is given by a
sum �q��0, which presents a smaller degree of infrared diver-
gence at the critical theory, when �=�c, and can be ne-
glected.

We now proceed with the renormalization-group calcula-
tion using dimensional regularization and minimal subtrac-
tion of dimensional poles,19 to one loop order. In Eq. �13� we
kept only the terms O�Q3� because the terms O�Q4� would be
irrelevant close to the critical dimensionality of a Q3 theory,
as there is no change in the sign of � for the Gaussian prob-
ability distribution of the random bonds.15 To analyze the
value of the critical dimensionality, we consider separately
the case of finite temperature from that of T=0. In both cases
the vertex functions that present divergences needing renor-
malization are the inverse propagator ��2�, the three-point
vertex function ��3�, and the two-point vertex function with

one insertion ��2,1�.19 To one loop order they are given by the
diagrams in Fig. 2. At this point it is important to distinguish
between the system temperature T and the critical parameter
t=

�−�c

�c
that measures the approach to criticality.

We start by analyzing the transition at finite temperature
T. The action in Eq. �13� must be dimensionless. Then di-
mensional analysis tells us that for � an inverse length

�k� = �, �Q� = �−d/2−1, ��� = �3−d/2 �14�

and the critical dimensionality is dc=6, as corresponds to a
classical system. The vertex functions calculated with the
usual rules in �3-field theory19,22 are

��2��k�,�1,�2� = ��0��k�,�1,�2� − �n − 2�
1

2
�2

��
�

 dp�G0�p� ,�,�1�G0�k� − p� ,�2,− �� ,

�15�

where

��0��k�,�1,�2� = t + k2 + s2��1
2 + �2

2� = G0
−1�k�,�1,�2�

�16�

and

��3��k�1,k�2,�1,�2,�3�

= � + �n − 3��3�
�

 dp�G0�p� ,�1,��

�G0�k�1 + p� ,− �,�2�G0�k�1 + k�2 + p� ,− �,�3� .

�17�

0 1 2 3 4 5 6 7
1/IJ

0

0.2

0.4

0.6

0.8

1

T
/J

µ = µ
c

-(1-T)² ln(1-T)=3π/2 (sqrt(I_c)- sqrt(I) )

FIG. 1. Phase diagram in the T vs 1 / I plane. The critical line
Tc�1 / I� �full� separates the classical paramagnetic phase �top� from
the spin-glass phase �bottom�. The estimated line �dots� separates
the classical paramagnetic region �top� from the quantum paramag-
netic region �bottom�.

FIG. 2. Diagrammatic representation of the vertex functions. A
double line represents a propagator with two replica indices � ,�,
momentum k�, and two frequencies �1 ,�2. Top: ��2�; middle: ��3�;
bottom: ��2,1�.
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The theory will be renormalized at the critical point t=0. To
get away from the critical point, we should consider a per-
turbation expansion in t by means of the insertion19

�A =
1

2!��,�
�

�1�2


 dq�t�q��
 dp�Q���p� ,�1,�2�

�Q���q� − p� ,− �2,− �1� , �18�

which leads to a third singular vertex function ��2,1� with two
external legs and one insertion shown in Fig. 2 �bottom�,

��2,1��k�,q� ,�1,�2�

= 1 + �n − 2��2�
�

 dp�G0�p� ,�,�1�

�G0�q� − p� ,− �1,− ��G0�k� + p� ,�,�2� . �19�

At finite temperature T and critical t=0, the sums over Mat-
subara frequencies have only one singular term with �=0
and the vertex functions are singular when �i=0. Then we
recover the transition for classical spin glasses described by
an expansion in �=6−d.15

A different scenario emerges when T is near zero. For
sufficiently low T the frequency sums may be replaced by
integrals,

�
�

→ �

−�

�

d� , �20�

and now all the frequencies contribute to the renormalization
process and the vertex functions in Eqs. �15�, �17�, and �19�
will be singular at a new effective dimension Dc=dc+1=6,
the new critical space dimensionality becoming dc=5, as
predicted.1–3,5

III. RESULTS

In the following we present results for the critical proper-
ties in an expansion in ��=5−d, to one loop order. The new
features that emerge from the calculation are that the fre-
quencies renormalize differently from the momenta and then
the exponent z differs from unity and from the exponent �,
depending also on the dimensionality through the �� expan-
sion. The integrals over momentum and frequency in Eqs.
�15�, �17�, and �19� are calculated in the Appendix at a space
dimensionality d, when they converge19,22 and the singulari-
ties appear as dimensional poles in ��. We obtain for the
singular parts, to leading order in the coupling constant,

���
�2��k�,�1,�2�

= k2 + s2��1
2 + �2

2� + �n − 2�
1

6s��
u0

2�k2 + 3s2��1
2 + �2

2��

= �1 + �n − 2�
1

6s��
u0

2�
��k2 + s2��1

2 + �2
2��1 +

n − 2

3��
u0

2
� , �21�

����
�3� = u0���/2�1 + �n − 3�u0

2 1

s��
� , �22�

���
�2,1� = 1 + �n − 2�u0

2 1

s��
, �23�

where we introduced the bare dimensionless coupling u0
through

�2�Sd+1 = u0
2��� �24�

and Sd+1 is the surface of the unit sphere in d+1 dimensions.
In ��3� and ��2,1� the external momenta and frequencies were
taken at the symmetry point k1

2=k2
2=−2k�1 ·k�2=�i

2=�2, where
� is the scale parameter.19 In order to cancel the dimensional
poles, we must introduce a renormalized dimensionless cou-
pling u and renormalized vertex functions by means of renor-
malization of the field Q�� and of the insertion Q��

2 through
the functions ZQ and ZQ2. The correction to the frequency
term �i

2 in ��2� in Eq. �21� is different from the contribution
to k2. Then besides the field renormalization ZQ that keeps
the coefficient of k2 equal to unity, it is necessary to renor-
malize also the frequency coefficient s�u�. All together we
obtain

�R
�2��u� = ZQ�u���2��u0,s� ,

�R
�3��u� = ZQ

3/2�u���3��u0� ,

�R
�2,1��u� = Z̄Q2�u���2,1��u0� , �25�

where in the interesting limit n=0

u0 = u�1 +
5

2��
u2
 , �26a�

ZQ�u� = 1 +
1

3��
u2, �26b�

Z̄Q2�u� = 1 +
2

��
u2, �26c�

s2 = 1 +
2

3��
u2. �26d�

From Eq. �26a� we calculate the � function

��u� = �� �u

��
�

�

= −
��

2
u�1 −

5

��
u2
 , �27�

which vanishes at the trivial fixed points u�=0 �stable for
���0� and u�2= 1

5�� �stable for ��
0�. To obtain the critical
exponents, we have to solve the renormalization-group
equations19 for the vertex function �R

�2��k� ,s�i , t ,u ,�� near
criticality, where t=

�−�c

�c
. Now we have to take into account

also the dependence of s on � through the coupling u, so
setting yi=s�i , i=1,2, we obtain the renormalization-group
equation at the fixed point ��u��=0,
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��
�

��
+ �s

��
i

yi
�

�yi
− �t

�

�t
− ���R

�2��k�,yi,t,�� = 0, �28�

where

� = ��
�

��
ln ZQ�

u=u�

,

� = ��
�

��
ln Z̄Q2�

u=u�

− � ,

�s
� = ��

�

��
ln s�

u=u�

. �29�

The solution for �R
�2� has the scaling form

�R
�2��k�,yi,t,�� = ����k� ;yit�

�−�s
�

� , �30�

where � is a function of the joint variable yit�
�−�s

�

and di-
mensional analysis tells us that for � an inverse length:

�R
�2��k�,yi,t,�� = �2�R

�2�� k�

�
,
yi

�
,

t

�2 ,
�

�



= �2��

�
��

�� k�

�
;
yit�

�−�s
�

�3+�−�s
� � . �31�

If we choose19

� = �� t

�2
1/�2+��

, �32�

we obtain

�R
�2��k�,yi,t,�� = �2� t

�2
��2−��

�� k�

�
� t

�2
−�

;
yi

�
� t

�2
−�z� ,

�33�

from where we identify the space correlation length expo-
nent

	 = � t

�2
−�

, �−1 = 2 + � �34�

and the time correlation length exponent

	t = � t

�2
−�z

= 	z, z = 1 − �s
�. �35�

From Eqs. �26�, �29�, �34�, and �35� we obtain the results for
the critical exponents, at the nontrivial fixed point

� = −
1

15
��, � =

1

2
+

1

12
��, z = 1 +

1

15
��. �36�

Scaling theory gives for the static spin-glass susceptibility
�−1=�R

�2��0,0 , t�� t�, with �=��2−��, from Eq. �33�.

IV. CONCLUSIONS

In the present paper we analyze the critical properties of a
quantum spherical spin-glass model with short-range random

interactions. Since the model allows for rigorous detailed
calculations, we can show how the effective partition func-
tion calculated with the help of the replica method for the
spin-glass fluctuating fields Q���k� ,�1 ,�2� separates into a
mean-field contribution for Q���0,� ,−�� and a strictly
short-range partition function for the fields Q����k� ,�1 ,�2�.
Here � ,�=1, . . . ,n are replica indices. The mean-field part
WMF coincides with previous results12 and a saddle-point cal-
culation provides the phase diagram in Fig. 1, as discussed in
the Appendix. This phase diagram agrees with the measure-
ments in Ref. 6 as the inverse of the rotor’s moment of
inertia measures the strength of the quantum fluctuations and
plays the role of the transverse field in the LiHoxY1−xF4 al-
loys. We stress that Q���0,� ,−�� is not an order parameter,
as it does not vanish above the transition temperature, and
the order parameter in the quantum spherical infinite-range
spin glass identically vanishes.12 The short-range part WSR
describes a phase transition in a Q3-field theory, where the
fluctuating fields depend on a space variable r� and times �1
and �2. This we analyze using the renormalization group with
dimensional regularization and minimal subtraction of di-
mensional poles.19 By generalizing the method in Ref. 19 to
our particular situation, we can identify the critical dimen-
sionality as dc=5 at very low temperatures due to the dimen-
sionality shift Dc=dc+1=6. We then perform an �� expan-
sion to order one loop to calculate the critical exponents by
solving the renormalization-group equations; they are listed
in Eq. �36�.

A general Landau theory of quantum spin glasses of
M-component rotors was presented in Ref. 8. Based on the
general properties of symmetry and invariance, the authors
presented an effective functional for spin-glass Q fields, and
at some points we make contact with their results. Our fields,
as theirs, are bilocal in time, but our result for the effective
functional is simpler and more tractable by standard field
theory methods. It is well known23 than the classical nonran-
dom spherical model is equivalent to the M→� limit of the
M-vector model. The same equivalence holds between the
infinite-range spherical spin glass and the infinite-range
M-vector spin glass in the classical case24,25 and in the quan-
tum case.9,12 A particular feature of the infinite-range spheri-
cal spin glass is that it can be solved exactly without need of
the replica method24 because annealing is exact in this model
due to the internal Becchi-Rouet-Stora-Tyutin �BRST�
supersymmetry.12 As a consequence Ward identities tell us
that the order parameter identically vanishes. In the case of
the short-range quantum spherical spin glass considered
here, we showed that replicas are needed and that the parti-
tion functional separates exactly into a mean-field part for
the replica diagonal Q���k=o ,� ,−�� and a short-range part
for the fluctuating Q����k ,�1 ,�2� in Eq. �11�. On the other
hand in the spin glass of M-component quantum rotors with
short-range disorder considered in Ref. 8, the replica diago-
nal Q����� is considered as an order parameter and a Landau
functional is constructed for fluctuations diagonal in replica
space around it. This leads to a theory where the time deriva-
tives and the critical mass appear in the linear term, in place
of the quadratic one, in the effective action. As a conse-
quence of having different interactions, the renormalization-

QUANTUM SPHERICAL SPIN GLASS WITH RANDOM… PHYSICAL REVIEW B 78, 054444 �2008�

054444-5



group equations and critical exponents turn out to be M in-
dependent, and the critical dimensionality obtained in Ref. 8
also differs from ours. We conclude this is due to the fact that
in the case of short-range disorder considered here, the quan-
tum spherical spin-glass model belongs to a different univer-
sality class from the M-component quantum rotor model in
Ref. 8. Ultimately we compare our results with Monte Carlo
simulations in �d+1� dimensions for d=3 �Ref. 26� and for
d=2 �Ref. 27� for the Ising spin glass in a transverse field.
The scaling form for the inverse spin-glass susceptibility �SG

−1

in Eq. �33� agrees with Ref. 26, which yields for the suscep-
tibility exponent the scaling result �=��2−��. Calculations
in �2+1� dimensions27 confirm this result for �SG. We also
obtain 1�z�2, as in the above-mentioned references.26,27

The comparison cannot go further as we are dealing with a
system with high values of M→� and high dimensionality
D=5+1. Quantum Heisenberg spin-glass systems were also
studied recently with numerical methods.28

We may ask how our results would apply to the quantum
p-spin spherical model theories in Refs. 13 and 14 in the case
of short-range disorder. In these theories the action depends
on the first time derivative of the fields. Then the inverse
propagators would have a linear dependence on frequency
�and not quadratic, as it is the case here�, so the results of a
renormalization-group �RG� calculation remain open.
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APPENDIX

1. Effective functional

We derive here the functional Wn in Eq. �9�. We obtain by
replicating W in Eq. �7� and averaging over P�Jij� in Eq. �3�
the following:

Wn =
 �
i�

DSi� exp�− A0 − ASG� , �A1�

where �=1,2 , . . . ,n is the replica index and the free action
A0 is given by

A0 = 

0

�

d��
i

�
�
� I

2
� �Si�

��

2

+ �Si�
2 ���� , �A2�

while the interacting part is

ASG =
J2

4 �
i,j

�
���

Vij

0

�

d�

0

�

d��Si����Sj����Si������Sj������ .

�A3�

We introduce the spin-glass fields Qi���� ,��� by splitting the
quartic term by means of a Stratonovich-Hubbard transfor-
mation and we obtain

Wn =
 �
i

�
��

DQi����,���exp�−
J2

4 �
��



0

� 

0

�

d�d��

��
i,j

Qi����,���Vi,j
−1Qj����,����exp�N�� , �A4�

where

exp�N�� =
 �
i,�

DSi����exp�− A0 −
J2

2 �
��



0

� 

0

�

d�d��

��
j

Qj����,���Sj����Sj������ . �A5�

In Eq. �A5� appear the fields Qj���� ,��� depending on two
independent times � ,�� and not on the time difference. We
define the space and time Fourier transform as

S��k��� =
1

��N



0

�

d��
j

Sj����exp − i�k� · R� j + ��� ,

�A6�

Q���k����� =
1

�2N



0

�

d�

0

�

d���
j

Qj�������

�exp − i�k� · R� j + �� + ����� , �A7�

where �= 2�m
� are bosonic Matsubara frequencies and we

obtain from Eqs. �A4�–�A7�

Wn =
 �
k��1�2

�
��

dQ���k��1�2�

�exp�−
��J�2

4 �
��

�
k��1�2

Q���k��1�2�V�k��−1

�Q���− k�,− �1,− �2��exp�N�� , �A8�

where

exp�N�� =
 �
�

�
k��

dS��k���exp�− �
�

�
k��

��I�2

2
+ ��


�S��k���S��− k� − ���
�exp� ��J�2

2 �
��

�
k�q�

�
���

Q���q�����

�S��k���S��k� − q� ,���� , �A9�

and for short-range forces V�k�−1=1+k2. The next step is to
separate the term with Q���0,� ,−�� in Eq. �A9� that can be
introduced into the free action for S��k���, with the result
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Wn = WMFWSR, �A10�

where WMF is the mean-field partition functional for the
Q����=Q���0�−�� mode,

WMF =
 �
��

dQ����exp −
N

2 �
��
� ��J�2

2
Q�

2���

+ ln��I�2 + 2�� − ��J�2Q������ �A11�

and WSR is the partition functional for the fluctuations Q���,

WSR =
 �
���

�
k��

dQ����k��1�2�exp − �Afree + Aint� ,

�A12�

Afree = N �
k��1�2

�
��

Q���k��1�2�Q���− k�,− �1,− �2�

���J�2�0�k��1�2� , �A13�

Aint =
��J�6

3!
N�

k�1k�2

�
��1

�
��2

�
��3

Q���k�1�1�2�

�Q���k�2,− �2,�3�Q���− k�1 − k�2,− �3,− �1��
i

g0��i� ,

�A14�

where

�0�k��1�2� = 1 + k2 − ��J�2g0��1�g0��2� . �A15�

The function g0��� in Eq. �A14� is the momentum indepen-
dent, noninteracting two-point function for the field S����,

g0��� =
2

�I�2 + 2�� − ��J�2Q����
. �A16�

The variables Q���q� �0,�1�2� are not critical and are not
coupled to the spin-glass field, so we ignore them.

2. Mean-field solution

At the saddle point of WMF in Eq. �A11�, we obtain

2Q���� = g0��� . �A17�

The mean spherical condition in Eq. �5� reduces to

−
1

n

�

��
ln WMF = �N

and it gives at the saddle point



L−

L+

dy��L+
2 − y2��y2 − L−

2� coth� �y

2�I

 = 2�J2�I ,

�A18�

where

L 
2 = 2�  2J , �A19�

which is just the condition we12 found previously for the
mean-field quantum spin glass and it gives � as a function of

T and I. For high temperatures, the chemical potential �
→�, while �=�c=J at the critical temperature Tc�I� and the
critical value Ic is reached when Tc�Ic�=0, as shown in the
phase diagram in Fig. 1. The high-� �high-temperature� so-
lution for Q���� in Eq. �A17� gives for �0�k��1�2� in Eq.
�A15�, when �
J, the following:

�0�k��1�2� = 1 − �J/��2 +
I

2J
��1

2 + �2
2� + q2. �A20�

Introducing Eq. �A20� into Eq. �A14�, rescaling the fields
Q��→ 1

�JNQ��, and using g0��=0, �=�c�= ��J�−1, we ar-
rive at the effective spin-glass partition functional in the
main text. We took explicitly the continuum limit in real
space by replacing for vanishing lattice constants

1

N
�

k�
→
 dk� , �A21�

while for finite temperature the sum over Matsubara frequen-
cies �= 2�m

� are over the discrete index m. We discuss next
the regions with T
Tc and I� Ic.

a. Classic paramagnet (high temperature): �
�I
\0

In this limit we are in the classical region and the integral
in Eq. �A18� can be solved exactly12 with the result

2��

J
− 1
 = � 1

��J
− ��J
2

. �A22�

b. Quantum paramagnet (low temperature): �
�I
\�

In this limit coth �y
2�I

�1 and the integral in Eq. �A18� can
be solved in terms of elliptic integrals. For � �

J −1�!1 we
obtain

2���IcJ − �IJ� � −
4

3
��

J
− 1
ln��

J
− 1� . �A23�

Introducing Eq. �A22� into Eq. �A23�, we obtain the dotted
curve in Fig. 1, which separates the classical region from the
quantum paramagnetic region.

3. Integrals in dimensional regularization

In the low-temperature limit the sum over frequencies are
replaced by integrals as indicated in Eq. �20�. Then we need
for ��2� in Eq. �15� at the critical value t=0 �Ref. 19� the
following:

I2 =
 d�dp�
1

p2 + s2��1
2 + �2�

1

�p� − k��2 + s2��2 + �2
2�

=
Sd+1

2s
��d + 1

2

��3 − d

2



�

0

1

dx
1

�x�1 − x�k2 + xs2�1
2 + �1 − x�s2�2

2��3−d�/2 ,

�A24�
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where Sd+1 is the surface of the unit sphere in �d+1� dimen-
sions. We can see that �� 3−d

2 � has a dimensional pole at dc
=5. Then setting ��=5−d, we obtain the singular contribu-
tion in Eq. �21�.

To renormalize ��3� and ��2,1� in Eqs. �17� and �19�, we
need to calculate

I3 =
 d�dp�
1

�p2 + s2��1
2 + �2��

1

��p� + k�1�2 + s2��2 + �2
2��

�
1

��p� + k�1 + k�2�2 + s2��2 + �3
2��

, �A25�

which we do by taking the external momenta and frequencies
at the symmetry point19

k1
2 = k2

2 = �i
2 = �2, k�1 · k�2 = −

�2

2
�A26�

and performing the integral in d+1 dimensions as in Eq.
�24�, with the result

I3 =
Sd+1

s

��d + 1

2

��5 − d

2



��3�
�−�5−d�

� 

0

1

dx1

0

1−x1

dx2
1

�x1�1 − x1� + x2�1 − x1 − x2� + s2��5−d�/2 .

�A27�

We see again the dimensional pole in �� 5−d
2 � at dc=5. Then

considering the singular part at the pole in ��=5−d, we ob-
tain the results in Eqs. �22� and �23�.
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