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Using the �dynamical� density-matrix renormalization group method, we study the low-energy physics of
three-leg antiferromagnetic Heisenberg model where the periodic boundary conditions are applied in the rung
direction. We confirm that the spin excitations are always gapped as long as the intraring couplings form a
regular triangle. From precise finite-size-scaling analyses of the spin gap and dimerization order parameter, we
also find that the spin gap is collapsed by very small asymmetric modulation of the intraring couplings.
Moreover, the dynamical spin structure factors on the intraleg and interleg correlations are calculated. It is
demonstrated that the low-lying structure of the interleg spectra is particularly affected by the asymmetric
modulation.
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I. INTRODUCTION

For many years spin ladder systems have attracted much
attention not only due to the existence of a variety of related
materials, e.g., Srn−1Cun+1O2n �Refs. 1 and 2�,
La4+4nCu8+2nO14+8n �Ref. 3�, CaV2O5 �Ref. 4�, etc., but also
as intermediates between one-dimensional �1D� and two-
dimensional quantum spin physics. It has been confirmed
both experimentally and theoretically that spin-1

2 ladders are
gapful for an even number of legs, and gapless for an odd
number of legs when the open boundary conditions �OBC�
are applied in the rung direction �e.g., as a review, see Ref.
5�. On the other hand, if the periodic boundary conditions
�PBC� are applied in the rung direction �referred as a spin
tube� for odd-leg ladders, the spin states are drastically
changed by associating with the occurrence of frustration; it
is known that the system is spontaneously dimerized to re-
move the frustration and all the spin excitations are
gapped.6,7

At present, there are two experimental candidates for odd-
leg spin tubes. One of them is vanadium oxide Na2V3O7,
which may be regarded as a nine-leg Heisenberg spin tube
system.8 The 23Na NMR response, dc- and ac-magnetic sus-
ceptibilities, and the specific-heat measurements9 reveal that,
above 100 K, the system is considered as paramagnetic. Be-
low 100 K, most of the localized V magnetic moments �S
= 1

2 � form a collection of spin-singlet dimers with gaps �
�0−350 K and the remaining small fraction of them forms
spin-triplet bound states with gaps ��0−15 K, and the de-
generacy of the triplet ground states is lifted by a phase tran-
sition at 0.086 K. The low-energy model Hamiltonian of
Na2V3O7 has been proposed by some theoretical groups. We
seem to have reached a consensus that the intraring exchange
interactions are antiferromagnetic. However, inter-ring ones
are still controversial: the ab initio microscopic analysis10

argued that they are frustrated antiferromagnetic and the
magnitude is much smaller than the intraring ones; in con-
trast, the first-principle calculations11 estimated them to be
ferromagnetic and of the same order of magnitude with the
intraring ones.

The other experimental candidate is three-leg compound
��CuCl2 tachH�3Cl�Cl2, which is composed of alternating
�CuCl2 tachH�3 triangles along the crystallographic c axis.12

The effective model has been considered to be a linearly
coupled triangle spin rings with antiferromagnetic intraring
couplings and two frustrating antiferromagnetic inter-ring
couplings. The high-field magnetization measurements sug-
gested that all the couplings are of the same order of magni-
tude; in this situation, it was numerically confirmed that the
effective model has a spin-gapped ground state.13

In this paper, motivated by such developments in the field,
we study the low-lying excitations of three-leg antiferromag-
netic Heisenberg spin tube. We assume that the fundamental
low-energy physics of any odd-leg spin tube can be essen-
tially epitomized by that of the three-leg spin tube. So far,
much theoretical research has been reported for the three-leg
spin tube system: primarily, the bosonization study proposed
that the three-leg spin tube has a spin-gapped ground state.6

It was numerically confirmed and found that the system is
completely dimer-ordered with a broken translational
symmetry.7 It has been also suggested that the spin gap is
suppressed very rapidly with a lattice modulation in the rung
direction.14 Additionally, the system in a magnetic field15–18

and with some kinds of frustrated interactions19–21 have
been examined �the latter model is applicable to
��CuCl2 tachH�3Cl�Cl2�. Thus, the ground-state properties of
the three-leg spin tube are relatively well understood. How-
ever, only few theoretical studies have been devoted to the
dynamics16,22 due to the difficulty of calculating the dynami-
cal quantities. We therefore calculate the dynamical spin
structure factor using the dynamical density-matrix renor-
malization group �DDMRG� method,23 which has been suc-
cessfully applied to the 1D Heisenberg model of late.24 Be-
fore the dynamical calculation, the spin gap and the
dimerization order parameter are investigated to provide a
deeper insight into the ground state. It allows us to precisely
analyze the dynamical spin structure factor. Based on the
results of the static and dynamical quantities, we primarily
discuss the effect of the lattice modulation in the rung direc-
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tion on the ground-state and low-lying excited-state proper-
ties.

This paper is organized as follows. In Sec. II, we define
the three-leg antiferromagnetic Heisenberg tube and explain
the applied methods for the calculations. The effective
Hamiltonian for the asymmetric case is also derived. In Sec.
III, we present the calculated results. The coupling-strength
dependence of the spin gap and the influence of the coupling
modulation on the low-energy physics are discussed. Section
V contains summary and conclusions.

II. MODEL AND METHOD

A. Hamiltonian

We consider the three-leg antiferromagnetic Heisenberg
model, the Hamiltonian of which is given by

H = J�
�=1

3

�
i

S��,i · S��,i+1 + �
������

�
i

J���S
�

�,i · S���,i, �1�

where S��,i is a spin-1
2 operator at rung i and leg ��=1,2 ,3�.

J��0� is the exchange interaction in the leg direction, and
J�����0� is the exchange interaction between the legs � and
�� �see Fig. 1�. When J���=const �∀� ,���, we call it a
“symmetric case” and set it as J12=J23=J31	J�; otherwise,
it is an “asymmetric case.” We take J=1 as the unit of energy
hereafter.

B. Density-matrix renormalization group method

We employ the density-matrix renormalization group
�DMRG� technique, which is a powerful numerical method
for various �quasi� 1D quantum systems.25 For the calcula-
tion of static properties, we use the standard DMRG method
and the OBC are applied in the leg direction. It enables us to
calculate ground-state and low-lying excited-state energies,
as well as static quantities, quite accurately for very large
finite-size systems �up to the order of thousands of sites�. We
are thus allowed to carry out an accurate finite-size-scaling
analysis for obtaining the energies and quantities in the ther-
modynamic limit. For each calculation, we keep
m=400–2400 density-matrix eigenstates in the renormaliza-
tion procedure and extrapolate the calculated quantities to
the limit m→�. We note that the m extrapolation is manda-
tory in the present system �Eq. �1�� because our DMRG trial
state approaches slowly to the exact one with increasing m
due to very strong spin frustration. In this way, the maximum

truncation error, i.e., the discarded weight, is less than 1
�10−7 while the maximum error in the ground-state and
low-lying excited-state energies is less than 10−7−10−6. For
all calculations of the static quantities, we study the ladders
with several kinds of length L=24–312 and then perform the
finite-size-scaling analysis based on the system-size depen-
dence of the quantities.

For the calculation of dynamical properties, we use the
DDMRG method, which is an extension of the standard
DMRG method and has been developed for calculating dy-
namical correlation functions at zero temperature in quantum
lattice models.23 We now apply the PBC for both the leg �x�
and rung �y� directions. With the PBC, the system size must
be restricted practically up to about a hundred but the result

is numerically exact because the spin operators Ŝq�
z can be

precisely defined by

Ŝq�
z =

1

3L

�
l

eiq� ·r�Ŝr�
z, �2�

with momentum q� = �2�z1 /L ,2�z2 /3� for integers −L /2
�z1�L /2 and z2=−1,0 ,1. The sum runs over all sites of
the system. Since the exact definition of the momentum-
dependent operators with the OBC is quite difficult, it would
be better to choose the PBC for a quantitative estimation of
the spectrum. In the DDMRG calculation, a required CPU
time increases rapidly with the number of the density-matrix
eigenstates so that we would like to keep it as few as pos-
sible; meanwhile, the �D�DMRG approach is based on a
variational principle so that we have to prepare a “good trial
function” of the ground state with the density-matrix eigen-
states as much as possible. Therefore, we keep m=1200 to
obtain true ground state in the first ten DDMRG sweeps and
keep m=400 to calculate the spectrum for ladders with
length L=24. In this way, the maximum truncation error, i.e.,
the discarded weight, is about 1�10−4 while the maximum
error in the ground-state and low-lying excited-state energies
is about 10−2.

C. Effective model

For the symmetric case in the strong-coupling limit J�

	J, the zeroth order approximation is obtained by an iso-
lated three-spin triangle. It can be easily diagonalized as the
higher-energy eigenstates,

�↑↑↑�, �↓↓↓� ,

1

3

��↑↑↓� + �↑↓↑� + �↓↑↑�� ,

1

3

��↓↓↑� + �↓↑↓� + �↑↓↓�� , �3�

with energy 3J� /4, and the lower-energy eigenstates,

�↑L� 	
1

3

��↑↑↓� + 
�↑↓↑� + 
2�↓↑↑�� ,

�

�

� �

�

� �

�

� �

�

�

�

�

�

�

�

�

�

�

� 	 
 � �  � � � �
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 � � 	  � � � �

FIG. 1. �Color online� Lattice structure of three-leg Heisenberg
model. Examples of on-leg and on-rung spin-singlet pairs are
shown.
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�↓L� 	
1

3

��↓↓↑� + 
�↓↑↓� + 
2�↑↓↓�� ,

�↑R� 	
1

3

��↑↑↓� + 
2�↑↓↑� + 
�↓↑↑�� ,

�↓R� 	
1

3

��↓↓↑� + 
2�↓↑↓� + 
�↑↓↓�� , �4�

with energy −3J� /4, where 
=exp�2�i /3�. From the above
four degenerate lower-energy states, we can construct the
effective Hamiltonian,6,7

Heff
sym =

J

3�
j=1

L

S� j · S� j+1�1 + 4��i
+�i+1

− + �i
−�i+1

+ �� , �5�

where the chirality operators �� are defined as �+= �L�R� and
�−= �R�L�, respectively. A previous DMRG study confirmed
that the effective Hamiltonian �5� has a spin gap, which is
estimated as 0.277 J.7

When the asymmetry is introduced �J12=J31�J23�, the
higher-energy states �Eq. �3�� are still degenerate and the
eigenstates of the anisotropic three-spin triangle spin system
have the energy �2J12+J23� /4. While the four degenerate
lower-energy states �Eq. �4�� are resolved into the two dou-
blets: the first ones are

�1� =
�↑L� − 
�↑R�


2
,

�2� =
�↓L� − 
�↓R�


2
, �6�

with the eigenenergy −3J23 /4, and the others are

�3� =
�↑L� + 
�↑R�


2
,

�4� =
�↓L� + 
�↓R�


2
, �7�

with the eigenenergy −J12+J23 /4. Thus, the effective Hamil-
tonian �5� is modified as

Heff
asym = Heff

sym − �J12 − J23��
j=1

L

�
2� j
+ + 
� j

−� . �8�

Since the effect of the asymmetry is written as the crystal-
field-type term, we suppose that the physical situation is
symmetrical with respect to J23=J12 as a function of J23.
Note that the splitting of the four lower-energy states �Eq.
�4�� into the doublets �6� and �7� is not complete for nonzero
J �see Appendix�. In the limit where the crystal-field-type
term is large, the effective Hamiltonian can be reduced to the

S=1 /2 Heisenberg Hamiltonian J� j=1
L S� j ·S� j+1, which has no

spin gap.

III. RESULTS

A. Spin gap

1. Symmetric case

First, we study the spin gap in the symmetric case. It is
known that, for all positive J�, the system is spontaneously
dimerized and all the spin excitations are gapped.6,7 This
means that all spins contribute to the formation of spin-
singlet pairs. If we could pick up a dimerized pair of tri-
angles, including six spins, three spin-singlet pairs are found:
one of them is formed in either one of the three legs and the
other four spins form a couple of pairs in the two rungs. As
a result, there exist two types of spin-singlet pairs, namely,
on-leg and on-rung pairs. Examples of the on-leg and the
on-rung spin-singlet pairs are shown in Fig. 1.

It would be very intriguing to see the quantitative depen-
dence of the spin gap on J�. The spin gap is evaluated by an
energy difference between the first triplet excited state and
the singlet ground state,

��L� = E1�L� − E0�L�, � = lim
L→�

��L� , �9�

where En�L� is the nth eigenenergy �n=0 corresponds to the
ground state� of the system with length L, i.e., L�3 ladder.
Note that the number of system length must be taken as L
=2l with l��1� being an integer to maintain the total spin of
the ground state as S=0. In Fig. 2, we show the DMRG
results of the spin gap as a function of J�. The plotted values
are extrapolated to the thermodynamic limit L→� �for ex-
ample, the extrapolation scheme for J�=1 is demonstrated in
Fig. 3�. We obtain �=0.254 in the limit of J�=�. It is
rather smaller than the value estimated in Ref. 7 because the
finite-size-scaling analysis is different.

Roughly speaking, the spin gap increases proportionally
to J� in the small J� ��3� regime and keeps almost constant
in the large J���10� regime. This behavior can be inter-
preted in terms of different origin of the lowest singlet-triplet
excitation for each of the J� regime although the mechanism
of gap opening is invariant for the entire J� regime. In other
words, the spin gap is approximately scaled by a binding
energy of most weakly bounded spin-singlet pair in the sys-
tem, and it switches between the on-leg and on-rung pairs at
some value of J���5�. A more concrete description is given
in the following paragraph.
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FIG. 2. Spin gap �s as a function of J� in the symmetric case.
The inset is an extended figure for J��10.
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For J�J�, we can easily imagine that the on-rung spin-
singlet pairs must be bounded more solidly than the on-leg
ones. The spin gap is therefore scaled by the binding energy
of an on-leg pair, i.e., ��J. Accordingly, � is independent
of J� and it is consistent with the constant behavior of �

with J� at J��10. On the other hand, the situation is some-
what different for J��O�J�: the bound state of the on-leg
pairs is expected to be more solid than that of the on-rung
ones. It is because the system is strongly dimerized with
infinitesimally small J�. The dimerization strength develops
abruptly at J�=0+ and increases rather slowly with increas-
ing J�.26 Thus, the spin gap is essentially scaled by the bind-
ing energy of an on-rung pair. In addition, we may assume
that the binding energy of the on-rung pair is proportional to
J� in the small J� regime by analogy with that of the two-
leg Heisenberg system.27 Now therefore, the spin gap is
scaled by J�, i.e., ��J�, which is consistent to a linear
behavior of � with J� at J��3. Note that the derivative
�� /�J� is very small ��0.053� due to strong spin frustra-
tion among the intraring spins. Consequently, a crossover
between the constant � region and the proportional � re-
gion is seated not at J��1 but around J��5. The existence
of this crossover can be also confirmed with studying the J�

dependence of the dynamical spin structure factor. It will be
discussed in Sec. III D.

2. Asymmetric case

Of particular interest is the evolution of the spin gap onto
an asymmetric modulation of the intraring couplings. Previ-
ously, it has been suggested that the spin gap is suppressed
rapidly by imposing the asymmetry and there exists the
Berezinskii-Kosterlitz-Thouless �BKT� type transition be-
tween gapped and gapless phases at a finite asymmetric
modulation.14 In order to take the asymmetric modulation
into account, we vary the value of J23 from unity with keep-
ing J12=J31=1 in our model �Eq. �1��. The system-size de-
pendence of the spin gap for several values of J23 is shown in
Fig. 3. For the symmetric case J23=1, ��L� can be readily
extrapolated to 1 /L→0 and �=0.052�1� is obtained. For a

relatively large asymmetric case, e.g., J23=0.9, we can see
that the spin gap is obviously extrapolated to zero in the
thermodynamic limit.

Let us then consider a small asymmetry by making J23
only 1% smaller from the symmetric case, i.e., we set J23
=0.99. As seen in Fig. 3, ��L� behaves quite similarly to
that of the symmetric case for small systems �L�50�; how-
ever, the deviation comes into the open around L=50 and
increases rapidly as 1 /L decreases. Even at a rough estimate,
��L� seems to be extrapolated to a much smaller value at
1 /L→0 than that in the symmetric case. For more precise
extrapolation, a good fitting function ought to be chosen. As
shown in the inset of Fig. 3, we find that ��L� can be scaled
better by L−����1� than by L−1 in the case of small asym-
metry. This rescaling allows us a reasonable performance of
the finite-size-scaling analysis to the thermodynamic limit.
The spin gap is thus obtained as zero within the margin of
error ��1�10−3. We also find that the data for J23=1.01
are quantitatively the same as those for J23=0.99, as ex-
pected from Eq. �8�. These results could suggest that the spin
gap vanishes as soon as a rather �infinitesimally� small asym-
metry in the intraring exchange couplings is introduced. This
is contrary to the BKT-type transition suggested in Ref. 14.
For further support of our statement, we evaluate a dimeriza-
tion order parameter, which quantifies the presence or ab-
sence of long-range dimer order indicating the spin-gapped
ground state, in the following subsection.

We should comment on the finite-size-scaling analysis.
The fitting function L−����1� may seem to be unusual; how-
ever, it is reasonable if we take into consideration the fact
that the finite-size system will be always dimerized due to
the Friedel oscillation. As a consequence of the dimerization,
the spin gap indeed “opens” in any finite-size system even if
the spin gap closes in the thermodynamic limit. We need to
remove this “anomalous” finite-size effect caused by the
Friedel oscillation to obtain a correct value in the thermody-
namic limit. Assuming the dimerization strength due to the
Friedel oscillation decays as L−����0�,28 the spin gap
would be scaled as L−2�/3 on the analogy of the results for the
1D spin-Peierls �SP� Heisenberg model.29 Therefore, we can
justify the finite-size-scaling analysis with the fitting function
��L��L−� ��=2� /3�. Incidentally, this finite-size-scaling
analysis works only for gapless cases; actually, the data for
the symmetric case cannot be fitted with ��L��L−�.

B. Dimerization order parameter

Next, we evaluate the dimerization order parameter,
which indicates the presence or absence of long-ranged
dimerized state. When the spin gap opens, the system has to
be dimerized along the leg direction, i.e., the ground state
has to be a spin-Peierls one. Therefore, a disappearance of
this order parameter in the thermodynamic limit corresponds
to a collapse of the spin gap. In order to know whether the
spin gap disappears with small asymmetry, we study the
dimerization order parameter in the vicinity of the symmetric
case.

Because the translational symmetry is broken due to the
Friedel oscillation under the application of the OBC, the
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FIG. 3. �Color online� DMRG results of the spin gap as a func-
tion of 1 /L for several values of J23 with fixed J12=J31=1. Inset:
rescaled spin gap as a function of 1 /L� with �=0.649 and 0.647 for
J23=0.99 and 1.01, respectively.
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dimerized state is directly observable with the DMRG
method. We are interested in the formation of alternating
spin-singlet pairs in the leg direction so that we can calculate
the nearest-neighbor spin-spin correlations,

S��,i� = − S��,i · S��,i+1� , �10�

where ¯� denotes the ground-state expectation value. In
Fig. 4�a�, we show an example of the Friedel oscillation ap-
pearing in the nearest-neighbor spin-spin correlations of the
system with length L=24 for a symmetric case J�=1. �In the
symmetric case, the results for all values of � are the same.�
Generally, the Friedel oscillations in the center of the system
decay as a function of the system length. If the amplitude at
the center of the system

D��,L� = �S��,L/2� − S��,L/2 + 1�� �11�

persist for arbitrarily long system length, it corresponds to a
long-range dimerization order that indicates the spin-Peierls
ground state. We thus define the dimerization order param-
eter as

D��� = lim
L→�

D��,L� . �12�

In Fig. 4�b�, we show the log-log plots of the amplitude
D�� ,L� as a function of the system length L for several
values of J23 with fixed J12=J31=1. For the symmetric case
J23=1, the derivative −� log D�� ,L� /� log L appears to di-
minish gradually with increasing L and D�� ,L� saturates at a
value, i.e., D���=0.0276�2�, in the large L limit. It signifies
the long-range dimerization order, which is consistent with

the existence of finite spin gap. For reference, we obtain
D���=0.0147�5� in the large L limit at J�=0.5 and possibly
this value may be proportional to J� in the small J� regime.

Let us then study how the order parameter is affected by
the asymmetric modulation. For a relatively large asymmet-
ric case J23=0.9, the log-log plot of D�� ,L� with L repre-
sents a straight line, i.e., D�� ,L��L−0.64 �∀��, over all
ranges of L or at least L�50 �see the inset of Fig. 4�b��. We
thus find a power-law decay of the dimerization order param-
eter as a function of L. Since a power-law decay with the
distance indicates the absence of long-range order, the
disappearance of the spin gap is confirmed. We also see that
the amplitude D�1,L� is smaller than the others
D�2,L��=D�3,L�� though their decay lengths are the same.
This happens because the reduction of J23 prevents the spin-
singlet pairs from forming on the rungs between the leg �
=2 and �=3; accordingly, the formation of the pairs on the
leg �=1 is strongly suppressed. Note that the �nearly� perfect
straight-line fit of log D�� ,L� versus log L could be con-
cerned with the �almost� linearly scaled spin gap with 1 /L.

We now turn to the case with a small asymmetric modu-
lation, J23=0.99. The derivative of −log D�� ,L� with log L
decreases with increasing L, as seen in the symmetric case.
However, it seems to get at a finite value around L�150 and
the plots for L�150 can be fitted by a straight line. It again
implies a power-law decay of the order parameter in the
large distance. The fitting function is estimated as D�� ,L�
�L−0.022 for all � of which the slope is much gentler than
that in the case of J23=0.9. Although the decay of the order
parameter is very slow, the formation of the long-range
dimerization order has to be broken down. This slow decay
may be the reason why the finite-size-scaling analysis of the
spin gap is quite difficult �see Fig. 3�. To put it the other way
around, quite long systems are vital to find out the vanish-
ment of the spin gap with small asymmetry. Moreover, it
must be a good guess that the decay ratio of the dimerization
order parameter develops continuously from zero at the sym-
metric case. Therefore, we argue that the spin gap vanishes
immediately when an infinitesimally small asymmetry is in-
troduced.

The collapse of the spin gap with small asymmetry can be
seen more evidently in the strong-coupling regime J�	J. As
an example, we show �a� the spin gap as a function of 1 /L
and �b� the dimerization order parameter as a function of L
for J12=J31=100 in Fig. 5. For the symmetric case J23
=100, the system has a spin gap, which is estimated as �

=0.253, and the dimerization order parameter converges to
D���=0.067 in the L→� limit. Let us now modulate the
triangle rings only by 1%, namely, J23=99 �and 101�. We
obviously find that the spin gap is extrapolated to zero in the
thermodynamic limit and the dimerization order parameter
decays as a power law with the system size.

C. Simple intuition

It would be important to provide an intuitive understand-
ing of the collapse of the spin gap with a small asymmetry.
Let us consider an isolated triangle Heisenberg ring. We as-
sume the three coupling constants to be K, K�, and K, corre-
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FIG. 4. �Color online� �a� Friedel oscillation in the nearest-
neighbor spin-spin correlations of the system with length L=24 for
a symmetric case J�=1. �b� Log-log plots of the amplitude D�� ,L�
as a function of the system length L for J23=1,0.99 and 0.9 with
fixed J12=J31=1. The dotted lines are the fitting functions D�� ,L�
�L−� ���0�.
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sponding to J12, J23, and J31 in our model, respectively. For
K=K�, the ground state of the ring is fourfold degenerate and
the spins are completely frustrated. When K�K�, the degen-
erate states are split into two states and the spin gap � opens.
If K��K �K�K��, a spin-singlet �spin-triplet� pair with �
=K�−K ��=K−K�� between two sites coupled by K�. The
spin-singlet state corresponds to the doublet ones �1� and �2�
�Eq. �6��; whereas, the triplet state corresponds to the doublet
ones �3� and �4� �Eq. �7��. We thus find that a bound state is
stabilized for K�K�. We now go back to the three-leg tube.
Originally, the spontaneous dimerization is vital to form the
bound states in the symmetric case. As a result, the spin
degrees of freedom are quenched and the spin frustration is
weakened. However, if the asymmetry is introduced, the
bound state is naturally formed in each triangle, as men-
tioned above. Consequently, the dimer order is no longer
necessary. By the analogy of results of the single triangle, the
binding energy of the bound state in each triangle is scaled
by �J12−J23� �or �J31−J23�� in the asymmetric case. This is
consistent with the fact that the effective Hamiltonian �Eq.
�8�� includes the effect of the asymmetry only as the crystal-
field-type term.

D. Spin excitation spectra

1. Symmetric case

Finally, we study the dynamical spin structure factor to
investigate the low-energy excitations. For the symmetric
case, the spin structure factor is defined as

S�q� ,
� = �
n

�0�Ŝ−q�
z ��n��n�Ŝq�

z ��0���
 − En + E0� , �13�

where ��n� is the nth eigenstate with the eigenenergy En. The

operator Ŝq�
z �qy =0, �

2
3�� is the Fourier transformation of the

spin operator Ŝi
z at site i and given by Eq. �2� when the PBC

are applied in the leg direction. In J�=0 where the system
consists of three separated chains, the ground state of the
whole system is the direct product of the ground state of
three chains and the dynamical spin structure factors are
equivalent to those of the 1D Heisenberg model;30–32 thus,
the spectra for qy =0 and qy = 2

3� are equivalent. When a
finite J� is taken into account, the frustration arises among

the intraring spins. In Fig. 6, we show the DDMRG results of
S�q� ,
� at J�=1 for a ladder with length L=24. A pro-
nounced peak is found at q� = �� , 2

3��. It implies that the spins
approximately form a �nearly� 120° structure in each triangle
ring and an antiferromagnetic correlation is dominant along
the leg direction. On the other hand, the peaks around q�
= �� ,0� are fairly suppressed as compared with the case of
J�=0.

For finite J�, all the spin excitations are gapped. The po-
sition of the lowest-lying peak at q� = �� ,0� �q� = �� , 2

3��� es-
sentially corresponds to the energy loss to break an on-leg
�on-rung� spin-singlet pair. Thus, the lowest-excitation en-
ergy at either q� = �� ,0� or q� = �� , 2

3�� provides the spin gap
�. For example, since the on-leg spin-singlet pair has larger
binding energy than the on-rung one at J�=1, the lowest-
lying peak of q� = �� , 2

3�� is located at lower frequency than
that of q� = �� ,0� in Fig. 6. As a result, the position of the
largest peak in q� = �� , 2

3�� stands at the lowest spinon exci-
tation whose frequency corresponds to the spin gap. The
magnitude relation of the binding energies between the on-
leg and the on-rung pairs switches at J��5, as mentioned in
Sec. III A, so that the momentum q� giving the lowest exci-
tation is also expected to change at J��5.

Let us therefore investigate the evolution of S�q� ,
� at q�
= �0, 2

3�� and q� = �� , 2
3�� with J�. The results are shown in

the insets of Fig. 6. Both the position and the weight of the
lowest-lying peak at q� = �0, 2

3�� are not that sensitive to J�,
which reflects that the dimerization strength is almost satu-
rated above J�=1; whereas at q� = �� , 2

3��, the position of the
peak shifts toward higher frequencies and the weight goes
down with increasing J�. We then find that the peak position
of q� = �� , 2

3�� comes up with that of q� = �0, 2
3�� at J��5. It

means that the momentum of the lowest-lying peak is
changed from q� = �� , 2

3�� to q� = �0, 2
3�� at J��5. In fact, this

change of the momentum corresponds to the switch in the
origin of the spin gap from the on-rung pair to the on-leg
one.
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FIG. 5. �Color online� �a� Spin gap ��L� as a function of 1 /L
for several values of J23 with J12=J31=100. The solid lines are the
polynomial fit. �b� Log-log plots of the amplitude D�� ,L� as a
function of L. The dotted lines are the fitting functions D�� ,L�
�L−�. � is estimated as 0.601 for J23=99. 0 2 4 0 2 4
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FIG. 6. �Color online� Dynamical spin structure factor S�q� ,
� at
the symmetric case J�=1 for �a� qy =0 and �b� q= 2

3�. The system
size is fixed at L=24 and the broadening �=0.1 is introduced. In-
sets: S�q� ,
� at qx=� for J�=1 �no symbol�, 2 �squares�, 5 �circles�,
and 10 �crosses�.
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We now refer a couple of other significant features: one is
the appearance of two bands around 
=1.5 and 3.0 in the
qy = 2

3� spectra, which are denoted as 
=
1 and 
2 in Fig. 6,
respectively. Those bands are associated with internal exci-
tation on each triangle ring. Considering an isolated triangle
ring, there are three states; namely, a spin-3

2 quadruplet with
energy 3

4 �Eq. �3�� and two degenerate spin-1
2 doublets with

energy − 3
4 �Eq. �4��. Hence, when J=0, the excitation spectra

show two flat bands at 
1=0 and 
2= 3
2J�. Thus, we can

easily guess the spin structure factor in the strong-coupling
regime J�	J: the spectra of the low-energy excitations �

�O�J�� are essentially the same as those of the 1D SP
Heisenberg model;33–37 and single peaks associated with the
intraring excitation exist around 
2=J+ 3

2J� for all of qx. The
other feature is the reduction of the apparent width of the
continuum in the qy = 2

3� spectra, relative to that of the 1D
Heisenberg model. In other words, the peaks at the lower
edge of the spectra are rather � functionlike. It possibly re-
flects the local excitation of the spinon bound state on each
dimer, as in the spectra of the 1D SP Heisenberg model.37

2. Asymmetric case

We then examine the dynamical spin structure factor in
the asymmetric case. Particularly, we focus on the change of
the spectra with the asymmetry. Since the translation sym-
metry in the rung direction is no longer present for the asym-
metric case, we redefine the dynamical spin structure factor
as

S����qx,
� = �
�

�0�Ŝ�,−qx

z �������Ŝ��,qx

z ��0�

� ��
 − E� + E0� , �14�

with

Ŝ�,qx

z =
1

L

�
x

eiqxxŜ�,x
z , �15�

where there are four independent combinations of � and ��,
i.e., �� ,���= �1,1�, �2, 2�, �1,2�, and �2,3�.

We here consider the system with a 10% asymmetric
modulation, i.e., J12=J31=1 and J23=0.9. The DDMRG re-
sults of S���qx ,
� for a ladder with length L=24 are shown
in Fig. 7. The spin gap should be closed with asymmetric
modulation; correspondingly, we can see that the lowest-
lying peaks at qx=� move to 
�0 in the intraleg spin struc-
ture factors S11�qx ,
� and S22�qx ,
�. Thus, S11�qx ,
� and
S22�qx ,
� are basically similar to that of the 1D Heisenberg
model.30–32 The lower edge of the spectra is well fitted with
a function 
=c sin qx, and c is estimated as 1.9 and 1.7 for
S11�qx ,
� and S22�qx ,
�, respectively. One of the most no-
ticeable deviation from the spectra of the 1D Heisenberg
model is the rapid decrease of the spectral weights S�qx� with
distance from qx=�. It is because the spin fluctuations are
suppressed by the exchange interaction between the legs and
the antiferromagnetic correlations in the leg direction are
“longer ranged.” Since the leg �=1 is more strongly coupled
with the neighboring legs than the leg �=2, the spectral
weights of S11�qx ,
� at small qx are fewer than those of

S22�qx ,
�. For example, the similar feature has been con-
firmed in the spin structure factor of the two-dimensional
Heisenberg model that has an antiferromagnetically ordered
ground state.38

Let us turn to the interleg spin structure factors S12�qx ,
�
and S23�qx ,
�. These factors themselves represent changes of
the spectral features derived from the asymmetric modula-
tion because they must be zero in the symmetric case. In
S12�qx ,
�, negative-weighted peaks appear around qx=�. It
means that the antiferromagnetic correlation between the
legs �=1 and �=2 increases from the frustrated 120° spin
structure for the symmetric case. Whereas in S23�qx ,
�,
smaller peaks with positive weights appear around qx=�. It
signifies the emergence of the ferromagnetic correlation be-
tween the legs �=2 and �=3, which is caused by the super-
exchange interaction via the leg �=1. With increasing the
asymmetric modulation, the low-energy physical properties
of the three-leg ladder with the PBC in the rung direction
seem to quickly approach those of a three-leg ladder with the
OBC.39

IV. SUMMARY

We study the low-lying excitations of the three-leg anti-
ferromagnetic Heisenberg tube with the �D�DMRG method.
For the symmetric case, we argue that the spin gap is scaled
by the binding energy of the on-rung spin-singlet pair in the
weak-coupling regime �J��3�; whereas, it is scaled by the
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FIG. 7. �Color online� Dynamical spin structure factor
S���qx ,
� at the asymmetric case J12=J31=1 and J23=0.9. The sys-
tem size is fixed at L=24 and the broadening �=0.1 is introduced.
The dashed lines denote the fitting of the lowest-lying peaks with

�sin qx.
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binding energy of the on-leg spin-singlet pair in the strong-
coupling regime �J��10�. We then take an asymmetric
modulation of the intraring exchange couplings into account.
For small asymmetries, precise finite-size-scaling analyses of
the spin gap and dimerization order parameter are carried
out. Based on the results, we suggest that the spin gap van-
ishes as soon as an infinitesimally small asymmetry is intro-
duced.

Furthermore, we calculate the dynamical spin structure
factors. In the symmetric case, the low-energy spectra are
essentially the same as those of the 1D SP Heisenberg model.
Note, however, that additional peaks associated with the in-
traring excitation exist. In the asymmetric case, the intraleg
spectra are basically similar to those of the 1D Heisenberg
model. They are hardly affected by the asymmetric modula-
tion except for the spin-gap closing at the band edge. On the
other hand, the interleg spectra are profoundly affected even
by small asymmetric modulation. An enhancement of ferro-
magnetic or antiferromagnetic correlations between two legs
can be clearly seen. It means that the low-energy physics of
the three-leg Heisenberg tube approaches quickly to that of
the nontube three-leg ladder when increasing the asymmetry.
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APPENDIX

In this Appendix, we consider how effectively the four
degenerate states �Eq. �4�� are resolved to either of the dou-
blets �Eqs. �6� and �7�� in the ground state. If only configu-
rations containing one of the doublets are included in the
asymmetric case, the Hilbert space to be considered can be
much reduced. This reduction is exact only in the limit of
J→0 and thus we check the validity of the reduction numeri-
cally for nonzero J.

When �J12−J23�	J, the ground state of each triangle is
approximately expressed as a linear combination of the states

�1� and �2� for J23�J12; whereas states �3� and �4� are for
J23�J12. However, the four states are equally likely “mixed”
around J12=J23 for nonzero J. We here prepare projection
operators Pi= �i�i� �i=1¯4�. In Fig. 8�a�, the ground-state
expectation values of the projection operators P1� �=P2��
and P3� �=P4�� as a function of �J12−J23� are shown for a
couple of cases J12=J31=1 and 100. We can see that the
dominance of the doublet state exchanges continuously be-
tween �1� and �2�, and �3� and �4� at �J12−J23��O�J /2�. It is
confirmed for J12=J31=100 that either P1� or P3� is �1 /2
and the other is �0 at �J12−J23��J /2, where the reduction to
the doublet of the Hilbert space in each triangle must be
applicable. Since we have the relation P1− P2+ P3+ P4
=
2�++
�−, the values P1� and P3� are symmetric on the
reflection against the line J23−J12=0, which is consistent
with the crystal-field-type term in the effective Hamiltonian
�Eq. �8��. We also plot the same results as a function of
J23 /J12 in Fig. 8�b�. For J12=J31=1, the situation seems to be
more complex but the properties are expected to be qualita-
tively similar to those in the strong-coupling limit J12,J23
	J.
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