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The LiHoxY1−xF4 compound is widely considered to be the archetypal dipolar quantum Ising system, with
longitudinal dipolar interactions Vij

zz between Ho spins �i , j� competing with transverse field–induced tunneling,
to give a T=0 quantum phase transition. By varying the Ho concentration x, the typical strength V0 of Vij

zz can
be varied over many orders of magnitude, and so can the transverse field H�. A new effective Hamiltonian is
derived, starting from the electronuclear degrees of freedom, which is valid at low and intermediate tempera-
tures. For any such dipolar quantum Ising system, the hyperfine interaction will dominate the physics at low
temperatures, even if its strength A0�V0: One must therefore go beyond an electronic transverse field quantum
Ising model. We derive the full phase diagram of this system, including all nuclear levels, as a function of
transverse field H�, temperature T, and dipole concentration x. For LiHoxY1−xF4 we predict a re-entrant critical
field as a function of x. We also predict the phase diagram for x=0.045 and the behavior of the system in
magnetic-resonance and muon-spin-relaxation experiments.
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I. INTRODUCTION

A. Transverse field quantum Ising model for LiHoxY1−xF4

For at least a decade the LiHoxY1−xF4 compound has been
considered to be an ideal experimental realization of the
well-known three-dimensional transverse field quantum Ising
model �TFQIM�. According to this view, at temperatures
well below an anisotropy energy �0, it is described by the
Hamiltonian

H = − �
i,j

Vij
zz�i

z� j
z − �0�

i

�i
x, �1�

where �� j is a Pauli vector describing a two-level effective
electronic spin at spatial position r=r j. Vij

zz is a longitudinal
interspin interaction, with nearest-neighbor strength U0,
which, depending on the dilution x, can have either a ferro-
magnetic �FM� or a frustrating character. The “transverse
field” term �0�i�i

x is controllable externally �usually by ap-
plying a transverse magnetic field�. The most distinctive fea-
ture of TFQI model �1�, which is central to the whole field, is
the competition between V0, which tries to order the system,
and �0, which causes quantum fluctuations out of the ordered
state. At T=0 one expects a quantum phase transition be-
tween ordered and quantum disordered states when �0 /V0
�1; this is probably the simplest theoretical example of a
quantum phase transition. The apparent confirmation of this
“quantum critical” picture for LiHoxY1−xF4 has lent consid-
erable importance to the experiments on this system.

The main arguments in favor of this picture for
LiHoxY1−xF4 are as follows:

�i� The strong crystal-field Ho single-ion anisotropy yields
an Ising doublet ground state, with a crystal-field Hamil-
tonian yielding an appreciable �0 at small H�. The dominant
inter-Ho spin-spin interaction is dipolar, with strength
V0�x�=� j�Vij

zz���x, with ��1 in kelvins. Thus when x=1
one expects a dipolar-ordered FM phase below �1 K, which
is observed. It exhibits both classical and quantum phase
transitions to the paramagnetic �PM� phase.1

�ii� In LiHoxY1−xF4 the magnetic Ho ions and the non-
magnetic Y ions have very similar atomic volumes. Dilution
of Ho by Y is then possible with negligible distortion of the
lattice. This dilution weakens the interactions and introduces
randomness and frustration. Very different physical regimes
can then be studied;2,3 see Fig. 1 of Ref. 2. In particular, one
expects a low-T spin-glass �SG� phase at small x, below a
transition temperature Tc��x. At x=0.167 a SG phase is
found4,5 at low T and H�=0, with a crossover to the PM
phase at higher T and H�. At x=0.44 the tunneling of do-
main walls in the FM phase was found6 and differences be-
tween quantum and classical annealing protocols were
observed.7 At x=0.045 the system shows a peculiar narrow-
ing of the spin-fluctuation spectral width as the temperature
is decreased,8 described as “anti-SG” behavior.

�iii� For extreme dilution one expects single Ho ion be-
havior. In experiments at x=0.002, hysteresis loops of the
magnetization due to single spin tunneling are observed.9

�Cotunneling of pairs of spins was also observed at x
=0.002, showing that interaction effects cannot be neglected
even at this dilution.10,11�

Thus, according to these arguments, a TFQI model such
as Eq. �1� should describe LiHoxY1−xF4 for all x provided kT,
�BH���0. As such, LiHoxY1−xF4 should be a model system
for all dipolar magnets. However we argue in this paper that
the LiHoxY1−xF4 system �and, by implication, many other
dipolar magnets� need to be described in a quite different
way. There are two main problems with the simple TFQI
picture, both noted and analyzed in Ref. 12. These are:

�a� Hyperfine interactions: The on-site Ho hyperfine inter-
action A0 is not small. In fact, even at x=1, A0�V0; and for
x�1, the hyperfine interaction is overwhelmingly dominant.
A few experimental papers have heeded this point, remark-
ing: �i� that even the x=1 phase diagram, near the T=0
FM-PM transition, is modified by the hyperfine interaction;1

and �ii� that the nuclear-spin bath, considered now as a quan-
tum environment,13 should strongly affect the Ho spin dy-
namics near this quantum critical point.14,15 However we
shall show here that the effect of nuclear spins on dipolar
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magnets is much more profound than this, even when the
hyperfine interaction is quite weak. This very surprising re-
sult means that one must reconsider the application of the
TFQI Hamiltonian to a large variety of systems, hitherto ana-
lyzed without reference to the hyperfine couplings.

�b� Transverse dipolar interactions: When x�1 these in-
teractions add a quite large contribution to the transverse
field. To quantitatively understand the phase diagram, one
then needs to include them12,16 �see also Ref. 17�, both in the
SG and in the FM regimes.12,16,18–20

B. Electronuclear quantum Ising model for dipolar Ising
magnets

To properly treat the physics of quantum Ising systems,
we have to recognize that the use of a simple parameter
�0�H��, introduced a long time ago by experimentalists as a
convenient way of defining an effective transverse field act-
ing on the Ising spins, is actually misleading. Because of the
nuclear spins, the true effective transverse field in a quantum
Ising system is very different from �0. Moreover it depends
on the actual nuclear-spin state of the system.

In what follows we will derive a theoretical framework
with the nuclear spins included from the beginning. The sys-
tem is described at low energies in terms of “electronuclear”
complexes which interact via renormalized dipolar interac-
tions. In its general form 	see Eq. �3�
, this “electronuclear
quantum Ising” �ENQI� Hamiltonian includes all the nuclear-
spin levels. However at very low T or for small x, we can use
a much simpler Hamiltonian referring only to the lowest
electronuclear doublet, and this takes the form

H = − �
i,j

Ṽij
zz�H��si

zsj
z − �̃�H���

i

si
x, �2�

where now ŝ j operates only on the single electronuclear dou-
blet involving the nuclear states with Iz=� I. Now this sim-
plified model looks like the standard TFQI model in Eq. �1�,
but it behaves very differently: Both Ṽij

zz�H�� and �̃�H�� are
renormalized from their original values in Eq. �1�, and they

depend strongly on H�. 	In the case of �̃�H��, this depen-
dence is radically different from that in the original param-
eter �0�H��.
 The strength and behavior with field of these
variations depend crucially on the strength A0 of the hyper-
fine interaction. Moreover, as noted above, we must use this
ENQI model at low T even when the hyperfine coupling
A0�V0, which is more typical for a general anisotropic mag-
net.

More generally, when kT is not small compared to the
splitting between nuclear levels, we must define a set of 2I
+1 electronuclear “pseudospins” �each of which are spin-1/2
doublets� labeled by quantum numbers m= I, I−1, . . . ,−I, an
occupation number nim for the occupation of a given pseu-
dospin on site i, and a set of pseudospin operators ŝim and
pseudospin energies 	m. We then have the general ENQI
Hamiltonian

H = − �
i,j,m,m�

Ṽij,m,m�
zz �H��nimnjm�sim

z sjm�
z

− �
i,m

nim		m + �̃m�H��sim
x 
 , �3�

where the Ṽij,mm�
zz �H�� represent interactions between pseu-

dospins m ,m� on different sites i , j and the transition matri-

ces �̃m operate only on individual pseudospins, i.e., within
the space of each electronuclear doublet on a given site. We
can think of a set of 2I+1–independent quantum Ising sys-

tems, each with a different transverse field �̃m, which how-

ever can interact via the longitudinal fields Ṽij,mm�
zz �H��.

In disordered dipolar-coupled spin systems, one must also
add a term which describes the random transverse couplings
in the system. Its detailed form is given in Sec. III, and its
quantitative effects are discussed in Sec. IV.

In this paper we concentrate on the LiHoxY1−xF4 system,
for which precise results and experimental predictions can be
established for the phase diagram, so it can be used as a test
case. The effective Hamiltonian is strictly applicable to sys-
tems where A0 ,V0��0, in the regime where T ,�BH���0.
This approach enables: �i� illumination of the relevant phys-
ics of the LiHoxY1−xF4 system; �ii� generalization to other
systems, e.g., systems in which A0�V0 �see Sec. IV�; and
�iii� construction of a framework for the treatment of dy-
namical properties. However, in the LiHoxY1−xF4 system the
condition A0 , V0��0 is not that well satisfied. Moreover,
while the condition T ,�BH���0 is satisfied in the whole
relevant phase diagram at low x, it is not satisfied near criti-
cality at large concentrations. For this reason and since
single-ion properties dictate much of the physics in the
LiHoxY1−xF4 system, we also use exact diagonalization of
the Ho electronuclear-spin states. This enables us to give
quantitative predictions regarding the single-ion characteris-
tics and, with the use of mean-field approximation, to predict
the form of the phase diagram for all x.

To the best of our knowledge, most of the results here
have not been published before. We analyze in detail the
form of the electronuclear states of the single Ho ion as
function of H� and its consequences in terms of entangle-
ment entropy and magnetic-resonance experiments. We show
that the peculiar crystal-field Hamiltonian of LiHoxY1−xF4
results in a well-defined Ising system even at high transverse
fields �where Ising symmetry is usually destroyed�. We ob-
tain a general effective Hamiltonian valid for thermodynamic
properties, incorporating all 16 low-energy states and there-
fore generalizing the treatment in Ref. 12 to the regime A0
�T��0. We give a discussion of the phase diagram for
general concentration x, temperature T, transverse field H�,
and hyperfine coupling A0. With relevance to general mag-
netic systems, we show that the hyperfine interactions domi-
nate the physics at low T even when A0�V0. By comparing
the phase diagrams at x=0.045 and x=0.167, we predict a
novel re-entrance of the crossover transverse field between
the quasi-SG and PM phases at low T as a function of x,
resulting from the interplay between the hyperfine and off-
diagonal dipolar interactions. We then give give our own
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view on the unsolved question of the nature of the low-T
phase at x=0.045. Finally, we discuss some other experimen-
tal consequences and predictions of our theory.

The paper is organized as follows: In Sec. II the various
terms in the microscopic Hamiltonian for LiHoxY1−xF4 are
introduced and quantified and single-ion properties are ana-
lyzed. In Sec. III the full low-energy effective Hamiltonian is
derived, including the transverse hyperfine interactions and
the off-diagonal terms of the dipolar interaction. In Sec. IV
we obtain the phase diagram of the LiHoxY1−xF4 system at
different dilutions. We obtain quantitative agreement with the
experimental phase diagram at x=0.167, make predictions
regarding the phase diagram at x=0.045, and discuss the
nature of the low-temperature phase. In Sec. V we suggest
experiments that can directly check our theory, and in Sec.
VI we state our conclusions. Some details regarding the deri-
vation of the effective Hamiltonian and the calculation of the
phase diagram in mean field are deferred to appendices.

II. INTERACTIONS IN THE LiHoxY1−xF4 SYSTEM

In this section we give the quantitative form of the
LiHoxY1−xF4 Hamiltonian, which is a sum of crystal-field,9,21

Zeeman, inter-Ho, and hyperfine interaction terms:

H = Hcf + HZ + Hint + Hhyp. �4�

Note that we have dropped: �i� the spin-phonon interaction,
important for spin relaxation;9,10,22 �ii� hyperfine interactions
between the Ho ion and other nuclear species �F, Li� as well
as with Ho nuclei on nearby sites; and �iii� the nuclear Zee-
man couplings. None of these terms have an appreciable ef-
fect on the phase diagram of LiHoxY1−xF4. Note however
that they will be crucial for the low-T Ho spin dynamics,
since even very small hyperfine terms can strongly affect
relaxation dynamics and decoherence in the low-T quantum
regime,23,24 where phonon relaxation is also important in
strong transverse fields.23,25

A. TFQIM terms

Let us first consider the terms which feed directly into
TFQIM Hamiltonian �1�, i.e., the terms Hcf , HZ, and Hint.
For LiHoxY1−xF4 these are given in turn by:

�i� The “crystal-field” term Hcf includes the single-ion
crystal-field and spin-orbit terms.9,21 Because of the very
strong spin-orbit coupling, J is a good quantum number for
the Ho ion with J=8. A crystal-field term of the form �J+

4

+J−
4� strongly mixes states with Jz differing by �4,9,26 and a

strong Jz
2 term severely distorts the level spacing. There are

other terms as well. For computations in this paper we will
use a form written in terms of the usual Stevens operators
as14,21

Hcf = �
l=2,4,6

Bl
0Ol

0 + B6
4O6

4�S� + �
l=4,6

Bl
4Ol

4�C� , �5�

with values assumed to be21

B2
0 = − 0.696, B4

0 = 4.06
 10−3,

B6
0 = 4.64
 10−6, B4

4�C� = 4.18
 10−2,

B6
4�C� = 8.12
 10−4, B6

4�S� = 1.137
 10−4, �6�

from which we see that the O6
4�C� term also has a nontrivial

effect, bringing in a Jz
2�J+

4 +J−
4� term. �Note that to properly

judge the relative importance of coefficients Bl
m and Bl�

m with

l� l�, we should directly compare JlBl
m and Jl�Bl�

m, not Bl
m

and Bl�
m.�

The ground state is an Ising doublet, with states denoted
here by �↑ � and �↓ �, which mix states with Jz
=�7,�3,�1,�5. The first excited state ��2

l � is roughly
�0=10.5 K above the ground-state doublet and is a mixture
of Jz=6,2 ,−2 ,−6. The other 14 states are much higher in
energy, and the total span of the J=8 manifold is roughly
� f =500 K.26

�ii� The Zeeman coupling to the Ho spins is given by the
usual form

HZ = − �
i

gJ�BH� · J�i, �7�

with gJ=5 /4. We are particularly interested in the effect of a
transverse field H���0 /�B, which induces a coupling �0
between the two Ising ground states in second-order pertur-
bation theory via the state ��2

l �. Thus, for small fields �0

H�

2 ; by putting in the numbers, one finds

�0�H�� � 9��BH��2/�0 � 0.4T2 �8�

in kelvins �see, e.g., Figs. 1 and 2 of Ref. 21�. At larger
fields, H���0 /�B�2 T, perturbation theory breaks down,
��2

l � mixes strongly with �↑ � and �↓ �,21 and �0 is approxi-
mately linear in H�. An important feature of LiHoxY1−xF4 is
that � f��0. Thus, the system stays Ising type even when
H���0 /�B, deep inside the PM regime �see Fig. 1�. This
contrasts with most other anisotropic dipolar systems, which
are dominated by easy-axes terms, so that the same energy
scale dictates the anisotropy and the quantum fluctuations,

0 10 20 30 40 50
−500

0

500

H⊥ (Tesla)

E
(K

)

FIG. 1. Energy of the 17 electronic states of a single Ho ion in
LiHoxY1−xF4, ignoring all inter-Ho interactions, as a function of
transverse field H�. The Ising-type character is well maintained
until H��20 T.
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and in the quantum phase transition regime H��H�
c , there

is no real Ising character.
�iii� The inter-Ho ion spin-spin interactions depend

strongly on the Ho concentration x. They have the general
form

Hint = − �
ij

Uij
��Ji

�Jj
�. �9�

Experiments27 and theoretical analysis21 both show that Uij
��

is dominated by the dipolar interaction, i.e.,

Uij
�� =

U0Rij
��

J2 , �10a�

Rij
�� = Vc

�rij�2��� − 3rij
�rij
�

�rij�5
. �10b�

Here the strength of the nearest-neighbor dipole-dipole inter-
actions between the spins Ji , J j is

U0 =
�0

4�

gJ
2�B

2J2

Vc
, �11�

where Vc is the unit-cell volume. The unit-cell size is
�1,1,2.077� in units of ã=5.175 Å, with four Ho ions per
unit cell when x=1, at positions �0,0,0�, �0, a /2,c /4�, �a /2,
a /2, −c /2�, and �a /2, 0, −c /4�; and rij =ri−r j. When x�1
some of the Ho ions are substituted by Y ions, and the cou-
plings acquire a random distribution, whose character de-

pends strongly on x. The typical value Ū0 of the nearest-

neighbor coupling then becomes roughly Ū0�xU0. For
LiHoxY1−xF4, U0�0.3 K. Note however that the energy V0
characterizing the total effect of the longitudinal dipolar in-

teractions is somewhat larger than Ū0, since as noted in Sec.
I, V0�x�=� j�Vij

zz�. Thus the strength of V0 depends on how the
spins are arranged. It can be estimated from the ordering

temperature, and typically V0 / Ū0�3–5. One can see depar-
tures from linearity in x. For example, in the diluted system,
even for rather small x, close pairs and even triplets can
dominate certain properties. There are also antiferromagnetic
exchange interactions between the Ho ions, which for x=1
were measured to be about half of the nearest-neighbor di-
polar interaction.27 Therefore, the exchange interactions have
little quantitative significance even for the undiluted LiHoF4
�Ref. 21� and are completely negligible for x�1.

If we now take these three terms and truncate the Ho ions
to their lowest doublet, we get back the TFQIM in Eq. �1�,
which predicts a quantum phase transition for x=1 at a trans-
verse field where �0�V0, i.e., at H��3 T.1,21 In fact the
actual transition happens at H�

c �x=1�=4.9 T,1,21 which is
the first sign that there is something wrong with this naive
picture. To see what is going on, we now have to include the
hyperfine coupling.

B. Hyperfine interactions

The hyperfine coupling of a single Ho atom with its own
I=7 /2 nuclear spin gives the term

Hhyp = AJ�
i

I�i · J�i, �12�

with AJ=0.039 K.9 Here we ignore quadrupolar terms as
well as the hyperfine interactions to all other species �Li, F,
and other Ho ions�. Both are an order of magnitude smaller28

and hardly influence the phase diagram.
At low energies, in the lowest doublet states �↑ � , �↓ �, the

longitudinal hyperfine term Hhyp

 =AJI

zJz splits each elec-
tronic state into an eightfold multiplet of nearly equidistant
levels, with separation of �205 mK �Ref. 9� between adja-
cent levels. I.e., we can write

Hhyp
zz � �0�zIz, �13�

where �̂ operates on the electronic doublet and for
LiHoxY1−xF4, �0�205 mK. This corresponds to a spin mo-
ment �Jz��5�B for the lowest doublet.

One can see without any reference to experiments on the
phase diagram that the TFQI model cannot possibly be right
at low transverse fields, using Fig. 2. The lowest-energy
Ising doublet states a, ā have a definite nuclear spin
�Iz=−7 /2 for �↑ � and Iz=7 /2 for �↓ �� when H�=0. A trans-
verse magnetic field couples a��↑ ,−7 /2� to b��↓ ,−7 /2�
and ā��↓ ,7 /2� to b̄��↑ ,7 /2�. It cannot induce quantum
fluctuations between the relevant Ising doublet ground states
at all but can only renormalize their effective spin. Only the
transverse hyperfine term Hhyp

� =AJ�I+J−+ I−J+� /2 can change
Iz and allow transitions between the Ising doublet states.
However this hardly operates if �BH���0.

Thus hyperfine interactions must be included in any trun-
cation of the system to a low-energy Hamiltonian. Their gen-
eral effect is to suppress quantum effects at low fields. We
shall see that they are important even when A0�V0. �Note
that the simple argument above, showing the importance of
the hyperfine effects, makes no reference to the strength of
these interactions.�

C. Single Ho ion: Exact results for low energies

For H���0 / ��B�Jz��, Hhyp
� mixes appreciably electro-

nuclear states with different values of Iz. This is best seen by
performing an exact diagonalization of the full single Ho
Hamiltonian H=Hcf+HZ+Hhyp in the 136 eigenfunction
space �17 crystal field 
 8 nuclear states�. In Fig. 3 we plot
the spectrum of the lowest 16 levels, corresponding to the
electronic ground-state doublet, as a function of H�. Most

−7/2
−5/2
−3/2
−1/2

7/2
5/2
3/2
1/2

−1/2
−3/2
−5/2
−7/2 7/2

5/2
3/2
1/2

a a

bb

FIG. 2. Splitting of the electronic low-energy doublet �↑ and ↓�
by the longitudinal hyperfine interaction. The ground-state doublet
states a and ā have a definite and opposite nuclear spin, �7 /2. A
transverse magnetic field H� couples states with the same nuclear
spin, as shown by the dashed lines.
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generally, each of the 16 states can be written in the form
�M,m�Mm�M ,m�, where M�m� denote the z component of the
electronic �nuclear� spin. Plotted as solid lines are symmetric
eigenstates, with �Mm=�−M−m, and as dashed lines are anti-
symmetric eigenstates, with �Mm=−�−M−m.

At low fields, the electronuclear entanglement is strong,
and states are given, to a good approximation, by the form in
Eq. �A3�. One can then define the splitting between each pair

of time-reversed states by �̃m, which are plotted in Fig. 4. We

find,12 as we expect, that �̃7/2 is small up to H��2 T, at

which point �↑��BH���2
l ���0. �̃m increases more rapidly as

�m� decreases, simply because for smaller �m�, transitions be-
tween the two low-energy time-reversed states can be
achieved by lower orders in perturbation theory in Hhyp

� . One
then sees appreciable coupling at lower H�. As H� continues

to increase, �̃m increases rapidly and eventually saturates at a
field H�

� �m�. Note however that the spectrum in Fig. 3 is not

symmetric. This is because tunneling between the
lower pairs is allowed via the state ��2

l � at energy �0,
whereas tunneling between the upper pairs must involve
the higher excited states, at energy ECF higher than the low-
est states. Consider, e.g., the pairs �↑ ,−1 /2� , �↓ ,1 /2�
and �↑ ,1 /2� , �↓ ,−1 /2�. The first pair has a finite matrix
element in second-order perturbation, �↑ ,−1 /2�HxJx
��2

l ���2
l �IxJx�↓ ,1 /2�, which is first order in H�, and gives a

low-field splitting 
HxIx /�0. The second pair has a term of
similar form, which however passes via the states in the mul-
tiplet Jz=8,4 ,0 ,−4 ,−8. Thus it gives a low-field splitting

HxIx /ECF, roughly an order of magnitude smaller.

For H��H�
� �m� different values of m are well mixed, the

electron and nuclear spins get disentangled, and the spectrum
separates to two groups of eights. For H��H�

� �7 /2� the
eigenstates can be approximated by ��I���J�. The electronic
state hybridizes strongly the level ��2

l � with the ground-state
doublet. The states in the bottom group are approximately
symmetric with respect to the electronic degrees of freedom,
i.e., they have �Mm��−Mm, while the states in the upper
group have �Mm�−�−Mm. In each group, states separate into
pairs of symmetric and antisymmetric states, as noted above.
For large H� the lower level of each pair has �Mm��M−m
and the higher level has �Mm�−�M−m. Both the energy spec-
trum and the form of the eigenstates discussed above should
be revealed in electromagnetic-resonance experiments. In
Sec. V A 1 we give predictions for such possible experi-
ments, and their relation to the calculated entanglement en-
tropy.

III. LOW-T ENQI EFFECTIVE HAMILTONIAN

We now incorporate all the terms in Eq. �4�, with all
nuclear levels and the off-diagonal dipolar interactions, into
the full ENQI model for the LiHoxY1−xF4 system, including
all terms relevant to the phase diagram at energies �10 mK.
We begin by dividing the original Hamiltonian 	Eq. �4�
 into
the form

H = H0 + H1
zz + H1

�, �14�

where

H0 = Hcf + Hhyp
zz + HZ,

H1
zz = Udip

zz ,

H1
� = Hhyp

� + Udip
� �15�

and where we have written the dipolar interaction in the form

Uij
�� = Uij

zz + Uij
�, �16�

with a nondiagonal term

Uij
� =

U0

J2 Rij
� =

U0

J2 	Rij
�� − Rij

zz
 , �17�

where Rij
�� was defined in Eq. �10b�.

In Appendix A we derive a low-energy effective Hamil-
tonian valid for T��0, �BH���0. We do this in three

0 2 4
−3

−2

−1

0

1

2

H⊥ (Tesla)

E
(K

)

FIG. 3. �Color online� The 16 lowest electronuclear energy lev-
els of LiHoxY1−xF4, plotted as a function of transverse magnetic
field H�. The zero of energy is defined by the �field-dependent�
mean of levels 8 and 9. Symmetric/antisymmetric states are plotted
as solid green/dashed blue lines.
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FIG. 4. �Color online� The quantum fluctuation amplitudes �̃m
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mm at x=0.167 for
�m�=7 /2 �the low-T phase transition occurs when this interaction

��̃7/2�. Note how small is �̃m for large �m� and small H�.
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steps. We first derive the effective Hamiltonian for H=H0
+H1

zz, including Ising interactions terms only, and obtain Eq.
�A13�. We then add Hhyp

� , which introduces a quantum term
and obtain Eq. �A22�. We finally include Udip

� , which intro-
duces an effective random field,16 and an enhancement of the
effective transverse field.12 As a final low-T effective Hamil-
tonian for the LiHoxY1−xF4 system, we obtain

Heff = − �
i,j,m,m�

Ṽim,jm�
zz �H̃i

�,H̃j
��nimnjm�sim

z sjm�
z

− �
i,m

nim		m + �̃m�H̃i
��sim

x 
 + �
i

�i
z�H���

m

ni,msim
z .

�18�

Here �̃m are the effective transverse fields acting on time-
reversed states with a given �m�, as defined in Eq. �A10� �see
Fig. 4�, and �i

z is an effective random field, defined in Eq.
�A29�. We note explicitly the dependence of the interactions
and the effective transverse fields and random field on the

site-dependent total transverse field H̃i
� 	Eq. �A30�
.

In the low-T limit kT��0 and for H��H�
� �7 /2�, we

obtain

H = − �
i,j

Ṽij
zz�H̃i

�,H̃j
��si

zsj
z − �

i

�̃�H̃i
��si

x + �
i

�i
z�H��si

z.

�19�

This Hamiltonian applies for any x�1, irrespective of what
thermodynamic phase results from it. Thus in LiHoxY1−xF4 it
is valid for both the SG and FM regimes �the x dependence
enters in the interaction terms and in the effective fields�.
Note that �̃ and �i

z have very different dependences on H�

and dilution x. Thus, in the FM phase �̃ and �i
z are indepen-

dently tunable, by changing x and H�.20 In LiHoxY1−xF4 one
may thereby realize both the quantum and the classical
random-field Ising models in a FM system �see the theoreti-
cal prediction in Ref. 20 and the experimental realization in
Ref. 29�.

We emphasize the essential role played here by the
nuclear spins. They block quantum fluctuations. This is es-
pecially important for the LiHoxY1−xF4 system, whose pecu-
liar crystal-field Hamiltonian allows electronic tunneling at
second order in H�. If we drop the nuclear spins, we can get
erroneous results �e.g., that the effective random field must
come at the expense of appreciable quantum fluctuations18�.
For some purposes one can circumvent a proper treatment of
the hyperfine interactions by considering a simplified crystal-
field Hamiltonian16,19,20 �see also Ref. 30�, where tunneling
between the electronic spins is in high-order perturbation.
This gives the correct effective random field and the re-
entrance of the crossover H� as a function of dilution �see
Sec. IV C�. However, for other purposes a proper treatment
of the hyperfine interactions is essential—e.g., for the tem-
perature and field dependence of the phase diagram �see Sec.
IV� and for all of the dynamic properties.

IV. MEAN-FIELD TREATMENT OF THE PHASE
DIAGRAM

The phase diagram of quantum Ising systems such as
LiHoxY1−xF4 has been the object of extensive study for over
three decades. It was realized early on that strong hyperfine
interactions might be important.31 In the case of
LiHoxY1−xF4, for x=1 the phase diagram was calculated in
mean field,1 including the longitudinal hyperfine interactions.
This gave an enhancement of the critical transverse field at
low temperatures.

In this section we analyze the phase diagram of the
LiHoxY1−xF4 system in various dilutions, where disorder ef-
fects have to be accounted for. We first discuss the phase
diagram of a model Hamiltonian, including first the longitu-
dinal dipolar and hyperfine interactions and then adding the
transverse hyperfine interaction. Using this model, we make
predictions for the behaviors of the phase diagram and of the
magnetization of a general anisotropic dipolar system where
the conditions A0 , V0��0 are well satisfied for an arbitrary
ratio of A0 /V0. This analysis also pinpoints the basic physics
dictating the phase diagram in the LiHoxY1−xF4 system.
However, in the LiHoxY1−xF4 system the condition A0��0
is not that well maintained. To solve for the phase diagram of
the LiHoxY1−xF4 system, we use exact diagonalization of the
single Ho ion, a mean-field approximation for the inter-Ho
interactions, and we take into account the enhancement of
the effective transverse field by the transverse dipolar terms.
We shall see that this then gives very accurate results for the
phase lines for LiHoxY1−xF4 when x=0.167, and we make
predictions for x=0.045.

Finally, we discuss the nature of the phases at low T; this
is currently rather controversial. The hyperfine interactions
again play a central role in reducing quantum fluctuations
and slowing the relaxation of the system to equilibrium in
the low-T quantum regime. At finite transverse field we dis-
cuss the effect of the effective longitudinal random field,
emerging from the applied transverse field.

A. Classical Ising limit

As shown above, if H� is small, the transverse hyperfine

interactions play a minor role �the �̃m are small�, and the
only effect of the longitudinal hyperfine interactions is to
give a rather strong renormalization of the longitudinal dipo-
lar interaction between the Ising doublet spins � j

z. The prob-
lem in this Ising limit �neglecting the transverse terms� was
studied previously32 but only for x=1. We give a treatment
here for all dilutions, and we also assume that A0 is arbitrary.
Surprisingly, the hyperfine interactions cannot be neglected
even when A0�V0.

1. Strong hyperfine interactions

When A0�V0 and kT��0, the relevant Hilbert space
comprises the lowest two electronuclear Ising-type levels,
and we consider Hamiltonian �A2�, which reduces to the
classical Ising Hamiltonian Heff


 given in Eq. �A9�. The only
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effect of H� is to renormalize Vij
zz to Ṽij

zz=�2Vij
zz. We can then

immediately deduce the whole phase diagram of the system.
Since � is a function only of �0 /A0 	see Eq. �A7�
, we can
write all expressions for the phase diagram in terms of �0
instead of the actual transverse field H�. The transition line
as a function of �0 is shown in Fig. 5 for A0�V0 �i.e., for
x�1 in the LiHoxY1−xF4 system�. This diagram simply de-
picts the relation12

Tc��0� = ���0�2Tc�0� . �20�

If we now define 	��Tc−T� /Tc, one finds that for
�0 /A0 , 	�1 �i.e., small H� and T�Tc�, the phase transi-
tion line �c�T� obeys the relation

�c = A0
�	 . �21�

At T=Tc /2 one finds that �c�A0. When �0 /A0�1 there is
still a finite remnant polarization of the spin and an ordered
state at T=0; the transition line obeys the relation �c

=A0
��V0 /T�. This is quite different from TFQI model �1�,

where for �0�V0 the system becomes a paramagnet and a
T=0 quantum critical point is observed.

2. Renormalized Ising model for arbitrary A0 ÕV0

We now relax the condition V0�A0, so that all hyperfine
levels have to be included �however we still assume that
nuclear-spin flips are blocked�. For this case one can treat
Hamiltonian �A1� using mean-field theory. It then reduces to
the mean-field effective Hamiltonian

HMF = �
i

�hIi
z − Hi

z��i
z − �

i

�0�i
x, �22�

where the site-dependent mean field is

Hi
z = �

j

Vij
zz�� j

z� �23�

and h��0.
Since Eq. �A1� is equivalent to classical Ising Hamil-

tonian �A13�, mean-field Hamiltonian �22� is equivalent to
the mean-field version of Eq. �A13�, given by

HMF

 = �

im

nim�	im + Eimŝim� , �24�

where now the mean field is

Eim = �
jm�

njm�Ṽim,jm�
zz �ŝ jm�

z � . �25�

The mean-field theory in form �22� was solved some time
ago32 for the homogeneous case �where �� j

z� is independent
of j; i.e., the mean field is the same at all sites� and applied
to the FM LiHoF4 system �i.e., when x=1�.

In this section we extend this mean-field approach to
cover all values of x, including the SG regime, by allowing
the local mean field to vary from site to site. In order to
allow easy comparison with the previous work,32 we do this
starting from the Hamiltonian in form �22� rather than form
�24�. An explicit derivation, given in Appendix B, results in
the self-consistent equation

1 =

�
m

�0
2V0

�h2m2 + �0
2�3/2sinh���h2m2 + �0

2� +
�V0h2m2

h2m2 + �0
2cosh���h2m2 + �0

2�

�
m

cosh���h2m2 + �0
2�

. �26�

When A0�V0 the solution of this equation reproduces the
results in Sec. IV A and in particular the phase diagram in
Fig. 5. Let us now consider the regime V0�A0. Expanding
Eq. �26� in small �0, one obtains the following behavior of
the transition line �c�T� near Tc�0�:

�c�	� = V0
�	 , �27�

where 	��Tc−T� /Tc. Because the dipolar interaction now
dominates, the results of the TFQI model are reproduced
near Tc; and at Tc /2 we find �c�V0. Surprisingly, however,
the hyperfine interaction, although small, dictates the physics
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FIG. 5. �Color online� Plot of the phase line separating the or-
dered and the PM phases for model �A2� in the regime where A0

�V0, assuming V0=1, A0=35, and �0=100 in arbitrary units. The
dashed line shows Eq. �20�, plotted neglecting transverse hyperfine
interactions. We see that �c diverges as T→0. The blue solid line
describes the deviation from the classical Ising model at high trans-
verse fields, where the transverse hyperfine interaction are signifi-
cant, giving a quantum phase transition �QPT� at �0��0 �see Sec.
IV B�.
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at low temperatures. Below a crossover temperature T�

=A0
2 /V0, one reaches a regime where �c�V0, and then �c�T�

is given by

�c�T� = A0
��V0/T� �T� T�� , �28�

corresponding to a transition temperature Tc�H��=V0A0
2 /�0

2.
These are the exact same formulas found above for the case
A0�V0. Thus, when �0�V0, the system gains more energy
from fluctuations than it does from the interaction. However,
since H� cannot flip nuclear spins, a small remnant magne-
tization proportional to A0 /�0 allows ordering at low tem-
peratures.

In this mean-field theory, one thus finds two regimes, The
first, when V0�A0 and �0�V0, is the standard Ising picture:
At �0=0 the spins are in either state �↑ � or state �↓ �, and the
electronic degrees of freedom order. For finite �0�V0 the
spins fluctuate to the excited state at energy V0. However,
when �0�V0 and/or in the whole parameter regime for A0
�V0, the physical picture is different: The relevant single Ho
Ising states are the electronuclear states �⇑ � , �⇓ �, Eq. �A3�,
and the phase transition line is dictated by their
H�-dependent interaction, as discussed in Sec. IV A 1.

These two physical pictures are best illustrated by the
value of the magnetization at T=0. For A0�V0, Mz
�,
given in Eq. �A6�. For V0�A0 and �0�V0, expanding Eq.
�B4� in �0 /V0, one sees that Mz=1−�0

2 / �2V0
2�, showing that

the excitation energy is V0. However, when �0�V0, the hy-

perfine energy dictates the magnetization, which is given by
Mz�A /V0 for �0=V0 and Mz=A0 /�0 for �0�V0 �see Fig.
6�.

In Fig. 7 we plot the phase diagram of mean-field Hamil-
tonian �22� as a function of T and H� for V0�A0. In the
low-T regime, one can compare this with the phase diagram
of a system with A0�V0 and a similar value of A0

�V0. As
expected from Eq. �28�, for T�T� the two systems have the
same behavior.

In Ref. 32 a similar phase diagram was calculated for
LiHoF4 and compared to experiment.1 This comparison was
made by rescaling the theoretical curve to agree with the
experiments at the lowest temperature. However the condi-
tion H���0 /�B is then not well satisfied at criticality, and
the transverse hyperfine interactions are important. By forc-
ing the theory and experiment to coincide in the regime
where the theory is not applicable, a discrepancy with experi-
ment over the whole temperature range is obtained 	see Fig.
1b of Ref. 32
. This can be corrected for T�0.1 K by
choosing the scaling parameter better. However, in order to
obtain a good fit with the experimental phase diagram at the
lowest temperatures, one has to take into account the trans-
verse hyperfine terms.1 For x�1 the off-diagonal dipolar in-
teractions have to be included as well. These interactions are
considered next.

B. Effect of transverse hyperfine interaction

Independent of the ratio A0 /V0, for �0�A0 ,V0 we found
for Hhyp

� =0, which is equivalent to �0→�, that �c

=A0
��V0 /T�, diverging as T→0. This pathology arises be-

cause we need to include the transverse hyperfine terms.

With Hhyp
� �0 the splitting �̃ becomes appreciable for

�BH���0��0 �in this regime �BH���0�, while Veff
=V0A0

2 /�0
2�A0. Thus, for A0 , V0��0 a quantum phase

transition is obtained within the regime of the applicability of
Hamiltonian �A23�. The divergence of �c is rounded, as we
schematically draw as a solid line in Fig. 5. A similar round-
ing off of �c occurs for V0�A0 �Fig. 7�.

As mentioned above, the condition A0��0 is not that
well satisfied in the LiHoxY1−xF4 system. Still, at low x,
where A0�V0, the phase transition occurs within the regime
of the applicability of Hamiltonian �A23�. Recall that in Fig.
4 we plot Veff
 �Jz�2 for x=0.167, taking Veff�H�=0� to be
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FIG. 6. The magnetization as function of transverse effective
field �0 is plotted for Hamiltonian �22� with h�2A0 /7=1, V0

=20. Note that for �0�V0 a remnant magnetization of magnitude
h /�0 is present.
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FIG. 7. �a� The phase diagram of Hamiltonian �22� for the regime A0�V0, with h�2A0 /7=1, V0=16. �b� Focusing on low tempera-
tures, we compare the phase line in �a� �dashed line� to a system with A0�V0. We take h=4, V0=1 to have the same value for A0

�V0, so
that the low-temperature divergence of the critical field is the same for the two systems.
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equal to the value of Tc=0.13 K. The value of H� where

�̃�Veff is smaller than H�
� . This is true for all smaller dilu-

tions x as well. At x=0.167 one expects the quantum phase

transition to occur at H��2 T, where �̃�Veff. Thus, three
energy scales govern the phase transition. The spin-spin in-
teraction V0 dictates Tc at zero field, the hyperfine interaction
A0 dictates the phase diagram at finite H�, and the larger
anisotropy scale �0 dictates the position of the quantum
critical point, since quantum fluctuations become important
only when �↑��BH���2

l ���0. It is for this reason12 that in
LiHoxY1−xF4 it is much easier to disorder the ordered phase
thermally rather than quantum mechanically,5 especially
when x�1.

For x�1 one can calculate the phase diagram for
LiHoxY1−xF4 including all hyperfine terms using the effec-
tive Hamiltonian derived in Sec. III. However as we have
seen, at higher temperatures this Hamiltonian breaks down at
quite low transverse fields, because of the mixing of higher
levels �cf. Fig. 4�. Therefore, for larger x, where the dipolar
interactions are stronger, quantum criticality occurs at H�

�H�
� , where all the nuclear levels are well mixed. This is the

case for x=1, for which a quantum phase transition is ob-
served at 4.9 T.1

We therefore adopt a different approach, which covers all
values of x, and calculate the phase diagram numerically,
including both Hhyp


 and Hhyp
� , starting from the Hamiltonian

HF = �
j
�Hj

cf − gJ�BH�Jj
x + AJI�j · J� j + �

i

Uij
zzJi

zJj
z� ,

�29�

in which the single spin Hamiltonian is exact. We then treat
the interactions in mean-field approximation; i.e., we assume

�
i

Uij
zzJi

zJj
z → UMF�Jj

z�Jj
z �30�

�see also Appendix B�. One of the central results of this
paper is that the single atom Hamiltonian dictates much of
the physics of LiHoxY1−xF4. We shall indeed see that the
mean-field approximation to the interactions has only a small
effect on the results.

The phase diagrams for x=0.167 and x=0.045 are drawn
as dashed lines in Fig. 8. Comparing the calculation for x
=0.167 with experiment, we see that it naturally explains
why it is much harder to disorder the SG phase quantum
mechanically than thermally. Going to x=0.045, we see that
the reduction in Tc is 
x, while the reduction in H�

c is much
smaller, as can be anticipated from the requirement Veff
��0 �Fig. 4�.

However, the agreement with experiment is still not per-
fect for small x. For x=0.167 one obtains a larger critical
field at T=0 and a qualitatively different behavior near Tc�0�.
As was discussed in Ref. 12, these differences cannot be
attributed to the mean-field approximation, but they testify to
the inadequacy of Hamiltonian �29�. This is since the behav-
ior near Tc�0� should follow Eq. �21� �for x=0.167 the con-
dition V0�A0 is well satisfied�, and the values for �c ob-
tained at the lower temperatures in the experiment5

necessitate the existence of appreciable quantum fluctuations

at H��1 T, which contradicts the results shown in Fig. 4.
To explain things, we now finally turn to the nondiagonal
dipolar terms.

C. Random nondiagonal dipolar terms

To account for the experimental phase diagram, one has to
include the dependence of the effective field on the off-
diagonal terms of the dipolar interaction.12 These add an ef-
fective random longitudinal field and in the SG regime also
enhance the effective transverse magnetic field, as explained
in Appendix A 3. The random longitudinal field is crucial in
dictating the nature of the phase at finite H�, as it destroys
long-range SG order.16,19 However, at least for x�1 it does
not strongly affect the position of the phase line because: �i�
the effective random longitudinal field is zero at H�=0 and
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FIG. 8. �a� The phase diagrams for x=0.167 �thick lines� and
x=0.045 �thin lines� as a function of H� and T. The solid �dashed�
lines are calculated with �without� the off-diagonal dipolar interac-
tions. The low-T , H�=0 phase is believed to be a spin glass for
both dilutions, with a crossover at finite H� between a quasi-spin-
glass and a paramagnet. Note the “re-entrant” behavior predicted
when the off-diagonal dipolar interactions are included �as seen by
the crossing of the phase lines at H��1.65 T�; see text. �b� The
same phase diagram as in �a� now plotted as a function of �0 , T, to
allow comparison with experiment �Ref. 5� at x=0.167. Filled and
empty circles, taken from Fig. 1 of Ref. 5, denote the PM-SG cross-
over from dynamical measurements and nonlinear susceptibility,
respectively. With the inclusion of the off-diagonal dipolar interac-
tions, good quantitative agreement is obtained.
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is small for H���0 /�B; �ii� it is random in sign, with only
a small effect on the typical interaction; and �iii� at large H�,
where �i

z is appreciable, the crossover to the PM phase de-
pends only weakly on V0, as can be inferred from Fig. 4.

Thus, in calculating the phase diagram, we neglect the
random longitudinal fields and consider only the enhance-
ment of the effective transverse field by the off-diagonal di-
polar interactions. This enhancement depends on x and H�;
here we follow Ref. 12 in neglecting the dependence on H�.
We further assume that this enhancement is proportional to x

when x�1; i.e., we write a total transverse mean-field H̃�

=H�+H�
d , with H�

d 
x. Note that this mean field is just the

average of the transverse field H̃i
� that we discussed in Ap-

pendix A 3, i.e., H�
d = �H̃i

��.
This leads to satisfying quantitative agreement with the

experimental phase diagram for x=0.167 �see Fig. 8�. Tc�0�

V0
x, while H�

c at the T=0 transition depends mainly on
the energy scale �0. For x�0.167, H�

c should therefore
change only slightly with dilution. The dilution dependence
of H�

c is a result of two competing effects. First, since the

transition occurs when �̃�V0, there is a slow enhancement

in H�
c with x �slow because �̃ varies rapidly with H�; see

Fig. 4�. Second, H�
d 
x, giving a further reduction 
x in H�

c .
This leads to the interesting prediction that for low enough x,
there will be an increase in H�

c with decreasing x, so that H�
c

has a minimum at some x. This is seen in our figure by the
crossing of the phase lines �see Fig. 8�. In analogy with the
re-entrant behavior one sees in some systems on variation of
an external field, we can call this a prediction of a kind of
“re-entrance” as a function of concentration x.

It is interesting that the combined effect of the hyperfine
interactions and the transverse dipolar interactions leads to
this re-entrant behavior. Even though the effect of the trans-
verse dipolar interactions is only a weak effect compared to
that of the hyperfine terms, it is just enough to tip the system
into re-entrance. Note however that without the much stron-
ger hyperfine effect on the phase diagram, this would not
have happened. We remark again that we do not think that it
is possible to explain the phase diagram without incorporat-
ing the hyperfine terms �e.g., by including only dipolar
interactions;18 cf. our discussion in Sec. III�.

D. Nature of the low-temperature phase

As we have seen, it is possible to derive an accurate phase
diagram without saying too much about the nature of the
phases themselves. In fact the nature of the low-T phases of
LiHoxY1−xF4 has been rather controversial in recent years.
Here we would like to outline several rather important im-
plications of our results. We divide our discussion between
the zero transverse field case and the case of finite H�.

1. Zero transverse field

At all dilutions, the LiHoxY1−xF4 system is PM at high
temperatures. However, as mentioned above, at low tempera-
tures the phase of the system is dilution dependent. It is well
established both experimentally2 and theoretically33 that for
x�xF the system orders ferromagnetically at low tempera-

tures, where values for xF are in the range of 0.2–0.5. How-
ever, at low dilutions the nature of the phase is controversial.
Theoretically, it is argued that a SG phase should exist at all
dilutions x�1.34 Experimentally, it was argued that at x
=0.167 the system has a low-temperature glass phase,5 while
for x=0.045 the experiment8 revealed a very intriguing yet
unexplained behavior of the imaginary part of the suscepti-
bility, in which its width in the frequency domain narrows as
the temperature is lowered, and it therefore received the
name “anti-SG.” Recently, however, these results were chal-
lenged by Jonsson et al.,35 who claimed for x=0.167,0.045
that there is no phase transition to the SG phase. Further-
more, their analysis suggests that the system at the above two
dilutions exhibits similar characteristics. A similar contro-
versy arose regarding the specific heat of the system and its
consequences regarding the nature of the phase at
x=0.045.17,36 Note that it is difficult to reach equilibrium
conditions both experimentally, near the transition,35,37 and
numerically, using Monte Carlo.33 Therefore further studies
will be useful in resolving the low-temperature phase of the
diluted LiHoxY1−xF4.

Our analysis above does not depend on the precise nature
of the ordered phase and therefore cannot lead to definite
conclusions regarding this question. However, since Hamil-
tonian �4� gives a comprehensive description of the system
down to a few millikelvins, some clarifying statements based
on our analysis can be made:

�i� The only difference between the LiHoxY1−xF4 com-
pounds at x=0.167 and x=0.045 is the strength of the dipolar
interaction, both in the magnitude of the typical terms and in
the distribution due to randomness. All the single Ho prop-
erties, which, as discussed above, dictate much of the phys-
ics, stay unchanged. Thus, we have every reason to believe
that at x=0.045 the equilibrium low-temperature phase is
also a spin glass. However, as shown in Fig. 8, its Tc�0� is
reduced to roughly 35 mK, and according to this the experi-
ments at this dilution8,17,35,36 were done in the PM regime.

�ii� As we show above, the dynamics of the system at low
temperatures is significantly slowed down by the coupling to
the nuclear spins �see also Ref. 35�. Indeed, the peculiar
features in the spin susceptibility at x=0.045 �Ref. 8� were
obtained as the temperature was reduced to below 150 mK.
At this temperature the higher nuclear-spin levels start to be
depleted, and all but few of the Ho atoms are in either state
�↑ ,−7 /2� or state �↓ ,7 /2�. Thus, the system cannot take ad-
vantage of the much faster transitions between the higher
nuclear-spin states �see Fig. 4�, and the dynamics slow down
appreciably. The data of Quilliam et al.,36 which show that
the peak in the specific heat occurs in a similar temperature
for x=0.02, 0.045, 0.08, supports the view that single spin
physics and, in particular, the hyperfine interactions are sig-
nificant in the interpretation of the experiments in these di-
lutions.

�iii� In Ref. 17 it was argued that for x=0.045 the internal
transverse field resulting from the off-diagonal terms of the
dipolar interaction stabilize a low-temperature spin liquid
state. It was further argued there that this is correct also for
transverse fields which are effectively reduced by a factor of
104. The analysis in Ref. 17 was done in the electronic de-
grees of freedom. However, in the regime relevant to the
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experiment,8 effective Hamiltonian �A23� is valid, with zero
random longitudinal field. Therefore, the analysis should be
done considering the electronuclear degrees of freedom,
within the framework of Hamiltonian �A23�. In particular,
the effective transverse field due to the off-diagonal dipolar
interactions at H�=0 is much smaller than the values con-
sidered in Ref. 17, as can be inferred from the logarithmic
scale graph in Fig. 4.

2. Finite transverse field

Turning now to nonzero H�, we note first that there is a
crucial difference between the FM phase and the SG phase if
the latter exists at H�=0. In the FM regime the lower critical
dimension dc=2 �cf. Ref. 38�, and in three dimensions the
FM phase is stable to a small random field. Thus we expect
that the FM phase, which exists for large x, will survive at
finite H�.

However, if one supposes that for intermediate x one has
a SG phase at H�=0, then the critical dimension is dc=� �cf.
Refs. 39 and 40�, and so the long-range SG order should be
destroyed by an infinitesimal random field.16,19 As is well
known, this means that the system will no longer be a ho-
mogeneous SG, but instead domains of finite size will be
created: Each one will have internal SG order but the order
will be uncorrelated between different domains. The correla-
tion length �, which is essentially the domain size, is given
by16,19

�� � �0

�BH�

�1/	�3/2�−�d


. �31�

where �d�0.2 is the stiffness exponent.39,40 Essentially the
system is able to gain energy from the random field by cre-
ating domains. Referring to Eq. �A27�, we see that this en-
ergy gain is a result of the two terms in the numerator con-
tributing with the same sign, i.e., an effective enhancement
of the transverse magnetic field.

V. EXPERIMENTAL CONSEQUENCES

In this paper we have derived results regarding the single-
particle properties of the Ho ion in the LiHoxY1−xF4 systems,
as well as the phase diagram. We have also addressed the
regime where A0�V0, which is not applicable to the
LiHoxY1−xF4 system but is the more abundant regime in gen-
eral. In this section we address the relation between our re-
sults and possible experiments.

A. Single spin properties

A central result of this paper is the derivation of the low-
energy effective Hamiltonian for the LiHoxY1−xF4 system as
a generalized Ising Hamiltonian in the electronuclear degrees
of freedom 	Eq. �18�
. This effective Hamiltonian is com-
pletely determined by the effective random fields �i

z and the

single-ion parameters 	m, �̃m, and �m 	see Eq. �A16�
, the
last one determining the effective spin and therefore the ef-
fective spin-spin interaction. Below we suggest magnetic-
resonance and muon-spin-relaxation ��SR� experiments that

can measure the single-ion parameters directly and verify the
mechanism leading to the enhancement of the effective trans-
verse field and the emergence of an effective random longi-
tudinal field. With regard to magnetic-resonance experi-
ments, we give explicit quantitative predictions for the Rabi
frequency of excitations to various levels. We interpret these
predictions in terms of the calculated entanglement entropy
of the ground state as a function of transverse field, in agree-
ment with our analysis in Sec. II C.

1. Magnetic-resonance experiments

One obvious way of probing the low-energy properties of
the LiHoxY1−xF4 system is via magnetic-resonance experi-
ments. Specifically, such experiments can be used to quantify

	m, �̃m, and the nature of the wave functions as a function of
H�. In Fig. 9�a� we plot the Rabi frequencies, given by
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FIG. 9. �Color online� �a� Rabi frequencies of magnetic-
resonance transitions to electronuclear levels within the space of the
electronic Ising doublet for oscillating field along ẑ with amplitude
of 1mT as a function of a transverse magnetic field. All transitions
are to antisymmetric states �dashed blue levels in Fig. 3�. The
dashed �solid� lines correspond to levels within the lower �upper� 8
states. �b� Entanglement entropy of the ground state as a function of
H� �solid black line�. Plotted for comparison are the normalized
Rabi frequency to level 2 �first excited state; blue dot-dashed line�
and the subtraction from unity of the normalized Rabi frequency to
level 9 �green dashed line�.
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�Rabi =
2bz��1�gJ�BJz + gN�NIz�2��

h
, �32�

for a magnetic-resonance transition between the ground state
and excited states as a function of transverse field Hx for an
ac field along ẑ. Only the lowest 16 levels are considered.
From symmetry, only transitions to antisymmetric states
�plotted dashed line in Fig. 3; see also the discussion in Sec.
II C� are possible. For H�→0 the only allowed transition is
to the first excited state, in agreement with the form of the
electronuclear states in Eq. �A3�, in terms of which effective
Hamiltonian �3� is written. A finite Rabi frequency to other
states is allowed at Hx�0, a consequence of the mixing of
the states in Eq. �A3� resulting from Hhyp

� , and is thus larger
for larger �m�. As discussed in Sec. II C, with increasing Hx
the electronic and nuclear spins disentangle, and the elec-
tronic state at high fields is approximately the symmetric
state ��↑ �+ �↓ �� /�2 for the lower eight states and the anti-
symmetric state ��↑ �− �↓ �� /�2 for the upper eight states. For
this reason, except for the first excited state at small Hx, the
Rabi frequency is larger to the states in the upper group. At
large Hx the Rabi frequency to state 9 �the lowest level in the
upper group� dominates, in agreement with the picture �see
Sec. II C� that levels in the lower and upper groups of eights
have similar nuclear states, respectively.

The disentanglement of the electronic and nuclear states
can be quantified by calculating, as a function of Hx, the
entanglement entropy −Tr��I log �I�, where

�I � �
M

�M�g.s.��g.s.�M� �33�

is the reduced density matrix in the subsystem of the nuclear
spin. The entanglement entropy is shown for the ground state
as a solid line in Fig. 9�b�. We replot as a dashed line the
Rabi frequency to the first excited state scaled to 1 at Hx
=0. We plot 1− �̃Rabi�9� as a dotted dashed line, where
�̃Rabi�9� is the scaled Rabi frequency to level 9. Although not
exact, we see that the diminishing of �Rabi�2� and the emer-
gence of �Rabi�9� with increasing field is a measure of the
�dis�entanglement of the electronic and nuclear spins. A na-
ive conclusion from the above would be that for large H� the
nuclear spins decouple from the electronic spins and there-
fore effective Hamiltonian �1� is recovered. The fact that for
x=1 the soft mode is gapped near the quantum phase transi-
tion �at 4.9 T� �Refs. 14 and 15� suggests that this simplified
model is not suitable also in this regime.

In Fig. 10 we plot the Rabi frequency as a function of Hx
for an ac field in the x direction. The relevant matrix element
is then �1�gJ�BJx+gN�NIx�2�. The operator Jx changes the z
component of the electronic spin. The relevant matrix ele-
ment is then proportional to the amplitude of ��2

l � in the
ground state. This amplitude, resulting from the transverse
hyperfine interaction, is small, �O�A0 /�0��10−2, and at
Hx=0 is finite only for the state with �Iz�=5 /2. This is why
the intensity for a longitudinal ac field is so much larger than
that for a transverse ac field 	compare Figs. 9�a� and 10
. For
an ac field along ẑ, only transitions to symmetric states �plot-
ted as solid curves in Fig. 3� are possible.

From the picture of the system without the transverse hy-
perfine interaction, where the 16 states at zero field are
eigenstates of Iz, one might expect that for a transverse ac
field the dominant intensity would come from the nuclear
operator. Surprisingly, it is the electronic operator that domi-
nates the magnetic-resonance experiment. This is because
A0 /�0��N /�B. Thus, although the levels are predominantly
nuclear-spin levels, the relevant experiment is basically an
electron-spin-resonance �ESR� experiment.

All the results above are valid for single Ho ions and can
be checked in very dilute samples, where interactions are
negligible. For larger x, in the SG regime, the interplay be-
tween the off-diagonal dipolar interactions and the applied
transverse field results in an effective enhancement of the
transverse field and the emergence of an effective random
field12,16 �see details in Appendix A 3�. This result, shown in
Secs. IV C and IV D 2 to be crucial for the structure of the
phase diagram in the SG regime12 as well as for the nature of
the phase itself,16,19 can actually be verified by measuring,
e.g., �Rabi�2� as a function of H� for different x. The off-
diagonal dipolar interactions should lead not only to a dis-

persion in �̃7/2 but also to an x-dependent shift upward of its
mean value. This shift can be checked against our approxi-
mation in Sec. IV C.

2. �SR experiments

According to Eq. �A6�, the single Ho spin moment at low
temperatures 
�, and so it decreases with H�. Such a field
dependence of the individual magnetic moments could be
directly measured using �SR. The magnetic field at the
muon site is proportional to the magnetic moment size of the
material, which in a diluted sample is given by the nearest
Ho ion. Such a measurement should be done at dilution x
�1, both because our prediction is for the regime where
A0�V0 and because then the contribution from more distant
Ho ions will be smaller.

B. LiHoxY1−xF4 phase diagram

In Sec. IV C we have given explicit quantitative predic-
tions for the phase diagram of the LiHoxY1−xF4 system as a
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FIG. 10. �Color online� Rabi frequency of magnetic-resonance
transitions for an ac field in the x direction. Details are as in Fig. 9
except that here the transitions are to symmetric states �solid green
levels in Fig. 3�.
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function of x. Our results for x=0.0167 are in good agree-
ment with experiment, and our predictions regarding the
phase diagram at x=0.045, as well as the re-entrant crossover
field as function of dilution, can be checked experimentally
in a straightforward way. However, here we would like to
suggest an experiment that would directly probe the signifi-
cance of the hyperfine interactions in dictating the phase dia-
gram of the LiHoxY1−xF4 system at low x.

We use the above result, predicting that at Hx�2–3 T,
the magnetic-resonance intensities for transitions to levels
with �Iz�=1 /2, 3 /2 are appreciable. Thus, one could in prin-
ciple, by populating these states, change the critical field at
low T: A nonequilibrium occupation of these excited electro-
nuclear levels would lead to stronger quantum fluctuations
�cf. Fig. 4� and therefore to a lower critical field. This opens
up the rather fascinating possibility of controlling the quasi-
equilibrium phase diagram of the system by driving a steady-
state nonequilibrium nuclear-spin population.

C. Limitations of the LiHoxY1−xF4 system

The LiHoxY1−xF4 compound is a particularly useful test
system: It is a well-defined Ising system, with a doubly de-
generate ground state. Quantum fluctuations are easily tun-
able at moderate transverse fields, and x can be varied over a
huge range. However, there are at least two limitations on
this system, viz.:

�i� The allowed values of the dipolar spin-spin interaction
V0, hyperfine interaction A0, and crystal anisotropy energy
�0 do not test the whole parameter range. Thus, e.g., to
observe our prediction that the hyperfine coupling dictates a
diverging Hc at low T for either A0�V0 or A0�V0 given that
A0 , V0��0 �see Figs. 5 and 7�, we need a system where the
latter condition is well satisfied.

�ii� For H�=0, the ground state is degenerate. Inducing
quantum fluctuations coupling the two ground states requires
a transverse field. However, the application of H� results in
an emerging random field. As a result, the quantum phase
transition between the SG and FM phases cannot be seen as
a function of H� but only as a function of a parameter that
does not break time-reversal symmetry, e.g., pressure.16 To
observe such a transition one would need a system where
quantum fluctuations between the Ising ground states are ap-
preciable at H�=0. One would then have to tune the dilution
so that at ambient pressure the typical spin-spin interactions
are of the order of the quantum fluctuations and to look for
the transition as a function of pressure.

VI. CONCLUSIONS

In this paper we have considered anisotropic quantum
magnetic systems in which both dipolar and hyperfine inter-
actions play a role. We have shown that the transverse field
Ising model is not sufficient to describe such systems. In-
stead, we have given a theoretical treatment of an electro-
nuclear quantum Ising model which can do the job. The hy-
perfine interactions set the scale for the field at the quantum
critical point, even in systems in which the hyperfine inter-
action is weaker than the dipolar spin-spin interaction. We

have given a detailed treatment of the LiHoxY1−xF4 com-
pound, calculating the phase diagram for all dilutions x and
giving explicit numerical results for x=0.045 and x=0.167.
We explain the experimental result that thermal fluctuations
more easily destabilize the ordered phase than quantum me-
chanical fluctuations do. Off-diagonal dipolar interaction
terms are shown to reduce the transverse critical field Hc

�,
and a prediction for a nonmonotonic critical field as a func-
tion of x is given. The experimental consequences of our
results as well as possible measurements of the parameters of
the effective Hamiltonian are discussed.

We note that our results have wider implications in two
ways, which will be explored elsewhere. First, as just noted,
they can be applied to many other dipolar quantum magnets.
Second, the nuclear spins will clearly have an even more
profound effect on the dynamical properties of these systems
than on the phase diagram. Indeed, the big surprise is quite
how important they are for the thermodynamics, even when
A0�V0.

Our prediction for the re-entrance of the crossover field as
a function of dilution was coincidentally and independently
discovered experimentally by Ancona-Torres et al.41
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In this appendix we derive the effective Hamiltonian in
Eq. �18�.

1. Ising-type terms

We are interested in the 2I+1 lowest levels, shown for the
16 levels of the Ho ion in LiHoxY1−xF4 in Fig. 2. The term
H1

� in Eq. �15� has zero matrix element between any of these
16 low-energy states and thus must mix higher crystal-field
states. This results in contributions of order V0 /�0 , AJ /�0
�1. We therefore begin by discussing in this subsection the
longitudinal interaction terms, i.e., the Hamiltonian Hl=H0
+H1

zz.
In the subspace of the lowest 2I+1 electronuclear states,

we have seen that Hl reduces to

Hel = �
i

�0�i
zIi

z − �
i,j

Vij
zz�i

z� j
z − �

i

�0�i
x. �A1�

Let us first discuss this Hamiltonian for T��0. Then, one
can simplify the model to include only the levels with Iz
=� I �i.e., with Iz=�7 /2 for LiHoxY1−xF4�, described in
Sec. II B. The effective Hamiltonian then reduces to12

Hle = 2A0�
i

�i
z�i

z − �
i,j

Vij
zz�i

z� j
z − �

i

�0�i
x, �A2�

where �i acts upon the two electronic states �↑ � , �↓ � at site i,
�i acts upon the two nuclear-spin states with Iz=�7 /2, and
the coupling A0= I�0�0.7 K.
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For H��0 the two low-energy Ising doublet states are
given by12

� ⇑ � = c1�a� + c2�b� ,

� ⇓ � = c1�ā� + c2�b̄� , �A3�

where �a� , �b� , �ā� , and �b̄� are defined in Sec. II B and

c1 = ��0, c2 = �	A0 − �A0
2 + �0

2
 , �A4�

� = 	�0
2 + �A0 − �A0

2 + �0
2�2
−1/2. �A5�

Thus, as noted just above, the longitudinal part of the hyper-
fine interaction blocks quantum fluctuations between the rel-
evant Ising states.

It then follows that a transverse field H���0 can only
renormalize the effective spin of what is just a classical Ising
system: One finds

���
z �H��� = ����

z �0��, � = �c1
2 − c2

2� , �A6�

with ��−
z �=−��+

z �. Note that

� = 1 −
�0

2

2A0
2 ��0� A0� ,

� = A0/�0 ��0/A0� 1� . �A7�

Absorbing this renormalization into the dipolar interaction,
Hle 	Eq. �A2�
 reduces to

Heff

 = − �

i,j
Ṽij

zzsi
zsj

z �H���0/�B� , �A8�

Ṽij
zz = �2Vij

zz, �A9�

where ŝ j is a spin-half matrix operating on the states �⇑ � and
�⇓ � of the jth spin, such that ŝ j

z�⇑ �= �⇑ �, ŝ j
z�⇓ �=−�⇓ �, etc.

Thus we have shown the equivalence of the two Hamil-
tonians Hle in Eq. �A2� and Heff


 in Eq. �A9�. Both are appli-
cable in the low-T limit kT��0 when H���0.

For higher temperatures, �0 T��0, Hamiltonian �A1�
has to be considered. Following the arguments above, only
levels with the same Iz mix �see Fig. 2�. The generalization
of Eqs. �A3�–�A5� results in

�⇑ ,m� = c1m�↑ ,m� + c2m�↓ ,m� ,

�⇓ ,− m� = c1m�↓ ,− m� + c2m�↑ ,− m� , �A10�

with coefficients

c1m = �m�0,

c2m = �m	m�0 + �m2�0
2 + �0

2
 , �A11�

and

�m = 	�0
2 + �m�0 + �m2�0

2 + �0
2�2
−1/2. �A12�

If we choose m=−I, these equations revert to Eqs. �A3�–�A5�
for the two lowest levels.

We now define a set of pseudospin −1 /2 degrees of free-
dom �ŝim�, operating in the subspace spanned by the pair of
degenerate levels �⇑ ,m�, �⇓ ,−m�. In terms of these pseu-
dospins, we then obtain for the Hamiltonian Hl defined
above 	Eq. �A1�
 the renormalized effective Hamiltonian

Heff

 = �

jm

njm	m�H�� − �
i,j;m,m�

nimnjm�Ṽim,jm�
zz �H��sim

z sjm�
z ,

�A13�

where we have defined a pseudospin occupation number njm
such that �mnjm=1 and we have defined energies

	m�H�� = sgn�m���m2�0
2 + �0

2� , �A14�

Ṽim,jm�
zz = �m�m�Vij

zz �A15�

and a renormalization factor

�m = �c1m
2 − c2m

2 � . �A16�

Thus again we obtain a generalized classical Ising model,
now involving the entire set �ŝim� of pseudospins. There are
2I+1 pseudospins per site �only one of which is occupied at
any time�, interacting with pseudospins at the other sites.

We emphasize that Hamiltonians �A1� and �A13� are en-
tirely equivalent. The great advantage of Eq. �A13� 	and its
low-T simplification in Eq. �A9�
 is that the physics is cor-
rectly displayed, that of a classical Ising system. This is done
using the physically meaningful energy scales for this re-
gime.

2. Transverse hyperfine terms

Now suppose we neglect all dipolar interactions between
the electronic spins, but we now switch on the full hyperfine
coupling, including the transverse hyperfine term. The gen-
eral effect of this is seen in a plot �Fig. 3� of the 16 relevant
eigenenergies for the Ho ion in the LiHoxY1−xF4 system as a
function of H�.

As H� increases, levels separate into two groups of
eights, given by symmetric and antisymmetric combinations
of states with the same m. Each pair of levels �⇑ ,m� , �⇓ ,
−m� which is related by time-reversal symmetry is then split
by the combination of H� and Hhyp

� .
If we wish to write an effective Hamiltonian for this sys-

tem in the original basis of 2I+1 levels, we get a rather
interesting result. After truncating the full Hcf down to the
two lowest electronic levels, we can write for a single ion
�ignoring now all interactions between ions� the following:

Hi
eff = −

1

2�
j

�0	� j
+eiÂ	Ij
 + H.c.
 + �0�

i

�i
zÎi

z, �A17�

where the matrix element Uj
fi= �f �eiÂ	Ij
�i� is defined between

an initial state �i�= �↑j ;!i�I j�� before the electronic spin flips
and a final state �f�= �↓j ;! f�I j�� after it flips, involving some
initial and final nuclear-spin wave functions !i�I j� and ! f�I j�.
The operator Û�j� is defined as
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Ûj = eiÂ	Ij
 � exp
i

"
�

⇑

⇓

dtHhyp
� �I j,t� . �A18�

In general the �2I+1�
 �2I+1� matrix Â	I
, which operates
in the Hilbert space of I j, causes transitions between different
hyperfine levels when the central spin �here the Ho spin�
flips. A calculation of Â	I
 is actually quite lengthy, since
typically it involves multiple transitions between the nuclear-
spin states. Thus Hamiltonian �A17� is in general a rather
complicated object, taking the form of a �2I+1�
 �2I+1�
matrix acting on the lowest states of the system. For
LiHoxY1−xF4 this means a 16
16 matrix, which is quite
unwieldy.

In the present paper we are interested only in the thermo-
dynamic properties of our system. This allows a considerable
simplification, which we can see most simply by rewriting
Hamiltonian �A17� for an isolated ion �i.e., again ignoring
dipolar interactions� in terms of our pseudospins, in the fol-
lowing form:

Hi
eff = �

m

Hm
o �ŝim� + �

m�m�

�H̃mm��ŝim, ŝim�� , �A19�

where the “diagonal” terms have the matrix form

Hm
o = � 	m �̃m

�̃m
† 	m

� �A20�

in the basis where ŝim
z is diagonal and the nondiagonal terms

couple different pseudospins.
We look first at the diagonal terms. The diagonal energies

	m 	Eq. �A14�
 are just the eigenvalues of H0 in Eq. �15�. In
zero field one has from Eq. �13� that 	m�m�0 for
LiHoxY1−xF4, with splitting of �205 mK between adjacent
pairs of levels in the Ho ion. At low H� the transition terms

�̃m split each pair of degenerate m states into the symmetric
and antisymmetric combinations �� ,m�= ��⇑ ,m�� �⇓ ,

−m� /�2�. The �̃m are just the quantum fluctuation ampli-
tudes between the eigenstates �⇑ ,m� and �⇓ ,−m� of the clas-
sical Ising system, induced by the transverse hyperfine cou-
pling.

Now consider the nondiagonal term �H̃mm��ŝim , ŝim�� in
Eq. �A19�. The crucial point here is that when H� /�0�1,
this term will be unimportant for the phase diagram because
a nondiagonal coupling between different pseudospins
ŝim , ŝim� involves a sequence of �m−m�� nuclear flips. If we

call these nondiagonal matrix elements �̃mm�, then for

H� /�0�1 �̃mm���0 and so it can hardly affect the level
spacing or any other thermodynamic properties. Thus, as far
as the thermodynamics is concerned, we can get away with
using the form Hm

o in Eq. �A20� when H� /�0�1.
Summarizing, including the transverse hyperfine terms,

the effective low-energy Hamiltonian for a single ion can be
written as

Hi
eff � �

i,m
nim		m�H�� − �̃m�H��sim

x 
 , �A21�

where both 	m and �̃m depend on the transverse field. If we
now include back the longitudinal dipolar interaction, we
obtain the Hamiltonian

Heff = − �
i,j,m,m�

Ṽim,jm�
zz �H�,�0�nimnjm�sim

z sjm�
z

− �
i,m

nim		m + �̃m�H�,�0�sim
x 
 , �A22�

which is the generalization of Eq. �A13� that now includes
quantum fluctuations.

At very low temperatures, T��0 �which for x�1 include
the whole phase diagram�, only the two lowest electronuclear
states are relevant. The above Hamiltonian reduces to12

H = − �
i,j

Ṽij
zz�H��si

zsj
z − �̃�H���

i

si
x, �A23�

which is just Eq. �A9� with the addition of quantum fluctua-
tions and is the ENQI Hamiltonian given in Eq. �2�.

We are still not quite finished. We must finally add in
transverse dipolar terms, which introduce one further modi-
fication to the effective Hamiltonian.

3. Nondiagonal dipolar interactions

The “nondiagonal” dipolar terms Uij
� couple the Ho spins

in higher order in the small parameter Uij
� /�0, and so they

have typically been neglected when discussing anisotropic
dipolar systems, including LiHoF4. However, in Refs. 12, 16,
and 19 it was shown that terms �Jj

zJi
x can be rather impor-

tant. For x=1 these terms cancel by symmetry but not for
0�x�1, where even when H�=0 they induce quantum
fluctuations.17 For H��0 these terms can enhance or reduce
the quantum fluctuations induced by the applied field. To
quantify this effect, let us consider the regime H���0 and
write the original Hamiltonian in Eq. �4� or Eq. �14� as

H = Hlong + Htrans, �A24�

where

Hlong = Hcf + Hhyp
zz + Udip

zz �A25�

and

Htrans = − �
i

gJ�BH�Jx + �
ij

Uij
zxJzJx. �A26�

Here we neglect Hhyp
� and all terms other than Uij

zx in Udip
�

which do not contribute in lowest order of perturbation
theory.16,19

Hlong has a low-T ordered phase, which, depending on the
dilution, is FM or a SG.2,3,33 Let us denote either of the two
symmetry broken ground states of the ordered phase by �0.
Introducing Htrans as a perturbation lowers the energy of �0
by16,19,20
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E�
�2� = −

��o���
i�j

Uij
zxJi

zJj
x + gJ�BH��

i

Ji
x�2

��o�

�0
.

�A27�

Thus, the off-diagonal dipolar terms add to the applied trans-
verse field a term,

Hx
�r��ri� =

�
j

Uij
zx�Ji

z�

gJ�B
. �A28�

This additional field is random in sign and can enhance or
decrease the quantum fluctuations generated by the applied
field H�. Since enhancing quantum fluctuations reduces the
energy of the system, configurations in which Hx

�r� is in the
direction of the applied field are energetically favorable. The
terms in Eq. �A27� proportional to H�

2 and to U2 are inde-
pendent of the spin configuration of the system. However,
the cross term depends on the location and orientation of the
spins and results in an effective random longitudinal
field16,19,20 �i

z�H�� given by

�i
z =

2�BH�J2

�0
�

j

Uji
zx = ci

2�BH�J2

�0
U0, �A29�

where J= �Jz��5 is the single spin magnetic moment, ci is a
random number with �ci�=0, and Var�ci��c2�x� is dilution
dependent. For �1−x��1 we have c�x�=c��1−x�,20 with c�
�1. Note that the effective random field exists both in the
SG �Refs. 16 and 19� and in the FM �Ref. 20� regimes. The
randomness is a result of the quenched disorder, so the inter-
play between the applied transverse field and the off-
diagonal dipolar terms converts spatial disorder to random-
ness in the effective longitudinal field. Unlike the quantum

fluctuation amplitudes �̃m, this random field is independent
of m to zeroth order in �0 /�0.

It is clear from the definitions of the additional transverse
field Hx

�r��ri� that its actual values and distribution depend on
the particular configuration adopted by the �sim

z � in the phase
of interest. Thus this final term in the effective Hamiltonian
actually depends on what state the system is in. In general
this extra field simply renormalizes the total field acting on
the system; we have a new transverse field

H̃i
� = H� + Hx

�r��ri� . �A30�

This means that all the parameters in the effective Hamil-
tonian that formally depend on the transverse field must now

depend on H̃i
� rather than H�. This inevitably introduces

some randomness in these parameters, from one site to an-
other. However, as discussed in Sec. IV D, in the SG regime,
the system forms finite-size domains that maximize the en-
ergy gain from the random field �i

z. This is actually done by
having a finite average value for Hx

�r��ri� in the direction of
H�, thus increasing quantum fluctuations, and this results in
an effective enhancement of the applied magnetic field. With
the addition of the effective random field and the effective
enhancement of the transverse field, we obtain the effective
Hamiltonian in Eq. �18�.

APPENDIX B: CLASSICAL ISING LIMIT IN MEAN FIELD

In this appendix we derive Eq. �26�. Consider a given site
i with local longitudinal field Hi. We assume that as we cross
the transition line into the SG phase, the expectation value of
each spin grows at the same rate, i.e., �� j

z�=�ij��i
z�. It then

follows that

Hi = Vi��i
z� , �B1�

with Vi=� jVij
zz�ij. Now the partition function becomes Z

=�iZi, with

Zi = Tr„exp�− �	�hIi
z − Hi

z��i
z − �0�i

x
�… , �B2�

and the average magnetization of spin i is given by

��i
z� =

1

Zi
Tr„�i

z exp�− �	�hIi
z − Hi

z��i
z − �0�i

x
�… . �B3�

Equations �B2� and �B3� are generalizations of Eqs. �6� and
�10� of Ref. 32 to the case where Vi is site dependent. Note
that Vi is positive by definition. Assume now that the PM–SG
phase transition occurs when the mean-field equation gives a
finite magnetization for spins at sites with some typical Vi
=V0. Then, defining Mz���z�, one obtains

Mz =

�
m

hm + V0Mz

H̄�m�
sinh	�H̄�m�


�
m

cosh	�H̄�m�

, �B4�

where H̄�m�=��hm+V0Mz�2+�0
2 is the total magnitude of

the mean field. This equation allows us to obtain the phase
diagram for any ratio of A0 /V0, keeping H���0 /�B. Near
the transition line �so Mz�1� and following Banerjee and
Dattagupta,32 we expand Eq. �B4� in Mz and obtain Eq. �26�.
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