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Motivated by numerous experiments on the magnetization reversal by electric current and magnetic-field
pulses, we performed a numerical simulation within a macrospin model with periodic field and spin-polarized
current, also taking into account the anisotropy of damping. It is shown that the magnetic dynamics is strongly
affected by the variation of frequency and shape of the pulses. In particular, single rectangular pulses of the
current can be used to achieve faster magnetization reversal, whereas harmonic alternating magnetic fields lead
to magnetization precessional modes with potential technological applications. The use of rectangular field
pulses allows generation of several important oscillation modes at lower fields, although the resulting magne-
tization dynamics turned out to be rather noisy.
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I. INTRODUCTION

The efficient use of the quickly developing technology of
nonvolatile magnetic memories �MRAM� requires a detailed
understanding of the magnetization dynamics in nanometer-
thick magnetic films. One of the most important problems of
MRAM technological applications is related to the efficient
control of the magnetization dynamics to achieve the fastest
magnetization reversal under relatively small fields and cur-
rents. At the same time, special attention is paid to the an-
ticipated spin valve applications for the generation of mag-
netization oscillations of gigahertz frequencies.1–6

The simplest spin valve, revealing the giant magnetoresis-
tance �GMR� effect, is composed of two magnetic layers
separated by a nonmagnetic spacer.7 One of the magnetic
layers is thicker than the other one and acts as a polarizer of
the current, orienting the spins of the electrons in the same
direction. The other magnetic layer, which is very sensitive
to the applied field and to the spin torque rendered by the
incoming flux of spin-polarized carriers, is called “analyzer.”
In the minimal model, it can be treated as a Stoner-Wohlfarth
particle8 and is usually described in the framework of the
macrospin approximation9,10 of the Landau-Lifshitz-Gilbert
�LLG� theory.

There are several well-known limitations of the mac-
rospin approximation. Describing the magnetic particle as a
macroscopic magnetic moment, one assumes that the magni-
tude of this moment is constant. It should be noted that this
condition does not necessarily require homogeneity of the
magnetization. However, it is obvious that the macrospin
model describes correctly the dynamics of a single-domain
magnetic particle. The other assumption concerns the effect
of a spin-polarized current acting on the magnetic moment in
the frame of the macrospin model. This current is included in
the LLG model of magnetic dynamics in a way that its trans-
verse part is completely absorbed within the magnetic par-

ticle. It means that, in the general case, it may differ from the
spin current in a polarizer and has to be found from the
equations describing the spin transport in the multilayer sys-
tem. Nevertheless, it was shown that the LLG model is ca-
pable of displaying characteristic types of the magnetization
motion observed experimentally, such as magnetization
reversal,8,11 relaxation of the magnetization vector to an in-
termediate canted state,12 and two types of steady precession
taking place roughly in the easy magnetization plane �IPP,
in-plane precession� and outside of the latter �OPP, out-of-
plane precession�.2,9,10

The question of prime concern for the design of magnetic
memory chips is connected with efficient and quick magne-
tization reversal. In the general case, this task implies device
optimization over the magnitude and mutual orientation of
external magnetic field and spin current polarization vector.
The experimental studies1–3 revealed that the application of a
constant magnetic field or the injection of a dc spin current
allows to obtain magnetization reversal times within
nanoseconds.13–15 Such high values are caused by the mag-
netization “ringing” phenomenon, when the macrospin per-
forms a small-angle precession during its relaxation toward
the corresponding stationary state. Ringing can occur both in
the vicinity of the easy plane16 or cover the entire unitary
sphere.17,18 Use of ac currents19 and fields allows to suppress
the ringing in different degrees, thus achieving magnetization
switching on the timescale of dozens of picoseconds.20–22

The macrospin switching along the shortest trajectory, so-
called “ballistic23 magnetization reversal” �BMR�, in the
ideal case takes place along a meridian of the unitary sphere.
To force a macrospin doing this type of switching, one
should use a properly timed current “chirp” to trigger the
desired wide-angle precession.24,25 To achieve the best re-
sults, the series of current pulses should be dynamically
tuned with the oscillation frequency of the macrospin.26,27 If
the reversal is achieved by means of a magnetic field, the

PHYSICAL REVIEW B 78, 054417 �2008�

1098-0121/2008/78�5�/054417�15� ©2008 The American Physical Society054417-1

http://dx.doi.org/10.1103/PhysRevB.78.054417


latter should be switched off at the moment when the sign of
a magnetization component changes.28 This method enables
to perform the reversal by a single pulse, but requires high
timing precision, since otherwise the moment may flip back
to the initial state.29 Moreover, the use of alternating mag-
netic fields can also decrease significantly the critical field
magnitude triggering the macrospin reversal, bringing it well
below the magnitude of the magnetic anisotropy.30–32

In the case of an ac magnetic field applied along the easy
axis, the reported reversal times remain at the nanosecond
scale,33 while a faster switching �hundreds of picoseconds�
was confirmed experimentally for the case when the field
pulse is applied in the easy magnetization plane at a certain
angle,34 sometimes almost perpendicular20,23 to the easy axis.
Another alternative of exciting magnetization precession
without sophisticated field-angle tuning consists of the appli-
cation of a circularly35,36 or linearly polarized14 field. At the
same time, a proper frequency choice for the external driving
force may cause synchronization of the magnetic oscillations
with a microwave,35,37 opening interesting application per-
spectives for GHz-frequency generators of modulated signal.

Therefore, the task of reaching the fastest magnetization
reversal presents a very complicated problem requiring mul-
tidimensional optimization in the space of numerous control
parameters. However, the resulting methodology should be
suitable for practical realization, which, in our opinion, may
address the experimentally simpler way to attain both the
magnetization reversal and the synchronized oscillations
with the help of the oscillating fields and/or currents, prefer-
ably without precise tuning of the signals or tracing the cur-
rent polarization with respect to the magnetization. At the
same time, additional control can be introduced via changing
the driving force frequency and by assigning different time
profiles for its pulses. First of all, the detailed investigations
should be performed for the case of collinear field and cur-
rent polarization, i.e., the commonly used configuration in
technological devices such as hard disk read/write heads,
where bits 0 and 1 correspond to opposite magnetization
directions parallel to the easy axis.38 Because of the com-
plexity of the synchronization due to various shapes of cur-
rent and field pulses, the behavior of the system can be most
efficiently studied numerically. Our results confirm the pos-
sibility of magnetization reversal within hundreds of picosec-
onds in a wide range of the control parameters, weakening
the requirements for their precise fine tuning. We found vari-
ous types of the synchronized motion yielding phase por-
traits that are impossible to obtain under a constant field. The
registered oscillation modes have characteristics that may be
of interest for potential applications.

The paper is organized as follows: In Sec. II we discuss
the model and calculation details. Special attention is paid to
account for the magnetization damping, which is responsible
for deceleration of the magnetization movement due to the
dissipation of the macrospin energy. Section III presents the
results concerning the influence of an alternating spin current
on the macrospin dynamics compared with the constant ap-
plied field/current case. Particular emphasis is placed on the
magnetization reversal phenomena triggered by the indi-
vidual or multiple current pulses of varying duration. Section
IV discusses the behavior of a macrospin subjected to a time-

varying magnetic field, also characterized by different pulse
profiles and frequencies. Section V presents the main conclu-
sions of the paper.

II. THEORETICAL MODEL AND CALCULATION
DETAILS

The magnetization dynamics of a Stoner-Wohlfarth par-
ticle is usually described by the Landau-Lifshitz-Gilbert
equation �see, e.g., Ref. 4�,

dM

dt
= − ��M � H� +

�

Ms
�M � �M � J�� +

�

Ms
�M �

dM

dt
� ,

�1�

where M is a macrospin magnetization vector, H is the ef-
fective field �including the anisotropy and the demagnetizing
field HD= �0,0 ,−Mz�, as well as the external applied mag-
netic field HE, which make the respective contributions to
the energy density of the particle E�M ,H�=K�1
− �Mx /Ms�2�+ 1

2�0M ·HD−�0M ·HE�; J denotes the spin-
polarization vector of the injected current, �=2.21
�105 �sA /m�−1 is the electron gyromagnetic ratio, and �
is a phenomenological damping constant introduced by
Gilbert.39 As LLG Eq. �1� preserves the magnitude of the
particle magnetization �M�=Ms, it can be alternatively re-
written for the spherical coordinate system in terms of angles
� and � defining the orientation of the normalized magneti-
zation vector m=M /Ms:

38

��

��
= − sin ���A − B�,

��

��
= �B + A , �2�

where

A = Z���cos � + h���, B =
1

2
hp sin 2� + hs��� ,

Z��� � �1 + hp cos2 ��, � = t�Hk/�1 + �2� . �3�

Here hp=Kp /K and hs=	
J /4edSK are, respectively, the di-
mensionless easy-plane anisotropy and the spin current de-
pending on the easy-axis and easy-plane anisotropy constants
K and Kp; J /S is the current density, 
 is the polarization
degree of the carriers, and finally, d and S represent the
thickness and area of the magnetic layer, respectively. The
applied field normalized to the uniaxial anisotropy Hk
=2K /Ms is characterized by the dimensionless parameter h
and assumed collinear with the easy magnetization axis z. In
our calculations we use parameters characteristic of thin co-
balt layers and used in the Co/Cu/Co spin valves as reported
in the experiment:2 �0=0.014, d=3 nm, S=130�70 nm2,
Kp=10 kOe, Hk=500 Oe �hp=20�. The time constant is �0
= �1+�2� / ��Hk�=110 ps.

Equation �2� was solved using the Runge-Kutta method of
the fourth order with the integration step �int=1 ps. For each
phase portrait 35000 points of ���� and ���� were calculated,
reconstructing a three-dimensional trajectory of the magneti-
zation vector tip according to the formulas

mx = sin � cos � ,
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my = sin � sin � ,

mz = cos � . �4�

The stationary state of the system is characterized by four
equilibrium magnetic configurations, including m= 	0,0 ,
+1
 and m= 	0,0 ,−1
.38 Therefore, the initial values of the
angular variables were chosen in the vicinity of either of
these points ��0=0, �0=0.01� or �0=0.99�, respectively�,
which allows observation of hysteretic phenomena.9 It was
shown that in the case considered the variation of initial
value of the angle �0 does not influence the dynamics of the
system in a qualitative way.

Numerous debates in the current literature address the
question of the appropriateness of using a constant Gilbert
damping39 to describe the magnetic dynamics. In general, the
damping is related to the macrospin energy transfer to spin
waves, lattice vibrations, etc. As both acceleration and decel-
eration of the magnetic motion are caused by an imbalance
between the driving and damping forces, one may assume
that the damping has a viscous nature, i.e., is proportional to
the rate of magnetization variation.39 For a more realistic
multidomain structure one should take into account possible
variations of the shape and size of the domains, which makes
� vary within the particle. Even in the macrospin case, when
all the subparticles comprising the magnetic body behave as
a single one, general considerations require the damping co-
efficient to depend on internal and external parameters of the
system. Several possible cases of such dependences were
already discussed in the literature. In particular, Katsura et
al.40 showed that � changes linearly with the applied voltage
in a magnetic junction. Accounting for the angular depen-
dence of Gilbert damping coefficient on the vertical angle �,
Kim et al.41 demonstrated that the damping coefficient can
be twice as large as �0 introduced by Gilbert for Py/Cu and
Co/Cu interfaces. Other approaches use a dry-friction dissi-
pation model,33 in which the damping is expressed in terms
of the scattering matrix42 that can be calculated from first
principles. The studies of the ferromagnetic resonance43 in
the range of frequencies from 1 to 225 GHz allowed separa-
tion of the viscous damping component from the dissipation
caused by two-magnon interactions dominating in Fe-V
sandwiches. This approach requires the inclusion of the
Bloch-Bloembergen spin relaxation processes thus allowing
to account for the magnetization precession energy scattering
and resulting in a variable length of the magnetization vector.
The influence of a spin-lattice interaction on the magnetiza-
tion damping was considered in Ref. 44. Further, it was
shown that both the spin pumping and the two-magnon scat-
tering are important for the functioning of devices based on
thin magnetic films.42,43,45 It was also suggested that in the
general case the magnetization damping should take into ac-
count local effects,46 tracking the local magnetization history
and thus becoming both time and coordinate dependent,
which complicates the phenomenological description and the
adequate models of high-frequency devices, especially at
short length scales.45

Here we employ the approach proposed by Tiberkevich
and Slavin,47 who aimed to explain an abrupt jump of micro-

wave frequency as a function of spin current observed in spin
valves experiments. They suggested to consider the case
when the isotropic energy dissipation for a macrospin de-
pends only on its dynamical characteristics and preserve the
length of the magnetization vector. Thus, the generalized
magnetic torque T can be written in the form47

T =
����
Ms

�M �
dM

dt
� + �����

dM

dt
+ �Ms�����M . �5�

In this formula, the effect of �� will be a renormalization of
the gyromagnetic ratio, and for small damping it could be
neglected; �� does not preserve the length of the magnetiza-
tion vector and must be set equal to zero. Therefore, we
consider only the first term in Eq. �5�, which is structurally
similar to Gilbert damping, but includes the information on
local magnetization dynamics because, as proposed by
Tiberkevich and Slavin, it depends on the dimensionless
variable � proportional to �dM /dt�2 with a corresponding
normalization coefficient. In our case,

�dM

dt
�2

= Ms
2�� ��

�t
�2

+ sin2 �� ��

�t
�2� , �6�

so that using �� /�� and �� /�� from Eq. �2� and the reduced
time variable � defined in Eq. �3�, one will obtain

�dM

dt
�2

=
�2Hk

2Ms
2

�1 + �0
2�2 �1 + �2��A2 + B2�sin2�



�2Hk

2Ms
2

�1 + �0
2�

�A2 + B2�sin2 � . �7�

Here the relation 1+�0
2
1+�2 was used because the ex-

pected corrections to the damping coefficient should be small
with respect to the constant damping coefficient �0. There-
fore, similarly to Ref. 47, the expression for � can be written
as

� =
�0

2�1 + �0
2�

�2Hk
2Ms

2 �dM

dt
�2

= �0
2�A2 + B2�sin2 � , �8�

where �0
2 was introduced in the nominator to make �
1,

enabling the Taylor expansion of the damping coefficient

� = �0�1 + q1� + q2�2 + q3�3. . .� �9�

with the expansion constants qi.
As follows from Eq. �8�, the variable � �and consequently

�� will depend on the spherical angles �, �, the incident spin
current hs, the applied magnetic field h, and the magnetiza-
tion anisotropy Hk. To determine the expansion coefficients
qi, we made numerical estimations showing that the strongest
influence on � is caused by the applied field h, which was
assumed to be in the range h=0 to 30. The maximum values
reached by � suggested the expansion coefficients q1,2�0.5;
higher-order terms in Eq. �9� were neglected. In this way, the
contributions of the first two terms into the value of � ap-
peared to be close to 10% and 2%, respectively, which agrees
well with the expectation that in a Taylor expansion the in-
fluence of higher-order terms is progressively smaller.48

The characteristic angular distributions of the damping
coefficient for different injected spin current hs and applied
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magnetic field h are shown in Fig. 1. As can be seen from
this figure, the distribution of � is nonlinear and varies sig-
nificantly with the applied field. Larger fields increase the
rate of magnetic energy dissipation in certain areas of the
plane �mz=cos � ,��. In particular, for zero field and current,
the distribution of � forms faint “rings” around the points
�=0, � and �=� /2 �Fig. 1�a��, where the values of the
damping coefficient are slightly elevated �
1.05��0�, while
outside them �=�0. Hence, the phase trajectory describing
the magnetization dynamics of the macrospin may not “feel”
the damping changes if it does not enter into such areas �see
OPP cycle, Fig. 1�b�� or on the contrary, can experience a
higher energy dissipation rate in certain parts of the trajec-
tory �see IPP cycle, Fig. 1�c��. For larger applied fields, the
damping variation becomes more significant, creating the
whole “band” of high damping in the upper hemisphere �Fig.
1�d��. Such a continuous area with higher dissipation level
will make it more energetically beneficial for the phase tra-
jectory to be located entirely in the areas of low damping.

It is worth mentioning that under the considered condi-
tions the action of the high-dissipation “barrier” was not
strong enough to keep the magnetization locked in the upper
hemisphere even if one sets the initial orientation of the mac-
rospin in the vicinity of the upper pole mz
 +1. Such lock-
ing would be beneficial due to the introduction of the
narrow-angle in-plane precession cycle, attainable in the vast
area of the �h ,hs� phase diagram as reported in Ref. 47.
However, to reproduce the latter results we needed to in-
crease both q1 and q2 significantly so that the ratio � /�0 will
grow far beyond the acceptable range �
2÷10�, jeopardiz-
ing the validity of the expansion �9�.

To study the action of the alternating fields and currents,
we have used four different types of pulses �Fig. 2� described
by the following time dependencies:

QH�t� = Q sin�H�2�fQt −
�

2
��2�fQt −

�

2
� +

�

2
� ,

QS�t� = Q sgn�sin�2�fQt�� ,

QU�t� = 1
2Q	sgn�sin�2�fQt�� + 1
 ,

Q1�t� = QH�� − 2�fQt� , �10�

where Q=h ,hs and H�x� is the Heaviside step function; the
superscripts refer to the harmonic pulses �H�, signed �S�,
unsigned �U� and single �1� square pulses. The time duration
for the positive and negative parts of the pulses �when appli-
cable� is equal allowing easy cross-comparisons of the re-
sults obtained. As we know, the macrospin approaches the
stationary state in the absence of magnetic field and spin
currents.38 Therefore, the signal intended to excite the mag-
netic oscillations should not start with a reduced amplitude
during the initial dozens of picoseconds, otherwise magneti-
zation relaxation will take place and the macrospin will be
locked in the ground state. For this reason, the first quarter
period of the harmonic sine pulse was set to unity to ensure
immediate action of the applied pulse. It is also worth men-
tioning that we will use the term “frequency” also for the
case of a single pulse �where it is not in fact applicable in the
strict sense due to the absence of periodic field/current oscil-
lations�. However, this approach allows us to simplify the
further analysis. If required, the pulse duration can be easily
obtained from the data presented in the figures as tpulse
= �2fQ�−1.

Special attention should be paid to the proper selection of
the frequencies fh and fhs. In particular, for fh,hs
�0

−1 the
action of the external driving force is negligible because its
variation is slow compared to the time scale of the magneti-
zation precession. For fh,hs
�0

−1 the macrospin can track the
applied pulses without reaching the steady precession / equi-
librium state. Extremely high frequencies fh,hs��0

−1 will
make magnetization oscillations chaotic. Therefore, the syn-
chronization with the external microwave can be achieved
only when the driving force has a frequency larger than �0

−1

and at the same time not overcoming the intrinsic frequency
of the stable magnetization precession, that is, about 30 GHz.
Our previous studies49 revealed that the maximum amplitude
of steady magnetization precession observable under the

FIG. 1. �Color online� Angular dependence of the damping co-
efficient � for different values of spin current and applied magnetic
field: �a� hs=h=0; �b� hs=0.53, h=1.35; �c� hs=0.27, h=6.65; �d�
hs=0.22, h=14. The black curves represent the corresponding phase
trajectories of the macrospin magnetization vector obtained for the
initial value of mz

0
−1.

FIG. 2. �Color online� Time profile of the pulses used in the
paper.
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magnetic fields and current polarization vectors collinear
with the easy magnetization axis of an analyzer layer with
the parameters of Co is about 7 GHz. Therefore this fre-
quency and the doubled frequency �14 GHz� were investi-
gated in this paper as the most possible candidates to trigger
large-amplitude magnetization oscillations. It is also worth
special attention that the time-dependent h and hs will auto-
matically cause the temporal variations of the damping coef-
ficient � according to Eqs. �8� and �9�, making the “damping
landscape” �Fig. 1� time varying following the oscillating
driving force.

III. EFFECT OF AN ALTERNATING CURRENT ON THE
MACROSPIN DYNAMICS

To simplify the analysis of the magnetization dynamics
excited by alternating spin-polarized currents and magnetic
fields, we would like to present a brief illustration of the
macrospin behavior under constant hs and h. One of the most
useful and direct ways to visualize the boundaries between
different dynamic modes of the system in the space of con-
trol parameters involves the use of a dynamic phase
diagram.49,50 Aiming to separate a simple magnetic moment
reversal from its periodic oscillation and chaotic motion for
the case when the synchronization with the incident micro-
wave is absent, we calculate the Hausdorff dimension de-
fined as51

DH = lim
�→0

log N

log �−1 , �11�

where N is the number of n-dimensional cubes with side �
covering the phase trajectory. If the system converges to a
single state resulting in a pointlike phase portrait, the Haus-
dorff dimension is zero. For the case of chaotic oscillations
covering the whole phase sphere, the dimension tends to the
value DH=2. For periodic oscillations of the moment, when
the phase portrait represents a limit cycle, its dimension is
1�DH�2. The inclusion of additional loops to the phase
trajectory increases the spatial density of the phase portrait,
and the resulting dimension DH is larger. At the same time,
the variation of the precession speed without a modification
of the phase portrait does not introduce any significant
changes to DH.

Figure 3 presents a diagram of the Hausdorff dimension
DH�h ,hs� discerning the main oscillatory modes—in-plane
precession �dark blue �online� / gray �print� area, Fig. 3�a��
and out-of-plane precession �light blue / gray area, Fig. 3�b��.
The characteristic time dynamics of the individual magneti-
zation vector projection and the corresponding Fourier spec-
tra are shown at the bottom of this figure. As one can see, in
the IPP case the component mx performs symmetric sign-
changing oscillations, so that observing the system for a long
time one gets the impression that m̄x=0, as if all the magne-
tization dynamics takes place in the easy magnetization
plane. The OPP phase portrait is characterized by a single
sign of mx, shifting the time-averaged dynamics out of the
easy plane. It is important to emphasize that the oscillations
of the mz component �measurable in GMR� in both cases are
practically equal, rendering the same oscillation frequency of

7 GHz. However, due to two times longer projection of the
phase trajectory on the mx ,my plane in the case of the IPP
cycle, the main spectral peaks for mx and my have halved
frequency.

White areas in Fig. 3 correspond to DH=0, i.e., when the
system converges either to the upper �lower� pole of the uni-
tary sphere or relaxes to a canted state via slow magnetiza-
tion precession �Fig. 3�c��. The reorientation rate of the mag-
netization vector depends on the attraction force of the
corresponding stationary state. Thus, the magnetization re-
versal from mz

0
−1 to mz=1 �Fig. 3�d�� under the given
combination of h and hs can be characterized by slow coiling

FIG. 3. �Color online� Hausdorff dimension phase diagram of
the system for time-independent h and hs. The panels present the
data calculated for the initial magnetization mz

0=−1 �left� and mz
0

= +1 �right�. The most characteristic phase portraits are the follow-
ing: �a� in-plane precession cycle �hs=0.28, h=1.65�; �b� out-of-
plane precession cycle �hs=0.48, h=1.65�; �c� magnetization pre-
cession to reach a canted state �hs=1.28, h=6.75�; �d� slow
precessional magnetization reversal from mz

0=−1 to mz= +1 �hs

=0.12, h=13.3�; �e� faster switching from mz
0= +1 to mz=−1 �hs

=2, h=22�.
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of the phase trajectory out of an unstable IPP cycle to a
faintly attracting upper pole, taking about 2300 ps to reach
the pole. The switching time �sw was determined as the pe-
riod required for the phase point to get to ��0.99� or �
�0.01� from the initial state mz

0
 +1 and mz
0
−1, respec-

tively. To overcome the numerical issues connected with
abrupt thresholding, the time distribution of mz was
smoothed within a window of 100 ps. The calculated values
of the Hausdorff dimension were used to determine the ap-
plicability of the switching time notion, which can be used
only when the final magnetization state is fixed �DH=0�. The
magnetization reversal from the state mz

0
 +1 to mz=−1,
illustrated in Fig. 3�e�, runs faster due to a larger attraction
force of the lower pole, yielding the switching time �sw
=500 ps. The two initial macrospin orientations mz

0, shown
in the left and right panels of Fig. 3, reveal the hysteretic
effect, shifting the line corresponding to the boundary be-
tween the states mz= +1 and mz=−1 toward higher currents.

Small initial deviations from the stationary state for a
macrospin subjected to a sign-alternating spin current, either
in the form of harmonic �hs

H� or square signed pulses �hs
S�,

appear to be effectively suppressed, locking the system in the
corresponding pole. However the unsigned square current
pulses �hs

U� creating an interrupting current signal can drive
the system into oscillatory states and cause the magnetization
reversal. Though, as the influence of the current is not con-
tinuous, the dynamical diagram of the system is anticipated
to become noisy. Most stable phase portraits can be obtained
in the case of longer current pulses and, therefore, for smaller
frequencies fhs.

A. Square unsigned current pulses

A characteristic example of the phase diagrams for fhs
=7 GHz is shown in Fig. 4. As we see, this phase diagram is
roughly similar to the dc case illustrated in Fig. 3. The main
difference consists in the shift of the area corresponding to
the reversal between mz= +1 and mz=−1 toward larger spin
currents. This behavior is predictable because the interrup-
tive current will be required to have a larger magnitude to
render a torque comparable to that supplied by a constant
current. In general, all the areas corresponding to IPP, OPP,
and canted states become blurred and noisy. As the spin cur-
rent is injected in pulses and is equal to zero otherwise, the
synchronization with hs��� may cause the coupling of the
oscillation modes, i.e., the system may exhibit IPP oscilla-
tions when the pulse is on and OPP oscillations when it is off
�Fig. 4�a��, or jump between the different OPP trajectories
�Fig. 4�e��. Note that for the former case the time profiles and
the Fourier spectra of individual magnetization components
shown at the bottom also display the superposition of IPP
and OPP features for the my and mz components, clearly
notable under comparison with the corresponding data pre-
sented in Figs. 3�a� and 3�b�. Lower magnetic fields in com-
bination with larger currents make the precession cycles
noisy �Fig. 4�b��. At the high-field boundary limiting the re-
gion of canted states one can see a narrow wedge-shaped
area corresponding to small-amplitude ��mz
0.18� in-plane
precession �Fig. 4�c��, also becoming noisy with increasing
current.

For initial macrospin orientation in the vicinity of the up-
per pole mz

0
 +1 �Fig. 4, right panel�, large-amplitude OPP
cycles �Fig. 4�d�� can be obtained also under magnetic fields
h�1, which is smaller than the limit hlower=1 for the con-
stant spin current.38 These oscillation modes, excitable at a
minimal field, can be important for device applications.
Moreover, the wide region on the h ,hs plane corresponding
to the canted states in a constant injected current hs becomes
partially populated with the states characterized by three-
loop OPP cycles with oscillation frequency 3fhs �Fig. 4�e�
and the corresponding bottom panel�. Therefore, under the
pulsed spin current, the macrospin exhibits a wider variety of
oscillation modes, including those achievable at lower fields

FIG. 4. �Color online� Macrospin dynamics under time-
alternating spin current �fhs=7 GHz� with square unsigned peaks.
The darker areas correspond to lower synchronization level. The
panels present the data calculated for the initial magnetization mz

0

=−1 �left� and mz
0=1 �right�. The most characteristic phase portraits

are the following: �a� mixture of in-plane and out-of-plane preces-
sion cycles �hs=0.68, h=7.5�; �b� noisy IPP cycle �hs=0.91, h
=3.1�; �c� small-amplitude IPP �hs=2.6, h=19.1�; �d, e� OPP
cycles �hs=0.57, h=1.05 and hs=2.76, h=6.05, respectively�.
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or in wide areas corresponding to a fixed magnetization vec-
tor under direct current injection, offering promising oppor-
tunities for devices performing transformation of rectangular
current signal into high-frequency harmonic magnetization
oscillations.

B. Macrospin reversal by a single current pulse

Experimental research confirms that even a single current
pulse can be used for efficient magnetization switching.22 We
calculated the dependence of the switching time �sw on the
pulse frequency fhs and amplitude hs for the case of single
and multiple current pulses with square unsigned profile �see
Fig. 5, left and right panel, respectively�. The initial mac-
rospin orientation was set to mz

0= +1. The combinations of
the control parameters that do not yield magnetization rever-
sal are represented with a diagonally-dashed area. As one can
see, the magnetization reversal by a single pulse is possible
only for the currents surpassing hs=0.25 at the frequencies
fhs
1, which corresponds to the case of a dc current. �See

the dynamic diagram presented at the right panel of Fig. 3.�
However, the switching time �sw for a low-current reversal is
large �2500 ps� due to the excessive magnetization ringing
around the bottom and upper poles in the vicinity of the easy
magnetization plane �Fig. 5�a��. The single-pulse reversal ap-
pears to be possible roughly in a triangular-shaped area that
can be fitted by the expression

hs � 0.142�1 + 0.5fhs� . �12�

That is, for shorter pulses �larger fhs� higher injected cur-
rents will be required to trigger magnetization reversal. For
the case fhs=0 �dc current� the switching time �sw�hs� �Fig. 5,
bottom panel� features a distinct quantization effect,52 which
holds for higher frequencies if the magnitude of the injected
current is large enough, so that the time period required to
achieve switching between the opposite macrospin orienta-
tions is constant over a certain range of fhs, reducing the
need for precise fine tuning of current pulse duration. The
lowest switching time �sw=193 ps was registered for the
phase portrait approaching BMR �Fig. 5�b��; this switching
time is attainable for a single current pulse with duration of
170 ps and above. For current pulse frequencies slightly
lower than those obtained from condition �12�, the attraction
basins of upper and lower pole become intermixed in the
�fhs ,hs� plane �similarly to the results obtained by Sun and
Wang �Ref. 53��, so that the slight changes in the amplitude
or duration of the current pulse may succeed or fail to per-
form the macrospin switching. Even if the latter takes place,
the corresponding phase trajectory becomes much compli-
cated by numerous precession loops resembling out-of-plane
cycles �Fig. 5�c��, increasing the switching time to nanosec-
onds.

Application of multiple current pulses introduces signifi-
cant changes for the case when one pulse was not enough to
perform the �fastest� switching �Fig. 5, right panel�, introduc-
ing the wide switching area to the right of the division line
�Eq. �12��. At small currents �hs�1�, the magnetization
switching time is over 1000 ps due to significant ringing. For
fhs�6 GHz one can achieve the switching time 200 ps �Fig.
5�d��. Introduction of the additional precession cycles in-
creases the reversal times to 600 ps �Fig. 5�e�� and above. It
is also important to emphasize that the current dependence of
the switching time calculated for higher current frequencies
�e.g., fhs=5 GHz �pulse length 100 ps�, see Fig. 5, bottom
panel� also features reversal time quantization, which, how-
ever, is less pronounced and allows either an increase or
decrease in the switching time, on the contrary to the stable
decrease observed for the dc case.

Thus, the macrospin described by the parameters of Co
can have the magnetization reversal time on the order of 200
ps without any optimization of the temporal pulse profile26

and avoiding the necessity of finding a special angle for the
application of a spin current pulse relative to the easy mag-
netization axis.20,23,34

The crucial role in gaining the required reversal time ap-
pears to belong to the proper pulse amplitude adjustment.
The application of multiple pulses allows to achieve switch-
ing for larger frequencies, but the corresponding �sw is at
least two times higher.

FIG. 5. �Color online� Macrospin reversal under the action of a
single spin current pulse �left panel� or multiple pulses �right panel�
with the amplitude hs and frequency fhs; magnetic field is absent
�h=0�. The most characteristic switching trajectories are shown for
the following: �a� fhs=0.1, hs=0.3; �b� fhs=1.6, hs=3.1; �c� fhs

=5.2, hs=4.5; �d� fhs=7, hs=4.9; �e� fhs=5.3, hs=2.4. The line plot-
ted in the left panel defines the limit hs / fhs ratio, below which the
pulse amplitude is weak enough to perform macrospin magnetiza-
tion reversal. The lower panel shows the current profiles �vertical
sections� of the plots at fhs=0 and fhs=5 GHz for the case of the
current injected in multiple pulses.
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IV. INFLUENCE OF VARIABLE MAGNETIC FIELDS ON
THE MACROSPIN DYNAMICS

A. Macrospin reversal assisted by a field pulse

Magnetization reversal can be also achieved by applying
the rectangular pulses of the magnetic field to a macrospin,
subjected to a dc spin current. The results of corresponding
simulations for the case of single pulse are illustrated in Fig.
6 for two frequencies: fh=7 GHz �left panel� and fh
=14 GHz �right panel�. As we see, the dependence of the
switching time on h ,hs and fh is significantly nonlinear and
complicated. The typical cross sections of two-dimensional

plots for the constant field h=12 are presented in the bottom
panel of the figure, showing pronounced quantization of �sw

with increasing reversal time for each new ringing loop that
appears. For lower field frequency the switching times are
higher, forming a wide maximum roughly centered around
hs
3.2 for h=12. High switching times exceeding half-
nanosecond are caused by formation of the OPP loops �Figs.
6�a�–6�c��. The fastest switching attained runs for about 150
ps �Fig. 6�d�� and 140 ps �Fig. 6�e��.

For a higher field oscillation frequency, the magnetization
ringing may appear either close to the upper pole �Fig. 6�f�,
�sw=450 ps� or in the vicinity of out-of-plane precession
trajectory �Fig. 6�h�, �sw=320 ps; Fig. 6�i�, �sw=390 ps�.
Similarly to the low-frequency mode, magnetization reversal
almost devoid of the ringing is attainable for the spin cur-
rents between these groups of points �Fig. 6�g�, �sw

=220 ps�. It is extremely important to emphasize that mag-
netization switching along the ballistic trajectory �e.g., Fig-
ure 6�j�, �sw=110 ps� is achievable in a wedge-shaped area
in the parameter space �h ,hs�, denoted with a dashed-line
contour in the figure for hs�2 and 0�h�3. This BMR area
is present in all further �sw�h ,hs� plots, featuring significant
shape variation depending on the time profile and frequency
of the pulses. The switching time achievable for the phase
portraits belonging to the BMR area is about 100–200 ps,
which is in good agreement with the experimental value of
165 ps reported for the ultrafast magnetization switching by
Schumacher et al.28 Despite other areas in calculated �sw

plots may also exhibit magnetization reversal with a similar
rate; their phase portraits feature significant deviation of the
magnetization trajectory from the easy plane �Figs. 6�d� and
6�e��, or possess a complicated topology with several loops
or extensive ringing around the target pole. Moreover, such
fast-switching areas are usually situated at much higher field
values, requiring approximately ten times larger h than that
necessary for the BMR.

Therefore, our numerical simulations revealed the pres-
ence of a limited area of parameter values located at low
fields, where the magnetization reversal takes place in the
closest vicinity of the easy magnetization plane and the total
reversal times are similar to the experimentally observed val-
ues approaching the ultrafast switching limit.28 This finding,
in our opinion, is of the utmost importance both for funda-
mental and applied points of view, allowing to predict the
optimal set of control parameters required to achieve mac-
rospin magnetization switching along the shortest trajectory
possible.

In contrast to the previously discussed effect of the sign-
variable spin currents locking the system in the equilibrium
state, the application of hH, hS and hU field pulses can switch
the moment to one of the precessional states due to synchro-
nization with the periodic driving force. To determine pos-
sible cases when such a synchronization is attainable, we
consider a multidimensional optimization task in the space of
�h , hs , fh� with an additional freedom degree describing
the pulse type. Here we present the most representative two-
dimensional dynamic diagrams in the �h ,hs� space, con-
structed for the case when two other parameters are constant.

FIG. 6. �Color online� Magnetization switching assisted by a
single pulse of magnetic field corresponding to the frequencies fh

=7 GHz→ tpulse=71.43 ps �left panel� and fh=14 GHz→ tpulse

=35.71 ps �right panel� as a function of h and hs. The dashed-line
contour denotes the ballistic magnetization reversal area. The bot-
tom panel shows the dependence of the switching time �sw�hs� for
h=12. The most characteristic phase portraits are the following: for
h=12—�a,f� hs=0.5, �b,g� hs=2.5, �c,h� hs=3.5, �d,i� hs=4.8; for
h=2.5—�e,j� hs=4.8.
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B. Harmonic field pulses

Figure 7 displays the dynamic diagram for the system
subject to a harmonically modulated magnetic field hH with
the frequency of fh=7 GHz. As we see, for both initial val-
ues of mz

0
 �1, there are large regions in the parameter
space, for which the synchronization is absent and the mag-
netization vector cannot attain any periodic motion, covering
the unitary sphere with chaotic trajectory, so that DH
2
�dark areas in Fig. 7�. For large spin currents, the pulsing
field is unable to move the magnetization out of the equilib-
rium state, resulting in DH→0 �white areas in Fig. 7�. In the

absence of injected current, the macrospin synchronizes to
the external driving force within several field intervals, the
largest of which is located at h�6. The resulting phase por-
traits represent the variations of IPP precession with a num-
ber of loops increasing together with the applied field �Figs.
7�a� and 7�b��. As one can see from the temporal profiles of
magnetization components, an increase in the loop number
leads to formation of high-frequency oscillation “packets” in
mz�t�, which can be observed experimentally in GMR mea-
surements. As the amplitude of these oscillations is smaller
than that of the main signal, they correspond to secondary
peaks in the fast Fourier transform �FFT� spectra with the
frequencies surpassing the exciting wave frequency several
times. The formation of such high-frequency packets can be
important for applications because it allows designing a de-
vice of variable resistivity, much faster as compared to the
variation of the driving magnetic signal. It is also important
to emphasize that for hs�0, in the parameter-space area
where the synchronization is usually absent, one observes
narrow bands or islands of synchronized motion, leading to
complex magnetization oscillations as presented in Fig. 7�c�.
Upon changing the initial orientation of the macrospin from
mz

0=−1 to mz
0= +1, the synchronization plots become slightly

modified due to the hysteresis effects, which take place at
larger applied currents hs�2 �Fig. 7, central panel�. The
switching time diagram �Fig. 7, rightmost panel� was ob-
tained for the initial upward macrospin orientation, calculat-
ing the time required to reach the vicinity of mz=−1 by ap-
plying the technique described in Sec. III. As we see, the
dependence of the switching time on the control parameters
h and hs is significantly more nonlinear than that obtained
under single square pulses �Fig. 6�. Ballistic magnetization
reversal is attained in quite a wide area under the fields h
�2, with the phase trajectory almost tracing the meridian
lying in the easy magnetization plane �Fig. 7�d�, �sw
=140 ps�. Surprisingly, the application of high fields and
currents allows to perform fast switching even along the tra-
jectory almost following a meridian perpendicular to the
easy magnetization plane �Fig. 7�e�, �sw=145 ps�.

In the case of harmonic field oscillations with frequency
fh=14 GHz, the synchronization areas are growing in size,
and the hysteresis effects under the flip of mz

0 are more pro-
nounced. It is worth mentioning that the use of high-
frequency harmonic oscillations of the field enables to obtain
the steady precession for hs→0 and h
1. For small spin
currents, the islands of synchronized motion DH
1 expand
significantly, allowing to get a large-amplitude out-of plane
precession cycle �Fig. 8�a�� with the frequency correspond-
ing to that of the driving force. Upon approaching the bound-
ary of the synchronization island, the precession trajectory
becomes more complex �Fig. 8�b��. A hybrid phase trajectory
possessing two OPP cycles and a small-amplitude IPP cycle
�Fig. 8�c�� can be attained in the synchronization island of
considerable size located at the fields of h=12.5 to 16. More
complicated forms are also available �Fig. 8�d�� in some
small synchronization windows, the size of which seems to
preclude the practical use of these modes due to the difficult
adjustment of control parameters.

The switching time diagram shown in the rightmost panel
of Fig. 8 is more complicated than the similar one obtained

FIG. 7. �Color online� Synchronization diagram for a macrospin
subject to the harmonic magnetic-field oscillations with the fre-
quency fh=7 GHz. The white areas correspond to the parameter
combination when the resulting magnetic moment remains in the
equilibrium; dark areas correspond to the absence of the synchroni-
zation. The dashed-line contour in the central panel denotes the
ballistic magnetization reversal area. The rightmost panel presents
the switching time dependence �sw�hs ,h�; if switching time notion
is inapplicable, the corresponding areas are diagonally dashed. The
most characteristic phase portraits are the following: �a� hs=0, h
=5.3; �b� hs=0, h=20.85; �c� hs=3.13, h=10.3; �d� hs=3.4, h=1.1;
�e� hs=4.58, h=19.7. For the last phase portrait, the contour per-
pendicular to the easy magnetization plane is supplied as a guide to
the eyes.
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for half field frequency �see Fig. 7�. As one can see from the
figure, the BMR area for fh=14 GHz becomes narrower due
to the increased precision demand for the corresponding
pairs of h and hs values due to shorter field pulses. The
reversal times attainable in this case are on the order of 200
ps. An interesting switching mode with a two-segment tra-
jectory similar to that shown in Fig. 7�e� but situated roughly
in the easy magnetization plane could be observed in the
close vicinity of the BMR area �Fig. 8�e�, �sw=250 ps�.

Another important feature revealed by the calculations is
the characteristic period halving bifurcation cascade51 ob-
servable under the spin current variation �Figs. 8�g�–8�j��.
Figure 9 presents a profile of the Hausdorff dimension and
the bifurcation diagram for the my component �left and right
panels, respectively�. The bifurcation diagram was obtained
according to the standard procedure,51 plotting the points
corresponding to the local maxima and minima of the my���
dependence at a fixed hs. The period halving bifurcations are
clearly discernible by the decrease in the number of loops
composing the phase portrait, pronounced horizontal pla-
teaus on DH curve, and joining of bifurcation diagram
branches �Figs. 9�g�–9�j��. Taking into account the values of
the spin current at the bifurcation points, we were able to
show that the bifurcation cascade to the left of hs=3.387
follows the Feigenbaum constant �=4.6692016. . . �Ref. 51�.
For 0.01�hs�2.3 the system is chaotic, featuring small
windows of synchronized motion �Fig. 9�f��. Therefore,
proper adjustment of the harmonically oscillating field al-
lows driving the macrospin through the set of period halving
bifurcations by tuning the spin current at a fixed field ampli-
tude, resulting in corresponding steplike variations of the os-

cillation frequency that may have good application perspec-
tives. The similar bifurcation cascades were also recently
reported54 in the macrospin simulations of the permalloy par-
ticles.

C. Sign-varying square field pulses

By applying the sign-alternating rectangular pulses of
magnetic field, one observes that the dynamical response of
the macrospin �Figs. 10 and 11� remains somewhat similar to
the case of the harmonic driving force. The key difference

FIG. 8. �Color online� Macrospin synchronization diagram un-
der harmonic magnetic-field oscillations with fh=14 GHz. The
most characteristic phase portraits are the following: �a� hs=0.38,
h=3.9; �b� hs=0.98, h=3.9; �c� hs=0.33, h=13.5; �d� hs=2.15, h
=4.95; �e� hs=1.95, h=0.7. The phase portraits for the points �g–j�
are shown in Fig. 9. The dashed-line contour in the central panel
denotes the BMR area.

FIG. 9. �Color online� Hausdorff dimension �left panel� and the
bifurcation diagram �right panel� showing period halving bifurca-
tion cascade for the macrospin under oscillating magnetic field h
=21.4, fh=14 GHz. The most characteristic phase portraits are the
following: �f� h=2.32; �g� h=2.77; �h� h=2.93; �i� h=3.08; �j� h
=3.5.

FIG. 10. �Color online� Macrospin synchronization with the
sign-varying square-shaped field pulses with frequency fh=7 GHz.
The most characteristic phase portraits are the following: �a� hs

=1.05, h=4.2; �b� hs=0.82, h=9.2; �c� hs=4.28, h=8.05; �d� hs

=4.93, h=9.15; �e� hs=4.88, h=5.25. The dashed-line contour in
the central panel denotes the BMR area.
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concerns smaller field intervals, for which the applied signal
can force the magnetization vector off the equilibrium state.
In general, the areas of successful synchronization between
the macrospin and the incoming microwave are significantly
larger as compared to the hH pulses, although the resulting
phase portraits appear noisier due to the step-function nature
of the pulses. Such a rough control method permits to form
asymmetric phase portraits �see Fig. 10�a��, or generate mag-
netic oscillations with multiple loops, otherwise similar to
the “clean” phase portraits reachable with the harmonic field
pulses �e.g., compare Fig. 10�b� to Fig. 8�c� and Fig. 10�c� to
Fig. 9�f��. The hysteresis effects are less pronounced when hS

pulses are applied, but nevertheless allow to obtain a peri-
odic magnetization motion �Fig. 10�d�� with no counterparts
at the same current value in the left panel of Fig. 10. Con-
trary to the harmonic field oscillations, the square pulses re-
sult in a smoother switching time �sw landscape �compare the
rightmost panel for Fig. 10 with Fig. 7 and Fig. 11 with Fig.
8�, featuring a somewhat larger BMR area with a switching
time of about 140–150 ps. However, a slightly faster magne-
tization reversal was observed for the trajectory significantly
deviating from the easy plane �Fig. 10�e�, �sw=110 ps�.

For the magnetic-field pulses of frequency fh=14 GHz,
the phase portraits become noisier, as the time between suc-
cessive pulses gets smaller, augmenting the influence of the
macrospin orientation at the field reversal moment on the
further dynamics of the system. Under these conditions, our
numerical simulations yielded deformed and noisy versions
of the OPP cycle �compare Figs. 11�a� and 8�a�� and a com-
plex cycle with three loops �Fig. 11�b� vs Fig. 8�c��. Poor
synchronization can also result in nonsymmetric oscillations
�Fig. 11�c�� which have low chances to be useful for device

applications. In weak magnetic fields, the system is charac-
terized by a narrow-angle precession around the easy mag-
netization axis �Fig. 11�d��. The distribution of switching
times as a function of h and hs is reminiscent of that pre-
sented in Fig. 8 for the harmonic oscillations, although the
BMR area appears to be slightly narrower. The switching
trajectory has some minor ringing at both poles �Fig. 11�e��
and �sw
200 ps.

Therefore, the use of signed square field pulses results in
positive widening of the synchronization region, but the ob-
tained oscillation modes appear to be blurred for higher field
frequencies, which makes them less attractive for applica-
tions than the modes attainable under a harmonic signal.
However, the situation concerning magnetization switching
is more favorable for abruptly changing hS pulses, featuring
smoother reversal time landscape �i.e., lowering the require-
ments for the precise tuning of h and hs to obtain the desired
�sw�.

D. Unsigned square field pulses

The application of magnetic fields in the form of unsigned
square pulses hU changes the behavior of the system signifi-
cantly �see Figs. 12 and 13�. As the field is “pushing” the
magnetization only in one direction and disappears for a cer-
tain period of time, it suppresses the initial deviations for the
positive mz

0, making almost all the �h ,hs� parameter plane
devoid of the areas with DH�0 �Fig. 12, middle panel�. For
large fh the field pulses are shorter and follow each other
faster, becoming more efficient in driving the macrospin out
of the equilibrium, thus leading to an increase in the synchro-
nization islands in the middle panel of Fig. 13. On-off field

FIG. 11. �Color online� Synchronization diagram for a mac-
rospin subject to square-shaped sign-alternating field pulses with
the frequency fh=14 GHz. Characteristic phase portraits are the
following: �a� hs=0.38, h=3.25; �b� hs=1.12, h=6.9; �c� hs=2.45,
h=11.15; �d� hs=1.17, h=1.4; �e� hs=1.77, h=1.4. The dashed-line
contour in the central panel denotes the BMR area.

FIG. 12. �Color online� Synchronization diagram for the mac-
rospin subject to the unsigned square-shaped microwave with the
frequency fh=7 GHz. Characteristic phase portraits are the follow-
ing: �a� hs=0.27, h=4.2; �b� hs=0.04, h=0.9; �c� hs=2.13, h=7.05;
�d� hs=4.6, h=17.2; �e� hs=4.6, h=0.6. The dashed-line contour in
the central panel denotes the BMR area.
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pulse sequence is favorable for switching the macrospin dy-
namics between several motion types depending on the cur-
rent magnetization orientation, causing pronounced kinks on
the phase portraits like those seen in Fig. 12�a�. For weaker
fields one obtains hybrid cycles like, for example, two
merged OPP loops of different curvature �Fig. 12�b��. The
large synchronization island in the left panel of Fig. 12 yields
complex magnetization oscillations around the canted state
axis forming multiple loops of different radii like those
shown in Fig. 12�c�. Magnetization reversal also becomes
affected by the abrupt periodic changes of the field. In par-
ticular, the phase portrait shown in Fig. 12�d� exhibits dis-
tinct dynamics for each pulse occurring during its formation.
The first pulse “kicks” the magnetization from the equilib-
rium state toward the lower hemisphere via gradual preces-
sion, eventually drawing it into the attraction basin of an
OPP cycle. As soon as the pulse switches off, the macrospin
starts precession along the small-amplitude OPP trajectory,
and the next pulse concludes the switching process. Such

multistage reversals is characterized by larger switching time
��sw
250 ps�. Naturally, macrospin switching attainable in
the expanded BMR region is much lower ��sw
130 ps�,
yielding the phase trajectory that almost precisely traces the
meridian corresponding to the easy magnetization plane �Fig.
12�e��, without any ringing effects.

For fh=14 GHz, the synchronization areas become larger
�Fig. 13�. In particular, the time series for magnetization
components of the phase portrait shown in Fig. 13�a� allow
to discern the parts belonging to individual OPP cycles in the
mx plot. Previously discussed superposition of two OPP
cycles features much more regular form and larger amplitude
�Fig. 13�b��. For initial magnetization mz

0
 +1, it is possible
to obtain narrow-angle precession around the easy axis at
weak field �Fig. 13�c��. For higher h the oscillations become
noisy, featuring characteristic jumps of mx and my �Fig.
13�d�, see also the bottom panel� reflected by sharp peaks of
frequency about 21 GHz. The oscillations of mz represent a
saw-tooth signal, which can be measured experimentally and
can be used as a converter of incoming square-shaped mag-
netization pulses into triangular ones. The shortest switching
time observed in the system is �sw=107 ps for the phase
portrait shown in Fig. 13�e�.

E. Effect of field frequency and amplitude on macrospin
dynamics

To investigate the effect of field oscillation frequency on
the macrospin dynamics for different profiles of the field
pulses we calculated the diagrams DH�fh ,h� for the case of
hs=0 �Fig. 14�. As we see from this figure, for the harmonic
pulses �upper panel in the figure� the diagram consists of the
series of the round-shaped islands, outside which the system
cannot leave the equilibrium state. The width of these islands
changes in a nonlinear way with fh. The increase in fre-
quency beyond 30–40 GHz results in zero DH. Inside the
islands the system can be either synchronized �light areas� or
not synchronized with the microwave �dark areas�. It is
worth emphasizing that the boundary between these regions
is usually blurred and noisy. For lower frequencies, the fine
tuning allows to get the phase portrait representing a super-
position of IPP and OPP cycles �Figs. 14�a�–14�c��. Upon
increase of the cycle loop number, one can observe the fre-
quency increase for the magnetization oscillations generated
by a macrospin. We were able to record the frequencies
reaching 40 GHz for the my component �Fig. 15�c��, which is
about 2000% increase in the driving force frequency fh
=2.2 GHz. Even though the my component cannot be di-
rectly measured by GMR, these high-frequency oscillations
can be experimentally found rotating the phase portrait
around the axis perpendicular to the easy plane upon the
application of a tilted magnetic field.49 For larger pulse fre-
quencies the synchronization areas within the islands become
wider, and the phase portraits of the magnetization preces-
sion are simpler. In particular, for the fields h
8 and fh

9 GHz it is possible to get two coupled OPP cycles �Fig.
14�f��. Another island accessible at higher frequencies fea-
tures single OPP cycles �Fig. 14�d�� for applied fields of 0
�h�20 and frequencies fh�8. Close to the darker bands

FIG. 13. �Color online� Synchronization diagram for the mac-
rospin subject to the square-shaped microwave with the frequency
fh=14 GHz. Characteristic phase portraits are the following: �a�
hs=1, h=2.9; �b� hs=4.3, h=9.7; �c� hs=0.17, h=0.95; �d� hs=1.6,
h=17.45; �e� hs=4.7, h=3.25. The dashed-line contour in the cen-
tral panel denotes the BMR area.
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within the islands the system gradually loses its synchroni-
zation so that the phase portrait gains additional loops �Fig.
14�e��.

The middle panel of Fig. 14 shows the corresponding
macrospin dynamics calculated for the case of signed square-
shaped field pulses hS. The “island-structure” of the diagram
is still clearly discernible, but due to less convenient control
inferred by the rectangular field pulses, the overall macrospin
synchronization is significantly lower and phase portraits are
blurred causing higher DH values �i.e., darker tone in the
figure�. Moreover, for higher fields the islands become de-
tached, increasing the areas in the parameter space for which
the system cannot be moved out of the equilibrium. To com-
pare with the harmonic pulses, we presented the phase por-
traits calculated for topologically similar positions in the
synchronization diagram, as those shown in the top panel.
One can see that a general shape of the phase trajectory for
the square pulses becomes less smooth and features sharp
kinks �compare, for example, the phase trajectories shown in
Fig. 14�g� and 14�a��. At the same time, under square pulses
the amplitude of the mz oscillations within the signal packets
becomes larger �compare Fig. 15�g� to Fig. 15�c��, which
increases the chance that such oscillations can be experimen-
tally detected. Joined OPP cycles similar to those shown in
Fig. 14�f� become significantly noisy �Fig. 14�i�� if being
triggered by signed square field pulses. Even a single OPP
cycle appears to be distorted �Fig. 14�h��.

The application of unsigned square pulses to the system
renders completely different macrospin response �Fig. 14,
bottom panel�, transforming the islands on the synchroniza-
tion diagram into the series of dark-colored bands signaling
the absence of synchronization. At the boundary of these
bands, one obtains closed noisy magnetization trajectories
�Fig. 14�j��. A “cleaner” version of the same phase portrait is
available under weak fields �h�6� and large oscillation fre-

FIG. 14. �Color online� Synchronization diagrams for harmonic
hH �top panel�, signed square hS �middle panel�, and unsigned
square hU �bottom panel� field pulses calculated for the case when
no spin current is injected, hs=0. Characteristic phase portraits are
the following: �a� fh=3.25 GHz, h=5.7; �b� fh=7.6 GHz, h
=23.45; �c� fh=2.2 GHz, h=24.4; �d� fh=14.55 GHz, h=5.95; �e�
fh=19.75 GHz, h=7.6; �f� fh=9.95 GHz, h=7.95; �g� fh

=3.15 GHz, h=2.5; �h� fh=16 GHz, h=6.5; �i� fh=12.6 GHz, h
=10; �j� fh=25.65 GHz, h=18.2; �k� fh=19.35 GHz, h=2.6.

FIG. 15. �Color online� Time dependence of individual magne-
tization components for the phase portraits shown in Fig. 14 with
the corresponding FFT spectra.
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quencies �Fig. 14�k��. The time evolution of the individual
magnetization components �Fig. 14�j�� reveals that the dis-
cussed type of the phase portrait is characterized by abrupt
pulses of mx and saw-tooth oscillations of my. Such sharp
magnetization oscillation profiles could also be of interest for
applications.

Therefore, to obtain the periodic magnetization motion
generated by the field pulses with the purpose of using the
magnetization oscillations of GHz frequency detectable by
GMR, one should use the harmonically varied magnetic
field. Even if the formation of the signed square-shaped field
pulses could be achieved with less significant experimental
efforts, the resulting oscillations are noisier and thus less
usable. The number of states in �h , fh� parameter space to
which the field will fail to drive the macrospin out of the
equilibrium would increase significantly. Finally, use of un-
signed square shape of the field oscillations would yield even
more limitations, featuring a much smaller variety of pos-
sible oscillation types and a significantly increased area
where the macrospin keeps its initial orientation.

V. CONCLUSIONS

Numerical simulations of the macrospin dynamics with
the Landau-Lifshitz-Gilbert equation using the generalized
form of the viscous damping coefficient, as proposed by
Tiberkevich and Slavin,47 allowed to achieve several impor-
tant results on macrospin magnetization dynamics, using the
model of a ferromagnet with the parameters of Co and the
dimensions which are commonly used in spin valve experi-
ments.

By injecting the spin current with a polarization collinear
with the easy axis it is possible to realize the magnetization
reversal by one single pulse, achieving the fastest switching
time �sw�200 ps for the ballistic trajectory. Magnetization
reversal can be performed with shorter pulses, if higher cur-
rents are applied; multiple pulses enables significant expan-
sion of the frequency/pulse length ranges, for which the
magnetization reversal can be accomplished. Moreover, the
magnetization switching time plotted as a function of spin
current features a set of pronounced plateaus, allowing to
obtain the same �sw for significantly wide ranges of hs val-
ues.

For the case when the magnetization switching is obtained
by the time-variable field, the multiple square-shaped pulses
allow to reach the switching time of about 100 ps, approach-
ing the fundamental limit of the field-induced magnetization

reversal. Our numerical simulations revealed the presence of
a wedge-shaped area in �hs ,h� parameter space, where mag-
netization reversal follows the ballistic trajectory passing in
the vicinity of the easy magnetization plane, practically with-
out any ringing. It was shown that both the shape and size of
this area can be controlled by changing the time profile and
the frequency of applied field pulses, allowing to predict the
ranges of external parameters required to obtain efficient
low-field magnetization reversal along the shortest possible
trajectory. In general, the minimization of switching time re-
quires simultaneous adjustment of the field amplitude, fre-
quency, and the density of injected spin current. Here, the
role of temperature is not addressed. As shown recently how-
ever using a similar method,32 for thermal energies below the
anisotropy energy the qualitative features of the spin dynam-
ics remain intact.

In view of exploiting spintronic devices for the generation
of GHz magnetic oscillations, the most important role ap-
pears to belong to the proper choice of the shapes of the field
pulses. We found that the most promising oscillation modes
can be obtained by using harmonic field oscillations, allow-
ing to get the multiplication of the oscillation frequency
when no spin current is injected to the system. The same
oscillation mode transforms the harmonic control pulse to a
set of high-frequency oscillation “packets,” which can be
useful for the modulators of an incoming signal. In contrast,
the square-shaped sign-varying pulses of magnetic field are
much less practical, leading to noise and to the appearance of
kinks on the phase trajectories. The unsigned square pulses
of the magnetic field create less variety of the synchronized
phase states, but enable the periodic oscillations with saw-
tooth temporal distribution of the macrospin projection.

In conclusion, for the considered geometry and material
parameters, the use of unsigned square-shaped pulses of both
spin current and magnetic field is the most effective way to
achieve fast magnetization reversal, even by means of a
single pulse. For the generation of periodic magnetization
oscillations of GHz frequency, the best option is to use har-
monically alternating magnetic fields.

ACKNOWLEDGMENTS

This work was partially supported by FCT Grants Nos.
POCI/FIS/58746/2004 and SFRH/BPD/26825/2006 in Portu-
gal, by the STCU Grant No. 3098 in Ukraine, and by funds
of the Polish Ministry of Science and Higher Education as
research projects in years 2006–2009 and 2007–2010.

*Permanent position: Department of Physics, Adam Mickiewicz
University, Umultowska 85, 61-614 Poznań, Poland.
1 J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C.

Ralph, Phys. Rev. Lett. 84, 3149 �2000�.
2 S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J.

Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature �London�
425, 380 �2003�.

3 S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, M.
Rinkoski, C. Perez, R. A. Buhrman, and D. C. Ralph, Phys. Rev.
Lett. 93, 036601 �2004�.

4 Hiaven Xi, Kai-Zhong Gao, and Yiming Shi, Appl. Phys. Lett.
84, 4977 �2004�.

5 S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek,
and J. A. Katine, Nature �London� 437, 389 �2005�.

HORLEY et al. PHYSICAL REVIEW B 78, 054417 �2008�

054417-14



6 S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, A. G.
F. Garcia, R. A. Buhrman, and D. C. Ralph, Phys. Rev. B 72,
064430 �2005�.

7 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F.
Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas,
Phys. Rev. Lett. 61, 2472 �1988�.

8 J. Z. Sun, Phys. Rev. B 62, 570 �2000�.
9 J. Xiao, A. Zangwill, and M. D. Stiles, Phys. Rev. B 72, 014446

�2005�.
10 M. D. Stiles and J. Miltat, in Spin Dynamics in Confined Mag-

netic Structures III: Topics in Applied Physics, edited by B. Hill-
ebrands and A. Thiaville �Springer, Berlin, 2006�, Vol. 101.

11 T. Devolder and C. Chappert, Eur. Phys. J. B 36, 57 �2003�.
12 Ya. B. Bazaliy, B. A. Jones, and Shou-Cheng Zhang, Phys. Rev.

B 69, 094421 �2004�.
13 M. Bauer, R. Lopusnik, J. Fassbender, B. Hillerbrands, J.

Bangert, and J. Wecker, J. Appl. Phys. 91, 543 �2002�.
14 G. Finocchio, I. Krivorotov, M. Carpentieri, G. Consolo, B.

Azzerboni, L. Torres, E. Martinez, and L. Lopez-Diaz, J. Appl.
Phys. 99, 08G507 �2006�.

15 J. Fransson, Phys. Rev. B 77, 205316 �2008�.
16 H. Morise and S. Nakamura, J. Magn. Magn. Mater. 306, 260

�2006�.
17 J. Sun, Nature �London� 425, 359 �2003�.
18 A. Canizo-Cabrera, V. Garcia-Vazquez, and Te-ho Wu, J. Appl.

Phys. 99, 08G512 �2006�.
19 F. J. Albert, N. C. Emley, E. B. Myers, D. C. Ralph, and R. A.

Buhrman, Phys. Rev. Lett. 89, 226802 �2002�.
20 Q. F. Xiao, B. C. Choi, J. Rudge, Y. K. Hong, and G. Donohoe,

J. Appl. Phys. 101, 024306 �2007�.
21 H. W. Schumacher, S. Serrano-Guisan, K. Rott, and G. Reiss,

Appl. Phys. Lett. 90, 042504 �2007�.
22 H. W. Schumacher, C. Chappert, R. C. Sousa, and P. P. Freitas,

Appl. Phys. Lett. 83, 2205 �2003�.
23 Di Xiao, M. Tsoi, and Qian Niu, J. Appl. Phys. 99, 013903

�2006�.
24 C. Thirion, W. Wernsdorfer, and D. Mailly, Nat. Mater. 2, 524

�2003�.
25 L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, and S.

Parkin, Science 315, 1553 �2007�.
26 K. Rivkin and J. B. Ketterson, Appl. Phys. Lett. 88, 192515

�2006�.
27 K. Rivkin and J. B. Ketterson, Appl. Phys. Lett. 89, 252507

�2006�.
28 H. W. Schumacher, C. Chappert, R. C. Sousa, P. P. Freitas, and J.

Miltat, Phys. Rev. Lett. 90, 017204 �2003�.
29 L. He and W. D. Doyle, J. Appl. Phys. 79, 6489 �1996�.
30 Z. Z. Sun and X. R. Wang, Phys. Rev. B 73, 092416 �2006�.
31 Z. Z. Sun and X. R. Wang, Phys. Rev. Lett. 97, 077205 �2006�.
32 A. Sukhov and J. Berakdar, J. Phys.: Condens. Matter 20,

125226 �2008�.
33 P. Podio-Guidugli and G. Tomassetti, IEEE Trans. Magn. 42,

3652 �2006�.
34 M. Belmeguenai, T. Devolder, and C. Chappert, J. Phys. D 39, 1

�2006�.
35 Z. Z. Sun and X. R. Wang, Phys. Rev. B 74, 132401 �2006�.
36 G. Bertotti, A. Magni, I. D. Meyerdgoyz, and C. Serpico, J.

Appl. Phys. 89, 6710 �2001�.
37 Z. Li, Y. C. Li, and S. Zhang, Phys. Rev. B 74, 054417 �2006�.
38 P. M. Gorley, P. P. Horley, V. K. Dugaev, J. Barnaś, and W.

Dobrowolski, J. Appl. Phys. 101, 034504 �2007�.
39 T. L. Gilbert, IEEE Trans. Magn. 40, 3443 �2004�.
40 H. Katsura, A. V. Balatsky, Z. Nussinov, and N. Nagaosa, Phys.

Rev. B 73, 212501 �2006�.
41 W. J. Kim, T. D. Lee, and K. J. Lee, IEEE Trans. Magn. 42,

3207 �2006�.
42 Ya. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev.

Lett. 88, 117601 �2002�.
43 K. Lenz, H. Wende, W. Kuch, K. Baberschke, K. Nagy, and A.

Jánossy, Phys. Rev. B 73, 144424 �2006�.
44 S. Karakurt, R. W. Chantrell, and U. Nowak, J. Magn. Magn.

Mater. 316, e280 �2007�.
45 D. L. Mills and R. Arias, Physica B �Amsterdam� 384, 147

�2006�.
46 J. Lee, D. Suess, T. Schrefl, K. Hwan Oh, and J. Fidler, IEEE

Trans. Magn. 42, 3210 �2006�.
47 V. Tiberkevich and A. Slavin, Phys. Rev. B 75, 014440 �2007�.
48 V. V. Gorley and V. A. Shenderovskiy, Zh. Tekh. Fiz. 51, 13

�1981�.
49 P. P. Horley, V. R. Vieira, P. M. Gorley, V. K. Dugaev, and J.

Barnaś, Phys. Rev. B 77, 094427 �2008�.
50 G. Bertotti, I. D. Meyergoyz, and C. Serpico, J. Appl. Phys. 91,

7556 �2002�.
51 A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic

Dynamics �Springer, New York, 1992�.
52 T. Devolder, C. Chappert, J. A. Katine, M. J. Carey, and K. Ito,

Phys. Rev. B 75, 064402 �2007�.
53 Z. Z. Sun and X. R. Wang, Phys. Rev. B 71, 174430 �2005�.
54 Z. Yang, S. Zhang, and Y. C. Li, Phys. Rev. Lett. 99, 134101

�2007�.

INFLUENCE OF A PERIODIC MAGNETIC FIELD AND… PHYSICAL REVIEW B 78, 054417 �2008�

054417-15


