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Above a critical temperature, a supported single domain ferromagnetic particle responds to an applied
magnetic field as if it were a paramagnet with a very large spin. Its average magnetization is given by the
Langevin equation as expected from simple thermodynamic considerations. The average magnetization of an
ensemble of unsupported ferromagnetic clusters also approximately follows the Langevin equation even for
small clusters in a low-temperature ensemble. The reason is not obvious because there is no heat bath for
low-energy clusters so that elementary thermodynamic requirements for the Langevin equation are not satis-
fied. We investigated the magnetic deflections of cobalt clusters �CoN, 12�N�200� using molecular-beam
methods over a wide range of temperatures �20�T�100 K� and magnetic fields �0�B�2 T�. A distribution
of magnetization is observed for the cluster beams. Previously, we showed that the average magnetization of
the cluster beam follows Langevin function closely for all temperatures and magnetic fields investigated, and
proposed an avoided-crossing model that takes into account interacting spin-rotational states. In this paper, we
report a comprehensive study of the magnetization distribution and present in depth the avoided-crossing
model. The model explains both the average and the width of the magnetization distributions of the cluster
beam in terms of the ensemble temperature without requiring that individual clusters have defined tempera-
tures. We also show that the spin-relaxation model is the high-temperature limit of the avoided-crossing model.
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I. INTRODUCTION

Molecular-beam method is a compelling way to measure
the intrinsic magnetic properties of individual isolated ferro-
magnetic clusters.1–19 In molecular-beam experiments, the
magnetic properties of the small particles are studied by
measuring the deflections of a beam in an inhomogeneous
magnetic field �Stern-Gerlach magnet�. The deflection of a
single small particle with magnetic moment � is proportional
to its magnetization Msingle���z�TAM, where �z is the pro-
jection of its magnetic dipole moment along the applied
magnetic field and � �TAM denotes time average over the
measurement. However, real experiments cannot distinguish
every single particle, therefore what is measured is the dis-
tribution of the single-particle magnetization P�Msingle�. To
characterize the distribution, we define

M =
� MsingleP�Msingle�dMsingle

� P�Msingle�dMsingle

,

�M =�� �Msingle − M�2P�Msingle�dMsingle

� P�Msingle�dMsingle

,

which come from the first and the second moments of the
distribution, respectively. Note that M is actually the average
magnetization of the beam and �M is the width of the dis-
tribution.

If such an experiment is performed on a beam of atoms
with magnetic moment �, the average magnetization of the
beam M will be zero, as in the well-known Stern-Gerlach

experiment. That is because �z of a certain atom does not
change during the time of measurement and the probability
to have every possible �z is the same. That is −��Msingle

�� and P�Msingle�=const �see Table I�. Therefore, M =0. On
the other hand, it is well known that the magnetization of an
atom deposited on a substrate is Msingle /�= ��z�TAM /�
=Br��B /kBT�, where Br is the Brillouin function, B is the
magnetic field, and T is the temperature of the substrate. The
ensemble average gives the same results as for single atom:
M =Msingle. In the limit of large �,the Brillouin function re-
duces to Langevin function, giving

M/� = L��B/kBT� , �1�

where L�x�=coth�x�−1 /x is the Langevin function. This fol-
lows from the thermodynamics of free magnetic moment �
in a magnetic field. However, it requires the atom to be in
contact with a heat bath with a well defined temperature T.

In the low-field limit �B /kBT→0,

M/� = L��B/kBT → 0� = �B/3kBT . �2�

In the high-field limit,

M/� = 1. �3�

The Langevin function also applies to supported ferro-
magnetic clusters �i.e., small single domain ferromagnetic
particles�, for temperatures above the blocking temperature.
�That is when the thermal energy is larger than its magnetic
anisotropy energy. Below this temperature, the spin is locked
along an anisotropy axis, which reduces the response.� Be-
cause the Langevin function not only applies for paramag-
netic atoms, but also for particles with very large spins, the
latter are called superparamagnetic.20 This nomenclature
leads to much confusion since in fact superparamagnetic par-
ticles are actually ferromagnetic.
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Magnetic deflections of ferromagnetic clusters in a beam
might be expected to be similar to those of atoms with a very
large spin S and magnetic moment � in which case the mag-
netization distribution is flat within the range −��Msingle

�� and consequently M =0. However, the magnetization of
ferromagnetic cluster beams resembles that of supported fer-
romagnetic particles: M of the beam is polarized in the di-
rection of the applied magnetic field. Moreover, experimen-
tally for �B /kBT�1, M ��2B /3kBT,3,21 similarly for
supported atoms and supported ferromagnetic clusters above
the blocking temperature. �Here T is the ensemble tempera-
ture of the cluster beam.� Therefore, the behavior of the fer-
romagnetic clusters in a beam is also called superparamag-
netism.

These observations of superparamagnetism in cluster
beams led Khanna and Linderoth, in their spin-relaxation
model �SRM�, to assume that the thermodynamics of free
clusters is equivalent to that of a supported cluster. This in
turn requires that a free cluster, even with very few atoms
and with low energy, must not only have a well defined
temperature but the spin must equilibrate with that tempera-
ture when the cluster is in the magnetic field. While this
point of view may be justified for large isolated clusters at
relatively high energy, it is not clear how it applies to small
isolated clusters with low energy. Nevertheless, the SRM has
been used as the origin of Langevin function 	Eq. �1�
 uni-
versally to extract cluster magnetic moments form
molecular-beam deflection data, which have been exten-
sively compared with theory.18,21–31 However, no matter how
successful SRM is, one has to keep in mind that SRM is only
part of the story because it ignores the fact that the distribu-
tion P�Msingle� is in general different for clusters in a beam
and for clusters on a substrate, as summarized in Table I. To
have the complete picture of superparamagnetism for clus-
ters in a beam, the distribution P�Msingle� needs to be under-
stood better. The distribution P�Msingle� has seldom been
studied systematically, especially its temperature and field
dependences. Previously, we have reported studies of mag-
netic moment ��� and average magnetization �M� of cobalt
clusters in cold beams.19 We also proposed the avoided-
crossing model to explain the average magnetization. In this
paper, we performed comprehensive study of the distribution
P�Msingle� of cobalt cluster beams over a large range of clus-
ter sizes, magnetic fields, and temperatures. We also present

in more detail the avoided-crossing model that explains both
the average and the width of the distribution P�Msingle� of the
cluster beams quantitatively. We will show that the SRM can
be understood as the high-temperature limit of the avoided-
crossing model.

II. EXPERIMENT

The magnetic deflection experiment is briefly described
next �see also Refs. 15, 17, and 18�. A beam of cobalt cluster
is generated in a cryogenically cooled laser ablation source,
the temperature of which can be varied from T=15–300 K.
The clusters thermalize in the �0.5 cm3 source chamber so
that the cluster ensemble has the same temperature as the
source. After that, the clusters exit the nozzle �1 mm diam-
eter� and enter the collision-free drift chamber. The cluster
beam is collimated by two 0.3-mm-wide slits. The clusters
are deflected in the inhomogeneous field of Stern-Gerlach
magnet �B�2 T and dB /dz=0.25B T /cm� 1 m down-
stream from the source. The clusters are then photoionized
with light from an ArF excimer laser 2 m downstream from
the source and enter a position-sensitive time-of-flight
�PSTOF� mass spectrometer. The PSTOF simultaneously
records the positions and the masses of the ionized clusters.
The data are electronically recorded for further analysis. The
clusters’ speeds and their dwell times in the source are accu-
rately determined using a mechanical chopper 10 cm down-
stream from the nozzle.

The average magnetization MN of a beam of clusters with
N atoms with mass mN and velocity v in a magnetic field B
with field gradient dB /dz is determined from its deflection
dN using

MN�B� = KmNv2dN/�dB/dz� , �4�

where K is a geometrical constant of the experimental appa-
ratus.

A. Distribution of magnetization of the cluster beam

We reiterate the results reported in Ref. 18. Figure 1�a�
shows an example of beam profiles for Co20 at T=40 K and
B=2 T. Note two important features: �i� the clusters deflect
exclusively in the direction of increasing field strength; �ii�
the beam profile is significantly broadened when the field is

TABLE I. Comparison of the distribution of magnetization of atoms and magnetization of clusters in a
beam and on a substrate.

Atoms Clusters

In a beam −��Msingle�� 0�Msingle��

P�Msingle�=const P�Msingle�: broad and asymmetric

M =0 M /�=Br��B /kBT�
�M =� / �3 �M �0

On a substrate
�above the blocking
temperature�

Msingle=Br��B /kBT� Msingle=Br��B /kBT�
P�Msingle�=�	Msingle−�Br��B /kBT�
 P�Msingle�=�	Msingle−�Br��B /kBT�


M /�=Br��B /kBT� M /�=Br��B /kBT�
�M =0 �M =0

XU et al. PHYSICAL REVIEW B 78, 054430 �2008�

054430-2



on. The magnetization distribution P�Msingle� is extracted
from the beam profiles with magnetic field off Ioff�d� and
magnetic field on Ion�d� using a deconvolution procedure that
takes into account the width of the collimated beam. In Fig.
1�b� the magnetization distributions P�Msingle� of all of the
clusters are plotted where the color represents the value.
Note that the magnetization per atom with maximum inten-
sity saturates at about 2�B for large clusters.

B. Average of magnetization distribution

A detailed analysis of the magnetization data follows.
Quite generally when �B /kBT	1 the magnetization satu-
rates at the magnetic moment value: M =� �for a cluster with
N atoms, M =�N�. This allows a direct determination of the
magnetic moment. Next consider the experimental relation
for cluster with N atoms MN /�N= f�x�, where x=�NB /kBT.
For large clusters the relation f�x� found from different
fields, temperatures and sizes falls on a universal curve 	Fig.
2�a�
, which resembles the Langevin function L�x�, as indi-
cated by the bold line. In the low x range f�x� matches L�x�
very well. Note, however, that for large x , f�x� saturates
faster than predicted by L�x�. For smaller clusters �which

have proportionally smaller magnetic moments�, the avail-
able magnetic fields �2 T� are too small to saturate the mag-
netization. We extrapolate the magnetic moments of small
clusters by scaling their magnetization curves to the univer-
sal curve. Since T and B are known, � is determined. Figure
2�b� shows the magnetization curve MN /�N= f�x� for all
cluster sizes investigated. The universal curve f�x� is repre-
sented by more than 10 000 experimental points. The mag-
netic moments per atom for all cluster sizes found in this
way, are consistent with previously determined values.3,4,8

This is not too surprising since previously the low-field equa-
tion 	Eq. �2�
 was used, which also represents the low-field
limit of the universal curve. Note that the magnetic moments
oscillate with the cluster size with maxima near N=37; and
minima at N=23, 41, 51, 83, and 121.18 The magnetic mo-
ments converge to about 2�B per atom for N�150.

C. Width of magnetization distribution

As shown in Fig. 1�b�, the magnetization distribution of a
cluster beam has a significant width. To analyze this width,
we investigate the broadening of the beam profiles when the
magnetic field is turned on. Suppose the beam profiled with
field off and field on are Ioff�d� and Ion�d�, respectively,
where d is the deflection. The beam broadening �W is de-
fined as

FIG. 1. �Color online� Deflections and magnetization distribu-
tions of CoN at T=40 K and B=2 T. �a� Position sensitive PSTOF
mass peak of Co20 showing the field off �dashes� and the field on
�B=2 T, solid� deflections �the entire spectrum is composed of
about 200 distinct mass peaks�. Note the single-sided deflections.
�b� Normalized magnetization distributions P�Msingle� of CoN�12
�N�200, T=40 K, B=2 T�. Brighter �red� color means high
value of P�Msingle�; darker �blue� color means low. The average
magnetization is linear with N for small N and saturates at about
�N�2N�B for large N.

FIG. 2. �Color online� Normalized magnetizations MN /�N of
CoN. �a� MN /�N of Co100 for 25 K�T�100 K and 0�B�2 T,
corresponding to x ranging from 0.4 to 12. The data scale with x.
Note the linear increase for small x :M100 /�100�0.3x and
M100 /�100=1 for large x. The trend is consistent with the Langevin
function �bold line�; however, the Langevin function approaches
saturation more slowly. �b� MN /�N for 12�N�200, 20 K�T
�100 K, and B�2 T measured in 63 data sets �nine temperatures
from 25 to 100 K and seven fields from 0 to 2 T, representing about
10 000 data points�, plotted as a function of x.
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�W � �Won
2 − Woff

2 ,

where Won
2 is second moment of Ion�d� and Woff

2 is the second
moment of Ioff�d�. Equation �4� relates �W to the magneti-
zation distribution width �M if one treats �W as deflection
�see Fig. 3�. Note that �M is small at low fields, increases to
a maximum at intermediate fields, and decreases again at
high fields.

III. LIMITATION OF THE SRM

To understand the observed magnetization distribution,
we start with spin-relaxation model and why it is incomplete.
The SRM relates the measured average magnetization of a
cluster beam to the magnetic moment of the individual clus-
ters using the Langevin equation 	Eq. �1�
, whose usage for
small clusters in a low-temperature beam must be justified.
The Langevin equation is derived for a canonical ensemble.
In that case the particles contact a heat bath with a well
defined temperature, with which it can exchange both energy
and angular momentum. This is clearly not the case for an
isolated cluster with low energy, and in order to justify the
Langevin equation, it requires that the internal degrees of
freedom of the cluster constitute an effective heat bath at a
well defined temperature �presumably that of the source� and
as a source of angular momentum. If not, then spin relax-
ation cannot be justified. While large clusters in a high-
temperature beam may serve as their own heat bath and
source of angular momentum because enough rotational, vi-
brational, and electronic degrees of freedom are activated, it
is not the case for small clusters in a low-temperature beam
with vibration and electronic excitation quenched. Consider
a CoN cluster with N=20 in a T=50 K beam �note that ex-
perimentally, we can achieve more extreme condition: e.g.,
N=12 and T=20 K�, the electronic state separation is of the
order of EF /N�100 meV, where EF is the Fermi energy so
that the clusters are in their electronic ground states. For such
a small particle, the 3N−6 vibrational modes have energy

that all close to the Debye energy ED=kBTD, where TD
=445 K is the Debye temperature for bulk cobalt. Hence, on
average such a particle contains less than one excited vibra-
tional mode. Therefore, neither the vibrations nor the elec-
tronic excitation can serve as a heat bath. This leaves the
rotations that represent only three modes. It is clearly incor-
rect to consider the rotations as a thermodynamic heat bath;
actually, it is better to describe an individual cluster in this
case using its energy rather than using temperature because
an isolated low-energy cluster should have a well defined
energy while the definition of temperature may be vague.
Moreover, for an isolated cluster, angular momentum conser-
vation must be taken into account.18,26,27,29–31 The total an-
gular momentum of a cluster is a sum of three parts: J=R
+L+S, where R, L, and S correspond to the angular momen-
tum from the rigid body rotation, electronic orbital motion,
and electronic spin, respectively. For iron group clusters, L is
quenched. Thus, J=R+S. When the clusters negotiate with
the magnetic field, conservation of Jz �projection of total
angular momentum J along the magnetic field� should not be
ignored. However, in SRM, its direction must change freely
in order to relax the spin, which is again unjustifiable for
isolated low-energy clusters.

The SRM violates statistical thermodynamics and the an-
gular momentum conservation for small clusters in low-
temperature beams because of the missing heat and angular
momentum bath. Nevertheless, the experiment �see Fig. 2�
shows that the Langevin function 	Eq. �1�
 is a reasonable
approximation of the average magnetization of the cluster
beam even for small clusters in low-temperature beams.18

Clearly, the Langevin function 	Eq. �1�
 is approximately
valid even when the SRM fails. As shown below, spin align-
ment, which causes the nonzero average magnetization, can
in fact be mediated by the rotations even for very small clus-
ters in a very low-temperature beam. However, in contrast to
the SRM, spin relaxation does not necessarily occur. In fact,
the spin alignment effect is caused by avoided crossings in
the spin-rotation Zeeman diagram, at least for small clusters
in a low-temperature beam. We further show that the en-
semble average magnetization M quite generally follows the
Langevin equation both in the low-field and high-field limits
and further that the temperature T is the temperature of the
cluster beams not of individual clusters.

IV. AVOIDED-CROSSING MODEL

It is important to emphasize that the idea of the avoided-
crossing model is to bring back the details that are ignored
by the SRM and discuss them carefully in order to complete
our understanding of the distribution of the magnetization of
ferromagnetic clusters. Although we argue the importance of
the avoided-crossing model especially for small clusters in a
low temperature beam, it is actually a more general model
that is more widely applicable than the SRM. Specifically,
the rotational, vibrational, and electronic excitations are all
accounted for in the model. It is also shown that when there
are enough vibrational and electronic degrees of freedom ex-
cited the avoided-crossing model predicts the same behavior
of the magnetization as the SRM does, say, very narrow dis-

FIG. 3. The normalized width of magnetization distribution
�MN /�N as a function of x. The data points are found by averaging
the values of �MN /�N for cluster conditions over a small range of
x. Note that the second moment of a beam profile is more sensitive
to random noise than its first moment, which brings significant
uncertainty.
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tribution. In fact, the system of an isolated cluster is more
ergodic when lots of degrees of freedom are activated, which
is the case for high-temperature beams. Therefore, the SRM
that comes from simple thermal dynamics is the high-
temperature limit of the avoided-crossing model.

In the magnetic deflection experiments, clusters start from
zero field, then enter the field and deflect. Therefore, the
objective here is more than solving the Hamiltonian and get-
ting the stationary wave function. Instead, we shall be con-
cerned with the Zeeman diagram where the evolution of
eigenstates is defined. As shown below, we will find the
eigenstates �as a function of the magnetic field� in the Zee-
man diagram first, using the assumption of avoided-crossing.
Then we populate these states according to the ensemble
temperature and calculate the distribution of magnetization.

A. Hamiltonian of free ferromagnetic clusters

The general Hamiltonian for a cluster in the magnetic
field is

H = HE + HV + HR + Hcouple − g�BS • B , �5�

where HE, HV, HR, and Hcouple are, respectively, the parts for
electronic excitation, vibration, rotation, and the coupling be-
tween the spin and rotational angular momentum, and g is
the Lande factor �for clusters of iron group atoms, g�2�.

B. Physical process of Stern-Gerlach experiment

The physical process of the measurement the magnetiza-
tion of a cluster in a Stern-Gerlach experiment is very differ-
ent from that of a supported particle. Basically, clusters are
generated and reach equilibrium in the source and form a
canonical ensemble. However, every cluster interacts with
the magnetic field independently because it is isolated.

1. Cluster generation

Clusters are generated in the source at temperature T in
zero magnetic fields, where they populate states �
i

0 , i
=1,2. . .� with energy �Ei

EVR, i=1,2. . .�, respectively. We as-
sume that Hcouple is small compared to all the other terms in
Eq. �5� �see Appendix A�. Therefore, the zero-field eigen-
states �
i

0 , i=1,2. . .� are linear combinations of eigenstates
of electronic excitations, vibrations, and rotations, and
�Ei

EVR, i=1,2. . .� are the linear combination of energy of
those excitations �see Ref. 32 for the notation of various
energies�. The cluster population on state 
i

0 is described by
the Boltzmann distribution because clusters in the source can
be considered as a canonical ensemble.

2. Adiabatic evolution of states

In the limit of vanishing coupling between the spin and
rotations �Hcouple=0�, the energy of the ith state evolves as
Ei

uncouple=Ei
EVR−g�BSz

iB �dashed lines in Fig. 4�. The mag-
netization of the uncoupled levels is simply Mi

uncouple=
−�Ei

uncouple /�B=g�BSz
i .

However, the states are in general coupled and the angular
momentum conservation should not be ignored. The real

states that the clusters traverse are adiabatic �coupled� states
explained below.

Let us consider two states 
i
uncouple and 
 j

uncouple with the
same Jz but different EEVR and Sz. Their energies are

Ei
uncouple = Ei

EVR − g�BSz
iB

and

Ej
uncouple = Ej

EVR − g�BSz
jB .

If Ei
EVR�Ej

EVR and Sz
i �Sz

j �or vice versa�, at certain value of
magnetic field B=B0, the two levels cross, as shown in Fig.
4. In other words, accidental degeneracy occurs when

Ei
EVR − g�BSz

iB0 = Ej
EVR – g�BSz

jB0.

The spin-rotation coupling Hcouple is very important at the
vicinity of B=B0 where the two levels interact causing
avoided crossing in the Zeeman diagram �see Fig. 4�. Here
with the basis set �
i

uncouple ,
 j
uncouple� the Hamiltonian can be

written as the matrix,

H = Ei
uncouple �SR

�SR Ej
uncouple�

= Ei
EVR − 2�BSz

iB �SR

�SR Ej
EVR − 2�BSz

jB
� ,

where �SR��
i
uncouple�Hcouple�
 j

uncouple� is the matrix element
that corresponds to the spin-rotation coupling. Near the
crossings, the energies of the coupled states are

Ei
couple = 1

2 �Ei
EVR + Ej

EVR − g�BSz
iB − g�BSz

jB�

+ 1
2
��Ei

EVR + Ej
EVR − g�BSz

iB − g�BSz
jB�2 + 4�SR

2 ,

Ej
couple = 1

2 �Ei
EVR + Ej

EVR − g�BSz
iB − g�BSz

jB�

− 1
2
��Ei

EVR + Ej
EVR − g�BSz

iB − g�BSz
jB�2 + 4�SR

2 .

These �coupled� levels are the true eigenstates of the clus-
ters. If the change in magnetic field is slow enough, clusters
should follow these levels precisely �see Appendix C�, which
is why they are also called adiabatic states.

FIG. 4. �Color online� Schematic illustration of an avoided level
crossing. Notice that the coupling makes the spin orientation “flip”
at the degeneracy point since the crossing of the two levels is
avoided.
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The projections of the spin along magnetic field are not
good quantum numbers for the coupled levels. We can only
define the average spin projection as �Sz�i,couple=
−1 /g�B�Ei

couple /�B. Several features should be pointed out
here �see Fig. 4�: �a� At the avoided crossing, the total mag-
netization of the two levels is conserved; �Sz�i,couple
+ �Sz� j,couple=Sz

i +Sz
j. �b� At the avoided crossing, �Sz�i,couple

= �Sz� j,couple= �Sz
i +Sz

j� /2. �c� The �Sz�i,couple of each of the two
adiabatic states reverses its sign after the avoided crossing. It
is not difficult to generalize �a� and �b� for multiple interact-
ing levels;

�
i

�Sz�i,couple = �
i

Sz
i .

In the vicinity of the crossing, one has approximately

�Sz�i,couple =

�
i

Sz
i

Nlevel
, �6�

where Nlevel is the number of interacting levels.
In reality, the number of interacting states is much larger

than two because the states Ei
uncouple are so dense even for

certain Jz. For example, the rotational level spacing for co-
balt clusters is of order Cr�4�10−5 /N5/3 eV. Hence, in the
Zeeman diagram there will be about 1�N5/3 avoided cross-
ings per tesla.

To illustrate this process, Figs. 5�a� and 5�b� show the
calculated adiabatic states for Co12 �assuming S=12�, as well
as the uncoupled levels on different scales. Figures 5�c� and
5�d� show examples of a few calculated adiabatic states in
larger scales. It is important to notice again that in real ex-
periment, the measurements are taken with magnetic-fields
range �B�10−3–10−2 T, which corresponds to the scales of
Figs. 5�a� and 5�b�. This means fine details of the adiabatic
states are not measured. Averaging the adiabatic states over
�B produces average adiabatic states that are quite smooth.
Figure 5�d� shows a global view of these averaged states
revealing key features. At low fields, the states are parabolic.
At high field the slopes saturate to a common value, which
corresponds to the magnetic moment. Note that these curves
in Figs. 5�c� and 5�d� represent eigenstates of the clusters,
which are temperature independent. The topology of these
Zeeman diagrams does not depend on temperatures but the
populations of clusters on those adiabatic states do. In other
words, temperature is not necessarily a property of a single
cluster but is a property of the cluster ensemble.

All of the states monotonically decrease with increasing
field, which at once explains why the deflections are single
sided. At a given field, the cluster magnetization �i.e., its
slope� is energy dependent. Since the energies are initially
thermally distributed, this dispersion of the slopes is reflected
in a broadening of the measured magnetization distribution.
A quantitative description follows.

C. Magnetization of a single cluster

The magnetization of a specific cluster should be calcu-
lated for the adiabatic states because the clusters are sup-
posed to follow these levels. The �smoothed� magnetization

of an adiabatic state is the average over all the interacting
uncoupled levels in a small field and energy range, as shown
in Eq. �6�, and illustrated in Fig. 5�a�. Hence, the magnetiza-
tion of a single cluster with energy E at magnetic field B is

Msingle�E,B� = g�B

�
−S

S

SzD�E,Sz�

�
−S

S

D�E,Sz�

,

where D�E ,Sz� is the number of uncoupled levels with E and
Sz in the measurement range �a range �B centered at B�.
Note that D�E ,Sz� is actually the same as the number of
states with Sz and zero-field energy EEVR, where EEVR=E
+g�BSzB. This simple relation comes from the fact that E is
the energy of the uncoupled states. Therefore, the sum over
Sz should be transformed into the sum over the zero-field
energy EEVR. Since the number of states is usually large �see
Sec. IV B 2�, the sum can be approximated by an integral,

Msingle�E,B� = g�B

� Sz��EEVR�dEEVR

� ��EEVR�dEEVR

=
� �EEVR − E���EEVR�dEEVR

� ��EEVR�dEEVR

. �7�

where ��EEVR� is the density of states of energy EEVR at zero
field. Equation �7� allows us to find the average slope of an
adiabatic state over the measurement range, which is the
same as the magnetization of a single cluster, without diago-
nalizing the Hamiltonian.

The topology of the Zeeman diagrams shown in Fig. 5 is
not symmetric with energy simply because there is a lower
boundary E=−g�BSB but not an upper one. In fact, when the
magnetization of a single cluster is calculated using Eq. �7�,
there are always more states coming from high-energy part
of the Zeeman diagram than those from low-energy part.
Because states from high-energy part of the Zeeman diagram
contributes positive magnetization, the result of Eq. �7� al-
ways gives Msingle�0, which explains that in the experiment
clusters deflects exclusively toward the direction with stron-
ger field.

1. High-field limit

At high field, Zeeman term −g�BS •B dominate the total
energy of a cluster, resulting saturation of the magnetization
of a single cluster, which is illustrated by Fig. 5�d�, in which
all the adiabatic states have magnetization of

Msingle = g�BS = � . �8�

This explains the saturation of magnetization found in the
experiments.
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2. Low-field limit

For low fields the density of states in Eq. �7� can be ex-
panded;

��EEVR� = ��E + g�BSzB� � ��E� + g�BSzB
���E�

�E
.

Therefore, the magnetization of a single cluster is approxi-
mately

Msingle =
2

3

g��BS�2B

��E�
���E�

�E
, �9�

which is as expected, a function of E and B.

D. Distribution of magnetization of the cluster beam

In the experiments, we accumulate data for many clusters
so that in fact we measure the magnetization distribution of
the entire cluster beam. As shown in Eq. �7�, the magnetiza-
tion of a single cluster is in general a function of the energy
of the cluster and the magnetic field. Assuming that the clus-
ters are in equilibrium with the source at temperature T, the
energies of the clusters in the beam follow the Boltzmann
distribution,

P��E� = ��E0�exp�− E0/kBT� . �10�

Here E0 and E are the energies of the same adiabatic state
at zero magnetic field and finite magnetic field B. �The rea-
son we use notation E0 instead of EEVR here is that for an
adiabatic state, especially in the vicinity of the crossing, ro-
tational and magnetic energies are fully mixed. In other
words, the adiabatic states are not in general the eigenstates
of HR and g�BSB. Therefore, there is no well defined EEVR

for a particular adiabatic state. In contrast, the zero-field en-
ergy E0 is always well defined.� In other words, E0 and E are
on different part of the same curve in Fig. 5�d�. Note that it is
E0 �energy of the cluster before it enters the magnetic field�
instead of E �the energy of the cluster in the magnetic field�
that enters the exponent because the population of the clus-
ters is decided when they are created out of the magnetic
field and it does not change when clusters traverse the Zee-
man diagram. It is important to point out here that the rela-
tion between E and E0 is not trivial because it is the shape of
the adiabatic energy state, which cannot be written as an
analytical function for the entire range. The distribution of
the magnetization can be found by changing the variable of
Eq. �10�;

P�Msingle� = ���E0�exp�− E0/kBT�
�Msingle/�E

� . �11�

However, this is not really the analytical solution of
P�Msingle� because the relation between E and E0 is not an
analytical function.

1. High-field limit

At high-field limit, according to Eq. �8�, Msingle saturate at
a single value �=g�BS without any dependence on energy
E. Therefore, the denominator in Eq. �11� approaches zero,

FIG. 5. �Color online� The calculated Zeeman diagram of cluster
Co12 �assuming S=12� with Jz=0 in different energy scale. The
bold lines are examples of the coupled �adiabatic� levels. The thin
lines are the uncoupled levels. �a� The Zeeman diagram in a range
�B−0.3 T��5�10−4 T and �E /kB−3 K��5�10−3 K. �b� The
Zeeman diagram in a range �B−0.3 T��5�10−3 T and �E /kB

−3 K��5�10−2 K. �c� The Zeeman diagram in a range �B
−0.3 T��0.05 T and �E /kB−3 K��0.5 K. �d� The Zeeman dia-
gram in a range 0�B�1 T and −5 K�E /kB�5 K. The Zeeman
diagrams for larger clusters are similar but with more states. Note
that the Zeeman diagrams are not temperature dependent.
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resulting a delta function for the magnetization distribution;

P�Msingle� = ��Msingle − �� . �12�

2. Low-field limit

At low-field limit, E0 may be replaced by E in Eq. �11� to
the first-order approximation. The distribution can be found
in specific cases analytically. For example, assume ��E�
E�, from Eq. �9� one has

Msingle =
2

3

g��BS�2B

��E�
���E�

�E
=

2�

3

g��BS�2B

E
.

Hence,

P�Msingle�  �2gS2�B
2B�

3
��+1 1

Msingle
�+2 exp�−

2gS2�B
2B�

3kBTMsingle
� .

�13�

Note that � is related to the number of degrees of free-
doms that are excited. If no vibrational modes are excited,
then �=0 �because of the Jz conservation�. If one vibrational
mode is excited, �=1 and so forth. Figure 6 shows the mag-
netization distribution profile calculated for Co12 �assuming
S=12� under various conditions. The overall behavior of the
calculation matches the observed magnetization distribution

shown in Fig. 1. One can also see that the distributions de-
pend heavily on �; the larger the �, the narrower the distri-
bution.

Note that for high temperature, many vibrational and elec-
tronic models are excited, which means that � is a large
number. In this case, the avoided-crossing model predicts a
narrow distribution, which is the same as that predicted by
the SRM. This plus the fact that avoided-crossing model al-
ready predicts the similar average magnetization of the clus-
ter beam suggests that the SRM is the high-temperature limit
of the avoided-crossing model.

E. Average of magnetization distribution

As a matter of fact, what has been discussed most by
experimental and theoretical works is the average of the
magnetization distribution of the cluster beam. Here in the
avoided-crossing model, we shall average Msingle over the
ensemble of the cluster beam to compare with experiment.
Therefore, by definition the average magnetization of the
cluster beam is

M =
� MsingleP�Msingle�dMsingle

� P�Msingle�dMsingle

.

It is actually also possible to integrate over the energy
distribution using Eq. �10�;

M =
� Msingle exp�− E0/kBT���E0�dE0

� exp�− E0/kBT���E0�dE0

. �14�

We shall use Eq. �14� to discuss the high-field and low-field
limits.

1. High-field limit

As shown by Eq. �12�, the magnetization distribution at
high-field limits is a delta function, therefore the average
magnetization is

M = Msingle = g�BS = � , �15�

which is actually the magnetic moment of the clusters.

2. Low-field limit

In the low-field limit, E0 may be replaced by E in Eq.
�14�. Plug Eq. �9� into Eq. �14� for low-field case, the aver-
age magnetization of the beam is

M =
� 2gS2�B

2B

3��E�
���E�

�E
exp�− E/kBT���E�dE

� exp�− E/kBT���E�dE

=
2gS2�B

2B

3

� ���E�
�E

exp�− E/kBT���E�dE

� exp�− E/kBT���E�dE

. �16�

FIG. 6. �Color online� Calculated magnetization distribution for
cluster Co12 for various conditions as a function of x. �a� �=0:5;
�b� �=1; �c� �=2; and �d� �=20.
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Integrate Eq. �16� by part, one has

M =
4S2�B

2B

3kBT
=

�2B

3kBT
. �17�

Note that this Eq. �17� correspond to the low-field limit of
Langevin function 	Eq. �1�
. At this point, we can see that
both the avoided-crossing model and the SRM predict the
Langevin function 	Eq. �1�
, which matches the experiments
very well. Below we show that avoided-crossing model also
explains the width of the magnetization distribution quanti-
tatively.

F. Width of the magnetization distribution

Width of the magnetization is defined as �M
=���Msingle−M�2P�Msingle�dMsingle / �P�Msingle�dMsingle . In
principle, it can be found once the distribution P�Msingle� is
known.

1. High-field limit

As shown by Eq. �12�, the magnetization distribution at
high-field limits is a delta function. Then it is obvious that
the width of magnetization distribution at high-field limit,

�M = 0. �18�

2. Low-field limit

At low-field limit, we can make use of the magnetization
distribution Eq. �13� and the average magnetization Eq. �17�.
It is not so difficult to find the following:

�M =���Msingle −
�2B

3kBT
�2

P�Msingle�dMsingle

� P�Msingle�dMsingle

=
�2B

3kBT
� 1

� − 1
. �19�

Clearly, �M approaches zero at low field. Note that Eq.
�19� is only for the case that ��1. Equation �19� confirms
the observation in Fig. 6; the larger �, the narrower distribu-
tion. In other words, high-temperature beam has a narrow
magnetization distribution.

G. Comparison with experiments

We have shown above that the magnetization distribution
can be derived analytically at low-field and high-field limits.
The results are in good agreement with the experiments. For
the intermediate-field range, distribution of magnetization of
the cluster beams can be found numerically and compared
with experiment.

Figure 6 shows the distribution of magnetization of an
ensemble of cluster Co12 in a beam as a function of x for
low-field, intermediate-field, and high-field conditions as-
suming a certain �. Overall, the calculated distributions
agree with the experimental observation �see Fig. 1� very

well: narrow at low field, broader at intermediate field, and
narrow again at high field. The width of the distribution de-
pends on the parameter �, in other words, the number of
degrees of freedom excited in the clusters.

Figure 7�a� shows the calculated average magnetization as
a function of x compared with experiment. Figure 7�b� shows
the calculated and the experimental values of �M. Note that
the width of magnetization distribution is narrower for larger
�. From the comparison between experiment and calculation,
there should be only a couple of phonons excited in the
measured clusters, which confirms that there are not enough
vibrational and electronic modes excited to form a heat bath
in our experiment.

V. DISCUSSION

We should emphasize again that the avoided-crossing
model is to provide more comprehensive understandings of
the magnetization behavior of ferromagnetic cluster beams.
Actually, the avoided-crossing model and the SRM predict
the similar behavior of average magnetization, and for low-
temperature beam, the avoided-crossing model agrees with
experiment much better. However, at high-temperature limit,
the two models predict very similar results that are consistent
with the experiment, which is an indication that the SRM is
the high-temperature limit of the avoided-crossing model. In
fact, it is not so difficult to understand the similarity of the

FIG. 7. �Color online� Normalized �a� average and �b� width of
magnetization distribution in the beam calculated as a function of x
for various � compared to experimental results.
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two models at high temperature. At high temperature, the
most populated states are in the high-energy part of the Zee-
man diagram. Clusters in those states have lots of excited
vibrational and electronic degrees of freedoms. Therefore,
for very Rz and Sz combination, there are so many interacting
states that the energy separations between the states are very
small. Because of the small energy separations, Landau-
Zener tunnelings �see Appendix C� occur frequently when
clusters traverse the Zeeman diagram, which is similar to the
thermalization between different degrees of freedom of the
clusters. In addition to that, in the high-energy part of the
Zeeman diagram, the energy states are mostly parallel, which
is the reason that the distribution of the magnetization is
narrow. Furthermore, when lots of degrees of freedom are
excited, temperature may be defined for an isolated cluster,
which is close to the ensemble temperature. However still, an
isolated cluster itself should be considered as a microcanoni-
cal ensemble, in which total energy is more essential and
always well defined. Using the language of nonlinear phys-
ics, the system becomes more irregular and the ergodicity
increases when more degrees of freedoms are activated.
When the system is ergodic, simple thermodynamics
works.33

Our previous paper18 about the average magnetization of
cobalt cluster beams and the avoided-crossing model has at-
tracted attention. Recently, Payne et al.34 also revisited the
cobalt cluster beams and entered the discussion of the
mechanism of the magnetization. We hereby clarify a few
confusing issues that may cause misunderstandings.

It is the broad magnetization of small clusters in low-
temperature beams that motivated us to pursuit a more com-
prehensive picture of the magnetization of cluster beam. In-
deed, the result we have �the avoided-crossing model� is not
an alternative model but a more general model, which works
much better than the SRM for small clusters in a low-
temperature beam and converges to the SRM at high-
temperature limit. In other words, the avoided-crossing
model also works when there are lots of vibrational and elec-
tronic degrees of freedoms excited, as shown in the above
discussion.

It is undisputable that the quantum confinement causes the
discreteness of the vibrational and the electronic spectra, pro-
ducing the spectra cutoff �gap� at low energy.35 It is also true
that clusters have lower melting temperatures than the bulk,
suggesting lower Debye temperatures.36,37 However, these
differences will not eliminate the cutoff. In fact, far-infrared
spectra of small niobium clusters show clear cutoffs, and the
vibrational modes are all very close to the kBTDebye.

38 After
all, for an ensemble temperature 20 K, a 2-meV gap is
enough to quench the clusters to the ground state. Even if a
couple of modes happen to have low energy �which is not
likely the case for metal clusters�, they cannot act like heat
bath for low-energy clusters.

The spin-rotation coupling is discussed in the avoided-
crossing model because it is the most relevant one. Clusters
start from the source with random spin orientations and end
up with biased spin orientations after negotiating with the
magnetic field. In order to change orientation of the spins
and conserved the total angular momentum, clusters have to
get the angular momentum needed from their rotations be-

cause there is no other possibilities. This requires that the
spin and rotation degrees of freedoms have to be coupled by,
namely, spin-rotation coupling. There can be many other
coupling in the clusters �see Appendices A and B�, e.g., spin-
body axis coupling �from magnetocrystalline anisotropy�.
However, everything has to come down to the effective spin-
rotation coupling to contribute to the spin reorientation.
Small spin-rotation coupling is assumed in Sec. IV, which is
justified in Appendix A. However, it is also shown that the
conclusion actually holds even when the coupling is not
much weaker than the Zeeman energy and the rotational en-
ergy separation because the repulsion between the states
keeps the topology of the Zeeman diagram very similar to
the low coupling case. In other words, as long as the avoided
crossings hold, the Zeeman diagram is similar and all of the
above conclusions are the same.

We insist that the relevant temperature in the Lagevin
function 	Eq. �1�
 is the ensemble temperature. Every indi-
vidual clusters does not necessarily have well defined tem-
perature. This is especially true for isolated low-energy small
clusters whose energy separations are large. High-energy
large clusters have smaller energy separations and more ex-
cited degrees of freedom. In this case, temperature may be
defined and is very close to the ensemble temperature. Rota-
tional temperature is by no means the only temperature con-
sidered in the avoided-crossing model. Temperature does not
affect the Zeeman diagram, it only plays a role when the
Zeeman diagram is populated according to Eq. �10�, where
the E0 is a linear combination of rotational, vibrational, and
electronic energies. Suppose there are some cooling effects
on rotations making the rotational temperature smaller, the
exponent in Eq. �10� becomes exp�−ER /TR−EEV /T�, where
ER, TR, and EEV are the rotational energy, rotational tempera-
ture, and electronic and vibrational energies, including all the
activated modes. Only when T /TR is comparable to EEV /ER,
the difference between TR and T has an impact on the mag-
netization. Considering the angular momentum conservation,
for a specific Jz, there are only two rotational modes. In other
words, the rotation cooling does not affect the magnetization,
unless all the electronic and vibrational excitations are
quenched or almost quenched. These extreme conditions are
achieved for small clusters in low-temperature beams. We
have a good reason to believe that the cooling effect on the
rotational temperature is minimal in our cluster beams that
are quasieffusive with a large velocity slip.39 In fact, the
good agreement between the theoretical calculation and the
experiments confirms that.

VI. CONCLUSION

We have studied the distribution of magnetization of co-
balt cluster beams over a wide range of cluster sizes �12
�N�200�, temperatures �20�T�100 K�, and magnetic
fields �0�B�2 T�. We also proposed an avoided-crossing
model, which turns out to be able to explain the magnetiza-
tion distribution quantitatively. Therefore, the spin-relaxation
paradox is resolved. In summary, the single-sided deflections
of cobalt clusters are in general due to the repulsions be-
tween the adiabatic states that reduce the magnetization. The

XU et al. PHYSICAL REVIEW B 78, 054430 �2008�

054430-10



broadening of the detected beam profiles is caused by the
magnetization distributions. It is also shown that the SRM is
a high-temperature limit of the avoided-crossing theory.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support from the Na-
tional Science Foundation.

APPENDIX A: COUPLING STRENGTH IN COBALT
CLUSTERS

We should be concerned with the coupling term Hcouple in
Hamiltonian of Eq. �5�. First, we should emphasize that the
details of the coupling is complicated especially for asym-
metric clusters. Here we only discuss the orders of magni-
tude of the coupling strength for some special cases.

Ignoring the nuclear spin, the general form of the cou-
pling is

Hcouple = �SRS • R + �SA�S • A�2,

where R is the rotation of the cluster, A is one of the body
axes of the cluster �assuming single axis anisotropy�, and �SR
and �SA are the strength for spin-rotation coupling and for
the spin-body axis coupling, respectively. For weak coupling
the approximate eigenstates are �R ,Rz ,Ra ,S ,Sz�, where Rz
and Ra are the projection of R on the magnetic field and the
body axis A, respectively. The off-diagonal terms are

�R�,Rz�,Ra�,S�,Sz��Hcouple�R,Rz,Ra,S,Sz�  �Sz+Rz,Sz�+Rz�
,

which cause avoided crossings of the unperturbed states.
The electron spin couples to its orbital motion intrinsi-

cally �spin-orbit coupling�. For an atom in a cluster or in the
bulk, the crystal field is not spherically symmetric. The re-
duced symmetry of the crystal field gives the orbital motion
of the electrons a preferred direction. The magnetic aniso-
tropy energy depends on the spin-orbit coupling strength and
the crystal fields.40 If the spin-orbit coupling strength is
larger than the crystal-field energy, then the orbital angular
momentum is still a good quantum number. This is the case
for rare-earth metal. The crystal field will cause spin-body
axis coupling, which is reflected in the anisotropy energy. If
the effect of crystal field is larger than the effect of spin-orbit
coupling, then the orbital angular momentum will be
quenched. In this case the anisotropy energies are small. This
is the case for iron group metals.

For a cluster in a beam, we also have to take into account
the mass rotations.41,42 Rotational angular momentum tends
to uncouple the electronic spin angular momentum from the
body axis and for large rotations, and the spin couples to the
rotations. There are two important mechanisms for the spin-
rotation coupling.41 In one, the rotation of the cluster gener-
ates a magnetic field parallel to the axis of rotation. Classi-
cally, the coupling energy can be treated as the energy of a
magnetic dipole moment in a magnetic field, thus,

�SR �
N�B�0e�

r
,

where �0 is the vacuum magnetic permeability, � is the an-
gular frequency of the cluster rotation, and r is the radius of

the cluster. The average angular frequency of the cluster de-
pends on the rotational temperature as 2

5mr2�2=3kBT. For
our experimental conditions, the coupling energy is on the
order of 10−7 eV and it is larger for smaller clusters and
higher temperatures.

Spin-orbit coupling also causes an indirect coupling of the
electronic spin to the rotation. According to van Vleck,42 the
energy of this second-order process is

�SR �
Cr�SO

�e
,

where Cr is the rotation constant, �SO is the spin-orbit cou-
pling strength, and �e is the energy needed to excite the
electrons to higher angular momentum states. If the �e is
from the collective rotation of the electrons in the cluster,
Cr /�e�10−3. The spin-orbit coupling energy for an electron
is about 10−4 eV; therefore we get �SR�10−7 eV.

Recall from Eq. �5� that �Hmag��gSz�B is on the order of
�B. For our experiments, ��2�BN and B�1 T. Hence,
Hmag�10−3 eV is much larger than the spin-rotation cou-
pling strength. Thus, the approximation we made earlier is
justified; the coupling can be treated as a perturbation.

APPENDIX B: STRONG-COUPLING CASES

For iron group metal clusters, we can treat the couplings
as perturbations. Still there are other cases in which the cou-
pling energy is stronger than the Zeeman energy Hmag. One
example is the clusters with strong spin axis coupling or
large anisotropy energy. Some rare-earth metal clusters fall
into this category. The other case is from clusters with large
spin-rotation coupling, which occurs for very small clusters
because they rotate very fast.41

For the case of strong spin-body axis coupling, we can
consider the electronic spin fixed to one of the body axes.
The Hamiltonian will be similar to Eq. �5�,

H = HE + HV + HR + Hcouple − g�BSB
JzJa

J�J + 1�
,

where J is the total angular momentum including electronic
spin and cluster rotations; Jz and Ja are the projection of J on
magnetic field and body axis, respectively.41 We can follow
the same procedure as we did for Eq. �5�. Again in the Zee-
man diagram, we will see many level crossings. The spin-
rotation coupling Hcouple at the degenerate point for the levels
with same Jz will cause the crossing to be avoided. There-
fore, if clusters follow these levels adiabatically, we should
see a very similar behavior as in the weak-coupling case.
Hamamoto et al.30 have shown that this is indeed the case.
The low-field average magnetization is also similar to that
described by Eq. �1�. However, Hamamoto et al. ignored that
the magnetization is measured within a finite range of mag-
netic fields; so they concluded the magnetization distribution
should be wide and clusters should show negative deflec-
tions. In fact, the experimental averaging mechanism causes
narrow widths. For example, magnetic deflection experi-
ments on holmium clusters that have large anisotropy energy
do not show negative magnetic deflections at all.43
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For strong spin-rotation coupling case, we can consider
the electronic spin to be perfectly aligned with the cluster
rotation; in other words J=S+R, therefore,

H = HE + HV + HR + Hcouple − g�BSB
Jz

J
,

which means that the magnetization distribution is uniform,
spanning from −� to �.41 Again, when the level crossings
are avoided, the magnetization distribution will change sig-
nificantly. Although the quantitative magnetization distribu-
tion in this case has not yet been studied in detail, one would
expect the similar Zeeman diagram as long the crossings are
avoided. In other words, all the conclusions from the avoided
crossing models should hold.

APPENDIX C: LANDAU-ZENER TUNNELING

We have assumed that the clusters traverse their energy
states adiabatically. In fact, if the magnetic field changes
with a finite speed dB /dt, there is a probability to make
Landau-Zener transition between Ei

couple and Ej
couple.44 For the

case in Fig. 4 the transition rate is given by

PLZ = exp�−
2��SR

2

�Bh�Sz − Sz��dB/dt
� = exp�−

�SR
2

�LZ
2 � ,

where �LZ =��Bh�Sz − Sz��dB/dt

2�
.

For typical experiments, we find dB /dt�50 T /s, there-
fore �LZ�10−8 eV. Then �SR is greater than �LZ, hence
pLZ�0, which means that the Landau-Zener transitions are
not important. In other words, the process is at least approxi-
mately adiabatic.

Actually, the process does not have to be totally adiabatic
for the conclusion to hold. We can estimate the number of
crossings within the measurement range,

ncrossing �
��B

Cr
,

where �B is the field change in the measurement range. For
a typical experiment, we find for cluster Co100 that Ncrossing
�1000. Even if only one of these crossings is actually
avoided, the average magnetization will still show significant
reduction compared to totally uncoupled cases.
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