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The S=1 /2 Heisenberg bilayer spin model at zero temperature is studied in the dimerized phase using
analytic triplet-wave expansions and dimer series expansions. The occurrence of two-triplon bound states in the
S=0 and S=1 channels, and antibound states in the S=2 channel, is predicted by the triplet-wave theory and
confirmed by series expansions. All bound states are found to vanish at or before the critical coupling sepa-
rating the dimerized phase from the Néel phase. The critical behavior of the total and single-particle static
transverse structure factors is also studied by series and found to conform with theoretical expectations. The
single-particle state dominates the structure factor at all couplings.
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I. INTRODUCTION

Modern probes of material properties, such as the new
inelastic neutron-scattering facilities, are reaching such un-
precedented sensitivity that they can measure the spectrum
not only of a single quasiparticle excitation, but even two-
particle excitations.1 These quasiparticles can collide, scatter,
or form bound states just like elementary particles in free
space. The spectrum of the multiparticle excitations is a cru-
cial indicator of the underlying dynamics of the system.

One of the principal theoretical means of predicting the
excitation spectrum is the method of high-order perturbation
series expansions.2 We have previously used a “linked-
cluster” approach to generate series expansions for two-
particle states in one-dimensional models,3 but for two-
dimensional models the only high-order calculations carried
out so far have been those of Uhrig and co-workers �e.g.,
Refs. 4–6� using the “continuous unitary transformation”
�CUTS� method. One of our aims here is to extend the
linked-cluster approach to two-dimensional models, starting
with the bilayer model as a simple example.

The S=1 /2 bilayer Heisenberg antiferromagnet has at-
tracted continuing interest from both experimentalists and
theoreticians. Experimentally, it is of interest because many
of the cuprate superconductors contain pairs of weakly
coupled copper oxide layers.7–10 Recently, the organic mate-
rial piperazinium hexachlorodicuprate has also been found to
have a bilayer structure.11 Theoretically, it is of particular
interest because it is one of the simplest two-dimensional
systems to display a dimerized, valence-bond-solid ground
state when the interplane coupling is large. There have also
been discussions of the model in the presence of a magnetic
field,12 doping,10,13,14 or disorder.15

The structure of the model is shown in Fig. 1, with S
=1 /2 spins on the sites of the lattice and Heisenberg antifer-
romagnetic couplings J2 between the planes J1 within each
plane:

H = J1 �
l=1,2

�
�i,j�

Sli · Slj + J2�
i

S1i · S2i, �1�

where l=1,2 labels the two planes of the bilayer. The phys-
ics of the system then depends on the coupling ratio �
=J1 /J2. At �=0, the ground state consists simply of S=0

dimers on each bond between the two layers, and excitations
are composed of S=1 “triplon” states16 on one or more
bonds. At large �, where the J1 interaction is dominant, the
ground state will be a standard Néel state, with S=1 “mag-
non” excitations. At some intermediate critical value �c, a
phase transition will occur between these two phases. It is
believed that this transition is of second order and is accom-
panied by a Bose-Einstein condensation of triplons/magnons
in the ground state.

Theorists have discussed this model using series-
expansion methods,17–19 quantum Monte Carlo �QMC� simu-
lations at low temperatures,20–24 Schwinger-boson mean-field
theory,25,26 and spin-wave theory.27–30 The QMC analysis of
Sandvik and Scalapino22 found the transition at �c
=0.398�3�, with a critical index ��0.7 in agreement with
the O�3� nonlinear sigma model prediction, while the
exponent-biased series analysis of Zheng18 put the critical
point at �c=0.394�1�. More recently, a very accurate stochas-
tic series-expansion study has been performed by Wang
et al.,23 giving �c=0.396 51�2� and a critical index �
=0.7106�9� to be compared with the best estimate from clas-
sical three-dimensional �3D� Heisenberg simulations31 of �
=0.7112�5�. A further study by Wenzel et al.24 has confirmed
universality of the bilayer system with the Heisenberg
model.

Early spin-wave estimates28 were well away from the cor-
rect critical point, but the improved Brueckner approach of
Sushkov and co-workers29,30 gave a remarkably accurate es-
timate of the critical point and critical index, and also the
one-particle dispersion in the model.

Our particular aim here is to study the two-triplon states
within the dimerized regime, with particular emphasis on the
occurrence of bound states, and to explore their behavior in
the vicinity of the critical point. The two-particle bound

J1

J2

FIG. 1. The bilayer Heisenberg model on a square lattice.
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states can give important insights into the dynamical behav-
ior of the model. It is also possible that they may be detected
experimentally at the new generation of inelastic neutron-
scattering facilities or by other means.

We use two methods to investigate the two-particle states.
A modified triplet-wave approach described in Sec. II gives a
qualitative picture of these states, valid at small couplings �.
Series-expansion calculations, sketched in Sec. III, are then
used to obtain more accurate results and to explore the be-
havior near the critical point. Series expansions are also pre-
sented for the single-particle and total transverse structure
factors. Our conclusions are summarized in Sec. IV.

II. MODIFIED TRIPLET-WAVE THEORY

Analogs of spin-wave theory in a dimerized phase have
been discussed by several authors. Sachdev and Bhatt32 used
a “bond-operator” representation to describe the dimers and
their spin-triplet excitations, which employed both triplet and
singlet operators, with a constraint between them to ensure
that no two triplets can occupy the same site. The constraint
is awkward to implement and so Kotov et al.30 discarded the
singlet operator and replaced it by an infinite on-site repul-
sion between triplets, implemented via a self-consistent Born
approximation and valid when the density of triplets is low.
We have presented an alternative approach33 where the ex-
clusion constraint is implemented automatically by means of
projection operators. The absence of any constraint makes
the formalism easier and more transparent to apply, but at the
price of extra many-body interaction terms. This is the
method used here.

Since this section is rather long, it may be useful to begin
with a brief outline of our main results. After setting up our
modified triplet-wave formalism, keeping terms up to fourth
order in triplet operators, we calculate the leading terms for
the ground-state energy per dimer and the triplet energy gap
in powers of �. Numerical results, including some higher-
order correction terms, are then calculated for the ground-
state energy, the one-particle spectrum, and finally for the
two-triplon bound-state spectrum to be compared with later
series results.

The Hamiltonian for the Heisenberg bilayer system can be
rewritten:

H = �
i

S1i · S2i + � �
1=1,2

�
�i,j�

Sli · Slj. �2�

For �=0, the system reduces to independent dimers as
shown in Fig. 1. Let us consider a single dimer with two
spins S1 ,S2. The four states in the Hilbert space consist of a
singlet and three triplet states with total spin S=0,1, respec-
tively, and eigenvalues

S1 · S2 = �− 3/4 �S = 0�
+ 1/4 �S = 1� � . �3�

We denote the singlet ground state as 	0� and introduce triplet
creation operators that create the triplet states out of the
vacuum 	0� as follows:

	0� =
1

2

�	↑↓� − 	↓↑�� ,

	1,x� = tx
†	0� = −

1

2

�	↑↑� − 	↓↓�� ,

�4�

	1,y� = ty
†	0� =

i

2

�	↑↑� + 	↓↓�� ,

	1,z� = tz
†	0� =

1

2

�	↑↓� + 	↓↑�� .

Then the spin operators S1 and S2 can be represented in
terms of triplet operators by

S1� =
1

2
�t�

†�1 − t�
†t�� + �1 − t�

†t��t� − i����t�
† t�� ,

S2� =
1

2
�− t�

†�1 − t�
†t�� − �1 − t�

†t��t� − i����t�
† t�� , �5�

where � ,� ,� take the values x ,y ,z and repeated indices are
summed over. This is similar to the representation of Sach-
dev and Bhatt,32 except that we have omitted singlet opera-
tors s† ,s, but used projection operators �1− t�

†t�� instead. As-
suming the triplet operators obey bosonic commutation
relations

�t�,t�
†� = ���, �6�

then one can show that within the physical subspace �i.e.,
total number of triplet states is 0 or 1�, the representation �5�
obeys the correct spin operator algebra

�S1�,S1�� = i����S1�, �S2�,S2�� = i����S2�, �7�

�S1�,S2�� = 0, �8�

S1
2 = S2

2 = 3/4, S1 · S2 = t�
† t� − 3/4. �9�

The projection operators ensure that we remain within the
subspace.

Returning to the bilayer system, we can now define triplet
operators tn�

† , tn� for each dimer n in the system. For a sys-
tem of N dimers, the Hamiltonian now can be expressed in
terms of triplet operators as

H = −
3N

4
+ �

n

tn�
† tn� +

�

2 �
�ij�

ti�
† tj�

† + ti�tj� + ti�tj�
† + ti�

† tj��

−
�

2 �
�ij�

�ti�
† ti�

† ti� + ti�
† ti�ti���tj�

† + tj�� + �ti�
† + ti���tj�

† tj�
† tj�

+ tj�
† tj�tj�� + ti�

† ti�tj�
† tj� − ti�

† ti�tj�
† tj�� +

�

2 �
�ij�

�ti�
† ti�

† ti�

+ ti�
† ti�ti���tj�

† tj�
† tj� + tj�

† tj�tj��� . �10�

This expression includes terms containing up to six triplet
operators.

Next, perform a Fourier transform
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tk� = � 1

N
�1/2

�
n

eik.ntn�,

tk�
† = � 1

N
�1/2

�
n

e−ik.ntn�
† , �11�

�we set the spacing between dimers d=1� then the Hamil-
tonian becomes

H = −
3N

4
+ �

k
tk�
† tk� + ��

k
�k�tk�

† t−k�
† + tk�t−k� + 2tk�

† tk��

−
�

N
�
1234

�1+2+3−4��t1�
† t2�

† t3�
† t4� + t4�

† t3�t2�t1����1 + �2��

+ �1+2−3−4�t1�
† t2�

† t3�t4���1 + �2 + �3 + �4�

+ ��1−3t1�
† t2�

† t3�t4� − �1−4t1�
† t2�

† t3�t4����

+
�

N2 �
1−6

�1+2+3+4−5−6��3+4−6�t1�
† t2�

† t3�
† t4�

† t5�t6�

+ t6�
† t5�

† t4�t3�t2�t1���

+ �1+2+3−4−5−6t1�
† t2�

† t3�
† t4�t5�t6���3−4−6 + �2+3−4�� , �12�

where indices 1–6 are shorthand for momenta k1−k6, and

�k =
1

2
�cos kx + cos ky� �13�

for the square lattice. Henceforward, we drop the six-particle
terms, since we are only considering lower-order calculations
in this paper.

Finally, as in a standard spin-wave analysis, we perform a
Bogoliubov transform

tk� = ck	k� + sk	−k�
† , �14�

where ck=cosh 
k, sk=sinh 
k, and 
−k=
k, which preserves
the boson commutation relations

�	k�,	k��
† � = �kk���� �15�

and is intended to diagonalize the Hamiltonian up to qua-
dratic terms. After normal ordering, the transformed Hamil-
tonian up to fourth order terms reads

H = W0 + H2 + H3 + H4, �16�

where the constant term is

W0 = 3N�−
1

4
+ R2 + 2��R3 + R4� − 2��2�R3 + R4��R1

+ 4R2� +
1

N2�
12

�1−2�c1s1c2s2 − s1
2s2

2�� + 2���R3 + R4�

��R1 + 4R2�2 +
1

N3�
123

�1+2−3�c1s1�4c2s2c3s3 + 6c2s2s3
2

+ 6s2
2s3

2� + 4s1
2s2

2s3
2��� , �17�

expressed in terms of the momentum sums

R1 =
1

N
�
k

cksk,

R2 =
1

N
�
k

sk
2 ,

�18�

R3 =
1

N
�
k

cksk�k,

R4 =
1

N
�
k

sk
2�k.

The quadratic terms are

H2 = �
k,�

�Ek	k�
† 	k� + Qk�	k�	−k� + 	k�

† 	−k�
† �� , �19�

where

Ek = �ck
2 + sk

2��1 + 2��k� + 4��kcksk − ��4�ck
2 + sk

2���k�R1

+ 4R2� + 4�R3 + R4� −
1

N
�

1
s1

2�k−1� + 8cksk��k�R1

+ 4R2� + �R3 + R4� +
1

N
�

1
c1s1�k−1�� , �20�

Qk = cksk�1 + 2��k� + ��k�ck
2 + sk

2� − ��2�ck
2 + sk

2���k�R1

+ 4R2� + �R3 + R4� +
1

N
�

1
c1s1�k−1� + 4cksk��k�R1

+ 4R2� + 4�R3 + R4� −
1

N
�

1
s1

2�k−1�� . �21�

The fourth-order terms are

H4 = −
�

N
�
1234

��1+2+3+4�4
�1��	1�

† 	2�
† 	3�

† 	4�
† + 	1�	2�	3�	4��

+ �1+2−3−4��4
�2�	1�

† 	2�
† 	3�	4� + �4

�3�	1�
† 	2�

† 	3�	4��

+ �1+2+3−4�4
�4��	1�

† 	2�
† 	3�

† 	4� + 	4�
† 	3�	2�	1��� , �22�

where we have used the shorthand notation 1¯4 for mo-
menta k1¯k4, and the vertex functions �4

�i� are listed in Ap-
pendix A. These results were obtained or confirmed using a
symbolic manipulation program written in PERL.

The condition that the off-diagonal quadratic terms vanish
is

Qk = 0. �23�

In a conventional spin-wave approach, this would be imple-
mented in leading order only, giving the condition
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tanh 2
k =
2skck

ck
2 + sk

2 = −
2��k

�1 + 2��k�
. �24�

This would leave some residual off-diagonal quadratic terms,
arising from the normal-ordering of quartic operators. In a

“modified” approach,34 we demand that these terms vanish
entirely up to the order calculated, giving the modified con-
dition

tanh 2
k = −
2��k − 2��k�R1 + 4R2� + �R3 + R4� + 1

N�1
c1s1�k−1��

1 + 2���k − 2��k�R1 + 4R2� + 4�R3 + R4� − 1
N�1

s1
2�k−1���

. �25�

Self-consistent solutions for the N Eq. �25�, with the four
parameters R1¯R4 given by Eq. �18�, can easily be found by
numerical means, starting from the conventional result �24�.

A. Expansion in powers of �

As a first check on the formalism, one may calculate the
leading terms in an expansion of the energy eigenvalues in
powers of �. Solving the modified Eq. �25� self-consistently
to order �2, we find

sk = − ��k +
�2

2
�4�k

2 − �k − 1� ,

�26�

ck = 1 +
1

2
�2�k

2 ,

with the lattice sums �18�

R1 = O��4�, R2 =
�2

4
+

�3

4
+ O��4� ,

R3 = −
�

4
−

�2

8
+ O��3�, R4 = O��3� . �27�

The leading-order behavior of the vertex functions may eas-
ily be deduced from Appendix A.

Substituting in Eq. �17�, the ground-state energy per
dimer is

�0 =
W0

N
� − 3�1

4
+

�2

4
+

�3

8
� � → 0, �28�

in agreement with dimer series-expansion results previously
obtained for this model.18 One can easily show that pertur-
bation diagrams such as those in Fig. 2 do not contribute
until O��4� or higher.

The energy gap at leading order can be found from Eq.
�20�:

Ek � 1 + 2��k + 4�2 − 2�2�k
2 � → 0. �29�

Note that in linear spin-wave theory, when tanh 2
k is given
by Eq. �24� and the energy gap is given by the first line of
Eq. �20�, the energy gap is

Ek = 
1 + 4��k, �30�

which vanishes at �=1 /4, �k=−1, i.e., k= � ,�. This
marks a phase transition with critical index �=1 /2, and the
end of the dimerized phase, in this approximation.

The perturbation diagram Fig. 3�a� also contributes to the
energy gap at order �2. Note that diagram Fig. 3�a� does not
appear in the formalism of Sushkov and co-workers;29,30 the
extra terms in our formalism are needed to implement the
hardcore constraint that two triplons cannot occupy the same
site. At leading order, the contribution of this diagram is

�Ek
�3a� � − 2�2 � → 0 �31�

�see Sec. II B for further details�. This gives a total single-
particle energy

�

�

� �� �� �� � � �

��	

��	

�

�

(a) (b)

FIG. 2. Perturbation diagrams contributing to the ground-state
energy.

1 12 23 3 4 5

�

�

(4)

4

4

(4)

k k

k k

(a) (b)

FIG. 3. Perturbation diagrams contributing to the one-particle
energy.
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�k � 1 + 2��k + 2�2�1 − �k
2�, � → 0, �32�

which again agrees with series-expansion results.18

The minimum-energy gap lies at k= � ,�. If we com-
pare Eq. �32� at small momentum p= � ,�−k with the con-
tinuum dispersion relation for a free boson

�k � 
m2c4 + p2c2, �33�

we readily discover the leading behavior of the effective
triplon parameters, i.e., the triplon mass

m �
1

�
�1 − 2� + O��2�� �34�

and the “speed of light” or triplon velocity

c2 � � + O��3� �35�

in lattice units. Note that the mass diverges and the speed of
light vanishes as �→0.

B. Numerical results

Writing the Hamiltonian as

H = H0 + V , �36�

where

H0 = W0 + H2 �37�

and

V = H4, �38�

�six-particle terms being neglected� we can treat H0 as the
unperturbed Hamiltonian and V as a perturbation to obtain
the leading-order corrections to the predictions for physical
quantities outlined in Sec. II A. Numerical results for the
model have been obtained using the finite-lattice method.
The momentum sums are carried out for a fixed lattice size
L�L=N using corresponding discrete values for the mo-
mentum k, e.g.,

kx =
2n

L
, n = 1, ¯ L ,

�39�

ky =
2m

L
, m = 1, ¯ L .

Results were obtained for L up to 100.

1. Ground-state energy

The leading correction to the ground-state energy corre-
sponds to the diagram in Fig. 2�a�. Its contribution is

��0
�2a� =

− 3�2

N3 �
1234

�1+2+3+4
�4

�1��1234�
�E1 + E2 + E3 + E4�

�3�4
�1��1234�

+ �4
�1��1324� + �4

�1��1423�� . �40�

In leading order one can show that this term is O��4�,
whereas diagrams such as Fig. 2�b� are O��6� or higher. Fig-

ure 4 shows the behavior of the ground-state energy as a
function of � resulting from this modified triplon theory, as
compared with the high-order dimer series calculations of
Zheng.18 It can be seen that up to ��0.1 there is quantitative
agreement between our calculation and the series estimates,
but some discrepancy emerges at larger �.

2. One-particle spectrum

The leading correction to the one-particle spectrum corre-
sponds to the diagram in Fig. 3�a�. Its contribution is

�Ek
�3a� =

2�2

N2 �
123

�1+2+3−k
�4

�4��123k�
�Ek − E1 − E2 − E3�

�3�4
�4��123k�

+ �4
�4��321k� + �4

�4��312k�� . �41�

In leading order, this term is O��2�, as stated in Sec. II A,
while diagrams such as Fig. 3�b� are O��4� or higher.

The dispersion of the one-particle energy as a function of
momentum k at the critical point is illustrated in Fig. 5, as
estimated from two different series expansions by Zheng.18 It
can be seen that the two expansions agree well at the critical

-0.8
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-0.76

-0.75
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e
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λ

Triplet wave
Series expansion

FIG. 4. Ground-state energy per dimer as a function of �. The
solid line is the estimate from series expansions and the dashed line
is the triplet-wave estimate.

FIG. 5. �Color online� One-particle dispersion relation at the
critical point �y=1 /��, as estimated from both dimer �solid line�
and Ising �dashed line� expansions �Ref. 18�.
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point, and that the energy gap vanishes there at the Néel
point k= � ,�.

The triplet-wave and series estimates of the energy gap at
k= � ,� are compared in Fig. 6. It can be seen that the
inclusion of the corrections from diagram Fig. 3�a� improves
the agreement with series substantially, bringing quantitative
agreement out to ��0.15. Beyond that, the triplet-wave es-
timates begin to diverge, as higher-order contributions be-
come more important. The self-consistent Born approach of
Sushkov and co-workers29,30 is more accurate than our ap-
proach at large �, but neither approach can compete with
series methods for accuracy. Our object here mainly is to
understand the qualitative behavior of the model.

3. Two-triplon bound states

It has been found in previous studies of dimerized antifer-
romagnetic systems in one dimension29,35 that the quartic
terms in the Hamiltonian lead to attraction between two el-
ementary triplons, giving rise to S=0 and S=1 bound states.
We look for solutions of the two-body Schrödinger equation

H	�� = E	�� . �42�

The two-body wave functions 	��K�� can be written as
follows: singlet sector �S=0�,

	�S�K�� =
1

6

�
q,�

�S�K,q�	K/2+q,�
† 	K/2−q,�

† 	0� , �43�

where K is the center-of-mass momentum and q the relative
momentum of the two particles, and the scalar wave function
is symmetric

�S�K,− q� = �S�K,q� , �44�

and triplet sector �S=1�,

	��
T�K�� =

1

2 �
q,�,�

�����T�K,q�	K/2+q,�
† 	K/2−q,�

† 	0� , �45�

with the wave-function antisymmetric

�T�K,− q� = − �T�K,q� . �46�

We will not write out the quintuplet states explicitly.
From Eq. �42� one can readily derive the integral Bethe-

Salpeter equation satisfied by the bound-state wave functions

�ES,T,Q�K� − EK/2+q − EK/2−q��S,T,Q�K,q�

=
1

N
�
p

MS,T,Q�K,q,p��S,T,Q�K,p� �47�

in each sector S, T, or Q.
In leading order, the scattering amplitudes MS,T,Q�K ,q ,p�

are simply given by the four-particle vertex from the pertur-
bation operator V, Fig. 7�a�. Hence, we find for the different
sectors:

MS�K,q,p� = − 2��3�4
�2��K/2 + q,K/2 − q,K/2 + p,K/2 − p�

+ �4
�3�+�K/2 + q,K/2 − q,K/2 + p,K/2 − p�� ,

�48�

MT�K,q,p� = − 2��4
�3�−�K/2 + q,K/2 − q,K/2 + p,K/2 − p� ,

�49�

MQ�K,q,p� = − 2��4
�3�+�K/2 + q,K/2 − q,K/2 + p,K/2 − p� ,

�50�

where the wave function is once again symmetric in the
quintuplet sector

�Q�K,− q� = �Q�K,q� , �51�

and the symmetric and antisymmetric pieces of the vertex
function �4

�3� are defined as

0

0.5

1

1.5

2
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FIG. 6. Energy gap at k= � ,� as a function of �. The solid
squares show the series estimates �Ref. 18� and the open squares are
results from Shevchenko and Sushkov �Ref. 29�, while the stars
show the improved triplet-wave results. The contributions from
two-triplon and four-triplon terms are shown separately.
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�4
�3�� �

1

2
��4

�3��1234� � �4
�3��1243�� . �52�

At leading order in �, we find

MS�K,q,p� � − 2���p+q + �p−q + �K/2+p + �K/2+q + �K/2−p

+ �K/2−q� , �53�

MT�K,q,p� � ���q+p − �q−p� , �54�

and

MQ�K,q,p� � ���q+p + �q−p − 2��K/2+p + �K/2+q + �K/2−p

+ �K/2−q�� . �55�

Then restricting ourselves to the particular momentum
K= � ,�, simple solutions to the Bethe-Salpeter Eq. �47�
can be found:

�S,Q�K,q� � �cos qx � cos qy� ,

�T�K,q� � �sin qx � sin qy� , �56�

corresponding to nearest-neighbor pairs of triplon excita-
tions, with energies

ES�K� � 2 − � ,

ET�K� � 2 − �/2,
�57�

EQ�K� � 2 + �/2.

Since the two-particle continuum is confined strictly to
Econt=2 at this order and this momentum, we see that the
singlet and triplet states are bound states lying below the
continuum, while the quintuplet states are antibound states
lying above the continuum. There are two degenerate states
in each case, corresponding to the � signs in Eq. �56�, or to
the two possible axes x and y of the nearest-neighbor pairs.
At higher orders these states may mix and separate.

These results are easily understood in a qualitative fash-
ion. For a Sz=2 excitation, for example, the spins on the
nearest-neighbor sites are necessarily aligned parallel, giving
rise to a repulsive interaction; whereas for S=0 or 1 the
neighboring spins can be aligned either parallel or antiparal-
lel, allowing the possibility of an attractive interaction.

Solving the wave Eq. �47� with vertex functions given by
the leading-order approximations �48�–�50�, we obtain nu-
merical solutions for the two-particle spectrum, as illustrated
in Fig. 8, at a coupling �=0.1 near momentum k= � ,�. It
can be seen that the pairs of degenerate S=0 and S=2 bound/
antibound states split as one moves away from � ,�, and
all states eventually merge into the continuum.

III. SERIES EXPANSIONS

We have performed a standard dimer series expansion2,36

for this model, where the Hamiltonian is written as

H = H0 + �V , �58�

H0 = �
i

S1i · S2i, �59�

V = �
l=1,2

�
�ij�

Sli · Slj, �60�

and perturbation series are generated for the quantities of
interest in powers of � using linked-cluster methods. Details
of the linked-cluster approach are reviewed in Ref. 2. In very
brief summary, the ground-state energy per dimer can be
written as a sum of the irreducible contributions �cumulants�
coming from every connected cluster of dimers which can be
embedded on the lattice, the order of the contributions rising
with the size of the cluster. The one-particle energies can be
written in terms of irreducible transition amplitudes �1�i , j�
of the effective Hamiltonian,19 which consist of a sum over
all linked clusters connected to i and j, the initial and final
positions of the one-particle excitations. Finally, the two-
particle energies can be written in terms of irreducible tran-
sition amplitudes �2�i , j ;k , l� of the two-particle effective
Hamiltonian,3 consisting of a sum over all linked clusters
connected to �i , j� and �k , l�, the initial and final positions of
the two-particle excitations. The amplitudes �2 are then em-
ployed in the two-particle Schrödinger or Bethe-Salpeter
equation to calculate the energy as a function of momentum.
We use a finite-lattice approach2 for this purpose, where the
Schrödinger equation is solved on a finite lattice in position
space, of sufficient size to ensure convergence of the results.

Once a perturbation series in � has been calculated for a
given quantity, it can be extrapolated to finite � using Padé
approximants or integrated differential approximants.

Zheng18 has previously calculated series for the ground-
state energy and one-particle excitations. These results have
already been compared with the triplet-wave predictions in
Figs. 4–6.

A. Structure factors

Figures 9 and 10 show some series results for structure
factors, which have not been shown before. Figure 9 shows
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FIG. 8. Dispersion relations for the two-particle bound/
antibound states at �=0.1, along symmetry lines in the Brillouin
zone, as calculated from the triplet-wave expansion. The two-
particle continuum region is shaded.
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the total static transverse structure factor S�k��S+−�k� as a
function of k at various couplings �=J1 /J2, where S+−�k� is
the Fourier transform of the correlation function

S+−�k� =
1

N
�
i,j

eik·�ri−rj��Sj
+Si

−�0. �61�

All results are for kz=, probing intermediate states anti-
symmetric between the planes, and we only refer to k
= �kx ,ky�, hereafter.

The dominant feature is a large peak at the Néel point k
= � ,�, which appears to become divergent as �→�c. This
behavior is qualitatively very similar to that seen in the al-
ternating Heisenberg chain �AHC� in one dimension.37 Fig-
ure 10 shows the ratio of the one-particle structure factor
S1p�k� to the total S�k� as a function of k. The one-particle
contribution generally remains the dominant part of the total,
particularly near the Néel point. This behavior is again remi-
niscent of the AHC.37

Further information may be obtained from the series for
S�k� and S1p�k� at the Néel momentum � ,�, which are
given in Table I. A Dlog Padé analysis of these series, biased
at �c=0.3942, shows both S�k� and S1p�k� diverging as �

→�c with exponents −0.68�1� and −0.69�1�, respectively.
The series for the ratio S1p /S show no sign of a singularity at
this point, remaining almost constant, within 2% of unity at
all couplings. This behavior is quite different from the AHC
case,38 where the ratio vanishes logarithmically at the critical
point.

These results should be compared with theoretical expec-
tations. From scaling theory �see Appendix B�, the one-
particle structure factor in the vicinity of the critical point
S1p� ,� should scale like ��c−����−1�� at the critical �Néel�
momentum. For the total structure factor at this point, scaling
theory gives exactly the same exponent �see Appendix B�.
We expect this transition to belong to the universality class
of the O�3� model in three dimensions, which has critical
exponents39 �=0.707�4� and �=0.036�3�, hence we expect
��−1��=−0.682�5�, which is quite compatible with the nu-
merical estimates obtained above.

How does S1p behave at the critical coupling away from
the Néel momentum? In the transverse Ising model,40 it was
found that the one-particle residue function A�k� �see Appen-
dix B� vanishes like ��c−���� at all momenta, with a small
exponent ��= +0.025�3�, so that S1p vanishes in the same

FIG. 10. �Color online� The ratio S1p�k� /S�k� of the one-particle
static structure factor to the total static structure factor as a function
of k for various couplings �=J1 /J2.

FIG. 9. �Color online� The total static structure factor S�k� as a
function of k for various couplings �=J1 /J2.

TABLE I. Series coefficients of �N in the expansions for the one-particle structure factor S1p and inte-
grated structure factor S at momenta k= � ,� and �0,0�.

N S1p� ,� S� ,� S1p�0,0� S�0,0�

0 1.00000000000000D+00 1.00000000000000D+00 1.00000000000000D+00 1.00000000000000D+00

1 2.00000000000000D+00 2.00000000000000D+00 −2.00000000000000D+00 −2.00000000000000D+00

2 5.00000000000000D+00 5.43750000000000D+00 3.00000000000000D+00 3.43750000000000D+00

3 1.20000000000000D+01 1.24375000000000D+01 −7.00000000000000D+00 −6.56250000000000D+00

4 2.60000000000000D+01 2.73476562500000D+01 1.42500000000000D+01 1.48476562500000D+01

5 6.19609375000000D+01 6.16328125000000D+01 −3.08359375000000D+01 −3.09609375000000D+01

6 1.45859863281250D+02 1.46245605468750D+02 6.65551757812500D+01 6.68159179687500D+01

7 3.60063964843752D+02 3.57834899902344D+02 −1.51234863281252D+02 −1.51278381347656D+02

8 8.71365653991730D+02 8.80394332885743D+02 3.23292167663603D+02 3.28300582885742D+02

9 2.13146787007666D+03 2.15030324554441D+03 −7.25282606760795D+02 −7.27275304158507D+02
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fashion as �→�c. Does the same thing happen in the present
case? This is by no means obvious in Fig. 10, which shows
the ratio S1p /S dropping slowly as � increases, but nowhere
near zero.

To pursue this question further, we have studied the series
at k= �0,0�, also given in Table I. A Dlog Padé analysis of
these series reveals a dominant singularity at �=−0.43�1�,
with exponent around −0.65�3� in both cases. This will cor-
respond to another critical point of the model where the spins
order ferromagnetically in the planes and antiferromagneti-
cally between them. At positive �, there is no sign of a pole
around �=0.4. The ratio S1p /S decreases smoothly to around
0.80 at the critical coupling and shows no sign of vanishing
there. Thus, it appears that in this case the renormalized resi-
due function does not vanish at �c, except at the Néel mo-
mentum.

B. Two-particle excitations

We have generalized the computer codes which were pre-
viously used to calculate two-particle perturbation series for

one-dimensional models3 to cover the two-dimensional case.
Figure 11 shows the dispersion diagram estimated from the
perturbation series for two-particle states at �=0.1. We have
zoomed in on the region where the bound states occur. It can
be seen that S=0 singlet and S=1 triplet bound states emerge
below the continuum near k= � ,� and S=2 quintuplet an-
tibound states appear above the continuum, as predicted by
the triplet-wave theory. The S=0 and S=2 states are doubly
degenerate at k= � ,�. All states merge with the continuum
at some finite momentum point k, and for the most part they
appear to merge at a tangent, as in the one-dimensional case3

�although this might be an artifact of the finite-lattice meth-
ods of calculation used�. The results look very similar to the
triplet-wave predictions shown in Fig. 8.

Figure 12 shows the behavior of the binding energies at
k= � ,� as functions of �, as estimated from Padé approxi-
mants to the series given in Table II. The degenerate pair of
singlet bound states is the lowest over most of the range, but
merges back into the continuum somewhat before the critical
point. One of the triplet states disappears into the continuum
quite early, but the other appears to disappear only at the
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FIG. 11. Series estimates of the energies of two-particle states at
fixed �=0.1 along symmetry lines in the Brillouin zone.
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TABLE II. Series coefficients of �N for the binding energies in the channels S=0,1 and antibinding
energy �S=2�. The S=0 and S=2 states are doubly degenerate.

N S=0 S=1 S=1 S=2

0 0.00000000000000D+00 0.00000000000000D+00 0.00000000000000D+00 0.00000000000000D+00

1 1.00000000000000D+00 5.00000000000000D−01 5.00000000000000D−01 5.00000000000000D−00

2 −2.25000000000000D+00 −2.12500000000000D+00 −3.12500000000000D+00 −1.37500000000000D+00

3 −1.93750000000000D+00 1.31250000000000D+00 −2.93750000000000D+00 1.87500000000000D−01

4 −3.07812500000000D+00 2.97656250000002D+00 −2.77343749999998D+00 2.27343750000000D+00

5 3.47656250000001D−01 1.07812500000003D+00 3.06250000000002D+00 2.36718750000000D+00

6 −9.69726562500059D−01 −1.00527343749999D+01 8.35742187500014D+00 −8.13476562500000D+00

7 3.51385498046887D+00 7.44207763671879D+00 4.07301635742189D+01 −7.26873779296875D+00

8 7.92327880859462D+00 1.69468475341798D+02 −3.48072814941411D+00
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critical point. For the AHC, the binding energies also van-
ished at the critical end point of the dimerized phase. The
pair of antibound quintuplet states, on the other hand, ap-
pears to remain above the continuum even at the critical
point from our estimates.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have used a modified triplet-wave theory
and dimer series expansions to study the Heisenberg bilayer
system in the dimerized phase. As found in earlier
papers,17,18,20,23,24 the model displays a quantum phase tran-
sition from the dimerized phase to a Néel phase at a coupling
ratio determined most accurately by Wang et al.23 as �c
=0.396 51�2�, with critical indices in good agreement with
the predicted values from the classical O�3� nonlinear sigma
model in three dimensions.

Our modified triplet-wave approach is found to give good
results at small couplings �, but toward the critical region the
self-consistent Born-approximation approach of Sushkov and
co-workers29,30 which includes some important higher-order
terms, gives much better results. The triplet-wave approach
predicts, as for other dimerized systems, two-particle bound
states in the S=0 and S=1 channels, where an antiferromag-
netic alignment of spins can give rise to an attractive force,
and antibound states in the S=2 channel, where the spin
alignment is necessarily ferromagnetic and repulsive.

Our series calculations focused upon two major features:
the critical behavior of the static transverse structure factor
and the spectrum of two-particle bound states in the model.
The integrated structure factor S�k� and the single-particle
component S1p�k� were both found to diverge at the critical
point for momentum k= � ,�, with exponents agreeing
well with the predicted value ��−1��=−0.68. The ratio
S1p /S remains finite throughout the region, even at the criti-
cal coupling �c. This is in contrast to the case of the alter-
nating Heisenberg chain, where the one-particle component
vanishes logarithmically at the critical point.37,38 In fact, here
the one-particle state dominates everywhere �S1p /S�80%�.

In the two-particle sector, a pair of bound states is found
in the S=0 and S=1 channels near momentum k= � ,�, as
predicted, and a pair of antibound states in the S=2 channel:
the pairing being a two-dimensional effect. The singlet S
=0 states have the lowest energies at small couplings, but
both S=0 states and one S=1 state merge back into the con-
tinuum as � increases, leaving only one remaining triplet
bound state, which appears to merge with the continuum
right at �=�c. In the S=2 channel, both antibound states
appear to remain above the two-particle continuum at all
couplings ��0.

As one moves away from k= � ,�, the bound/antibound
states eventually merge into the continuum also. They appear
to merge with the continuum at a tangent, much as in the
one-dimensional case.37

In future work, we hope to perform similar calculations
for other two-dimensional models, such as the simple
Heisenberg model on the square lattice and the Shastry-
Sutherland model, which has already been studied by Knetter
and co-workers4,5 and where the two-particle states display
some intriguing behavior.
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APPENDIX A

The vertex functions �4
�i� are:

�4
�1��1234� =

1

4
���1 + �2��c1c2 + c1s2 + s1c2 + s1s2��c3s4

+ s3c4� + ��3 + �4��s1c2 + c1s2��c3c4 + c3s4

+ s3c4 + s3s4� + �1+3�c1s3 − s1c3��c2s4 − s2c4�

+ �1+4�c1s4 − s1c4��c2s3 − s2c3�� , �62�

�4
�2��1234� =

1

2
���1 + �2��s3c4 + c3s4��c1c2 + c1s2 + s1c2

+ s1s2� + ��3 + �4��c1s2 + s1c2��c3c4 + c3s4

+ s3c4 + s3s4� + �1−4�c1c4 − s1s4��c2c3 − s2s3�

+ �1−3�c1c3 − s1s3��c2c4 − s2s4�� , �63�

�4
�3��1234� = ��1 + �3��c1c3 + c1s3 + s1c3 + s1s3��c2c4 + s2s4�

+ ��2 + �4��c2c4 + c2s4 + s2c4 + s2s4��c1c3

+ s1s3� + �1−4�c1c4 − s1s4��s2s3 − c2c3�

+ �1+2�c1s2 − s1c2��s3c4 − c3s4� , �64�

�4
�4��1234� = ��1 + �2��c1c2 + c1s2 + s1c2 + s1s2��c3c4 + s3s4�

+ ��3 + �4��c1s2 + s1c2��c3c4 + c3s4 + s3c4

+ s3s4� + �1−4�c1c4 − s1s4��c2s3 − s2c3�

+ �1+3�c2c4 − s2s4��c1s3 − s1c3� , �65�

We have “symmetrized” these expressions with respect to
their indices using momentum conservation.

APPENDIX B: SCALING THEORY FOR STRUCTURE
FACTORS

Let us briefly review scaling theory in the vicinity of a
quantum critical point for quantum spin models on a lattice.
First, the integrated or static structure factor2,41

S���k� =
1

N
�
i,j

eik·�ri−rj��Sj
�Si

��0 �66�

is just the Fourier transform of the spin-correlation function
in the ground state, where Sj

� represents the � component of
the spin operator at site j. In the continuum approximation
near the critical point, this reduces to

S���k� =� dnreik·r�S��r�S��0��0, �67�

where n is the number of spatial dimensions.
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The oscillating factor exp�ik ·r� will kill off the contribu-
tions from large distances unless it is compensated by a cor-
responding oscillation exp�−ik0 ·r� in the correlation func-
tion. Then we can write

S���k� =� dnr eiq·rg�r� , �68�

where q=k−k0 and g�r� is a smooth function. Scaling
theory42 then tells us that in the vicinity of the critical point

g�r� � r−�d−2+��f�r/�� , �69�

where d=n+1 is the number of space-time dimensions and �
is the correlation length. Thus when k=k0, the “critical mo-
mentum,” we have

S���k0� =� dd−1r r−�d−2+��f�r/��

� �1−��
0

�

dd−1zz−�d−2+��f�z� , �70�

where z=r /�. As the coupling �→�c, corresponding to a
quantum phase transition, we expect

� � ��c − ��−�, �71�

and hence

S���k0� � ��c − ��−�1−���, �72�

as noted in the text.
For q small but nonzero 	q	�1 /� we have

S���k� � �1−��
0

�

dd−1z z−�d−2+��eiqz� cos�
�f�z�

� q−�1−���
0

�

dd−1z� z�−�d−2+��eiz� cos�
�f��z��

�73�

so that at the critical coupling we expect S���k� to scale like
q−�1−�� at small q.

For the one-particle structure factor, we may paraphrase
Sachdev’s argument43 as follows: Assuming relativistic in-
variance of the effective-field theory, which applies to many
though not all models, the dynamic susceptibility in the vi-
cinity of a quasiparticle pole is expected to have the form

��k,�� =
A

c2k2 + �2 − �� + i��2 + ¯ , �74�

where � is a positive infinitesimal, c the quasiparticle veloc-
ity, � is the quasiparticle energy gap, and A is the “quasipar-
ticle residue.” Then the dynamic structure factor is

S�k,�� =
1


Im��k,��� . �75�

Let

E�k� = 
c2k2 + �2, �76�

then from Eqs. �74�–�76� we can write the dynamic structure
factor for the one-particle state

S1p�k,�� =
A�k�

2E�k�
��� − E�k�� , �77�

and hence the static structure factor

S1p�k� = �
−�

�

d�S1p�k,�� =
A�k�

2E�k�
, �78�

where A�k� is the residue function.
From renormalization-group theory,42 the scaling dimen-

sions of these quantities are expected to be40 dim���=−2
+� and dim�A�=�, or in other words we expect near the
critical point

A�k0� � ��c − ����,
�79�

E�k0� � ��c − ���,

and hence

S1p�k0� � ��c − ��−�1−���, �80�

just as for the total structure factor. This is the result quoted
in the text.
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