PHYSICAL REVIEW B 78, 054407 (2008)

Magnetization of a superconducting film in a perpendicular magnetic field
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With large thin superconducting films in a perpendicular magnetic field, the usual definition and calculation
of the magnetization M via currents or as the difference of two fields fail, since the spatially averaged magnetic
field in the film coincides with the uniform applied field and the demagnetization factor is unity. The definition
of M as field-derivative of the free energy, however, still works in this limit. We generalize the virial theorem,
previously derived for infinite bulk superconductors, to infinitely extended films of arbitrary thickness. An
expression for M is obtained that indeed reproduces the M computed from the field derivative of the free

energy.
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I. INTRODUCTION

A standard theoretical method to obtain the magnetic mo-
ment m of a conductor or of a superconductor induced by the
presence of an external applied magnetic field H, (B,
= uoH,) is to calculate the integral below over the specimen
volume V,

1
m=—f &’rr X j, (1)
2 \%4

where j(r) is the current density. Far away from the speci-
men the currents yield the magnetic induction B(r)=V X A
(A=puom Xr/r3), which renders the magnetic moment de-
tectable by the mechanical torque m X B, and by the force
(m-V)B,=V(m-B,) (since V-B,=0) exerted in case B, is
inhomogeneous.! In addition, these currents partly screen the
specimen interior from the applied field H,. However these
currents depend on how the conducting electrons react to H,,.
In normal conductors, currents exist only in time-dependent
H, and lead, e.g., to the skin effect in high frequency alter-
nating H, and to a m that exponentially decays in time after
a dc field H,, is switched on or off. Distinctively the induced
currents may persist even when the H,, is held constant or is
switched off in superconductors. Moreover in this case there
are two kinds of static supercurrents: Meissner screening cur-
rents that flow in a surface layer of depth =\ (the London
penetration depth) and (or) currents circulating around
Abrikosov? vortices. All these currents superimpose linearly
to a good approximation if the vortex cores are well sepa-
rated; in this case the London theory applies.** In the general
case, the supercurrents and their magnetic field may be cal-
culated from the Ginzburg Landau (GL) theory that is valid
also when the cores overlap strongly at high magnetic fields.
Hereafter we use the notation B(r) to describe the local mag-
netic induction and B=(B(r)) for the average magnetic in-
duction.

In this paper we use the GL theory to compute the spa-
tially averaged magnetization M=m/V of a superconducting
film subject to an external applied field perpendicular to its
surface. However Eq. (1) relies on a finite-volume integra-
tion, whose meaning for infinite specimens must be better
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defined because of surface (Meissner) currents and its con-
tribution in comparison to the internal (Abrikosov vortices)
currents. For instance, the theoretical treatment of bulk su-
perconductor does not take into account external surfaces,
but experimentally, bulk superconductors are just those of
size >\. Hence the theoretical treatment takes that all inter-
nal currents and fields originate only from the presence of
Abrikosov vortices and surface (Meissner) current effects are
not considered. From the other side thin films of thickness
d <2\ may contain currents and magnetic fields even in the
absence of vortices, since any point in the film is “close to
the surface.”

A special case of interest is mesoscopic superconductors
(=N\) that have attracted attention because of their unique
properties (vortex shells,’ first-order phase transitions,® giant
vortices,” and nonquantized magnetic flux®). The magnetic
properties of very thin superconducting disks subject to a
perpendicular magnetic field have been experimentally mea-
sured for several radii and its magnetic properties theoreti-
cally investigated by means of the Ginzburg-Landau
theory.”~!! In these cases the magnetization was obtained by
averaging the local induction B(r) inside the film.'> How-
ever, as we shall see below, it is not possible to do so in case
of the infinitely extended film (or films with large aspect
ratio) because then this average just gives the applied exter-
nal field H,.

To better understand the vortex contribution to M we re-
view a few basic facts about vortices in thin films with d
< \. They are called Pearl'? vortices. Both Abrikosov’s vor-
tex lines and Pearl’s point vortices have a normal core, i.e., a
tube in which the superconducting order parameter or GL
function ¢ decreases from its Meissner-state value to zero
over a length =¢, the superconducting coherence length.
Around Abrikosov vortices in the bulk, the magnetic field
and the circulating currents extend to a radius r= A\ and for
larger r they decay exponentially as V2 exp(—r/\) (if A
>2&, see Ref. 14). Around Pearl vortices the currents decay
much more slowly; the thickness-integrated current density
(sheet current) is J(r)=®Py/ (2muyAr) for r<A and J(r)
=®y/(muyr?) for r>A, where A=\?/d is the two-
dimensional penetration depth. The theory of vortices in
films of arbitrary thickness d is given for isolated London
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vortices in Ref. 15 and for a periodic vortex lattice from GL
theory in Ref. 16. In the half space z>0 above the planar
surface of films of arbitrary thickness, the magnetic stray
field of a single vortex approximately looks like the three-
dimensional (3D) radial field of a magnetic monopole of
strength 2®,, positioned at a depth z=-1.27\ (if the film is
thick enough).!> A vortex lattice with spacing a shows a
periodic stray field whose amplitude decreases rapidly as
exp(—2mz/a) away from the planar surface.!®

For superconductors of any shape, the magnetic moment
m induced by an applied field H, is dominated by the term
stemming from the Meissner screening currents. This nega-
tive (diamagnetic) term is partly compensated by the positive
(paramagnetic) term generated by the currents of the vorti-
ces. For superconductors of finite sizes, this argument may
be used to compute m, but for infinitely extended supercon-
ductors it fails since M becomes the difference of two infi-
nite terms.

Thus, one has to obtain M from other methods, not from
Eq. (1). These methods are the thermodynamic definition of
m and the virial expression, which are both able to directly
compute this difference of the two infinite terms. The former
is the derivative of the free energy while the latter is based
on the sum of kinetic and field-free energy contributions with
different weights. In this paper we obtain a virial expression
for the film under a perpendicular applied field using scaling
properties of the GL theory and show that these two methods
yield exactly the same result for M. The connection of the
virial theorem to scaling properties has been studied by many
in the literature.!’-2

II. INFINITE SPECIMENS

Here we review a few examples where the use of Eq. (1)
presents difficulties to obtain M. Equation (1) is used to ob-
tain m in many geometries, e.g., a thin disk such that the
B(r) distribution is known inside.?® However one has to be
cautious when taking the limit of infinite extension since
typically a great part of the magnetic moment comes from
the screening currents that flow at the surface. A simple but
still surprising example is a thin rectangular strip in a per-
pendicular magnetic field along z. From Eq. (1) one then has
m=zm, m:%fdxfdy(ny—ny), where J(x,y)=(J,.J,) is the
sheet current circulating in the strip. In the limit of infinite
length along y, usually the currents in the strip are assumed
to flow all in y direction, and thus the term yJ, in the integral
is omitted. This is wrong, however, since the two terms in the
integral give the same contribution to m, irrespective of the
strip length, as follows from div J=0. Thus, in the limit of
long strip length L the magnetic moment of the strip is m
=L[dxxJ,(x), without a factor %, since the U turn of the
current at the two far-away ends of the strip contributes % of
m.27-30

Similarly, for a long cylinder of length d in a parallel field
H, that causes a vortex lattice, in the London limit the con-
tribution of each Abrikosov vortex to m is d®y/ u,, as can be
shown by direct integration. The volume integral (1) would
thus yield the wrong result m=VB/u, or M=m/V=B/ u,
where B is the induction or flux density. The correct result is,

PHYSICAL REVIEW B 78, 054407 (2008)

however, M=B/u,—H,, which even has opposite sign and
originates by accounting for the circulating surface currents.

For the infinite film considered in this paper, the situation
with the general definition (1) is even worse. We show this in
the thin-film limit using the London approach. From the
above formula for the sheet current of a Pearl vortex, J(r
> A)=®y/(mr*u,), Eq. (1) yields for the magnetic moment
of a single Pearl vortex centered in a circular film of radius
R> A the large value m,=®yR/ u,y, which diverges linearly
with the film radius but, interestingly, does not depend on the
film thickness d and penetration depth A. This seemingly
strange result can be understood as follows: Consider a long
thin superconductor strip with half width w>N\ or w>A
=\?/d if the thickness d <\ is small and with length L>w.
An applied perpendicular field H, induces in this ideally dia-
magnetic strip the sheet current J,(x)=-2xH,/(w?-x*)"?
that flows over the entire strip width, not only at the two
edges.?’30 The magnetic field of this sheet current has the z
component —H,, inside the strip, and thus the total field there
has zero perpendicular component, i.e., this current screens
the interior of the strip from the applied field. The x compo-
nent of the field inside the strip is finite, H.(x,z)
=J,(x)sinh(z/N\)/2 sinh(d/2\), but this is irrelevant in our
context; note that this parallel field at the upper and lower
surfaces differs by the sheet current H.(x,d/2)-H(x,
—d/2)=J,(x) as it should be. This sheet current J,(x) gener-
ates a magnetic moment m=L]", dxJ (x)x=mw’LH, perpen-
dicular to the strip (the missing factor % is discussed above).
Now allow vortices to penetrate the film such that screening
almost vanishes and the magnetic moment is nearly zero.
The induction of these Pearl vortices should thus be B
=~ uoH, and their number 2wLB/®. Each of these Pearl
vortices, therefore, has to carry a magnetic moment m,
=mw?’LH,®y/ (2wLB) =~ mw®,/ uy. This result has to be
compared with the above magnetic moment of a Pearl vortex
in a circular disk m,=®yR/ . It indeed agrees if one puts
m.

III. DEMAGNETIZATION EFFECTS

In this section we briefly review the demagnetization ef-
fects in view of the peculiar properties of the superconduct-
ing film with large aspect ratio w/d> 1. In the particular case
of a homogeneous superconductor with the shape of an el-
lipsoid, containing either no vortices (Meissner state) or an
ideal vortex lattice in which vortex pinning can be disre-
garded, demagnetization effects may be described by a de-
magnetization factor N with 0=N= 1. This is so since in this
case a homogeneous applied field H, causes a demagnetizing
field that inside the specimen is homogeneous and superim-
poses to H, such that it reduces the internal field by com-
pensating it partly.3! For arbitrary orientation of H, this de-

magnetization is described by a demagnetization tensor N
such that the effective external field inside the supercon-
ductor is

H.q=H, - NM. )

When H,, is along one of the three principal axes of the
ellipsoid, the tensor reduces to one of its (scalar) diagonal
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terms Ny, N,, and N3, which satisfy N;+N,+N3;=1. From
this sum rule one immediately concludes that N=1/3 for the
sphere, N=1/2 for long cylinders in a transverse H,, and
N=0 in parallel H,, and for large flat superconductors such
as thin plates or films one has N=0 in parallel H, and N
=1 in perpendicular H,, this last case being the one of inter-
ests here.

As an example consider a superconducting ellipsoid with
one axis along z and H,=ZH, along z such that H,=ZH,,
H =7H s, and M=2ZM. To get further insight let us consider
the following approximation: Inside the ellipsoid the consti-
tutive law (or magnetization curve) of the vortex lattice is the
same as in the bulk, i.e., surface effects and the periodic stray
field outside the surface are disregarded, in contrast to the
film example considered below. This local magnetization
curve for the bulk (N=0) may be calculated, e.g., from GL
theory3? as M(H,,;N=0)=B/ uy—H, where B is the flux den-
sity or induction. The homogeneous magnetization of this
ellipsoid follows then from the implicit equation’!

Heff:Ha_NM(Heff;Nzo) (3)

by solving it for H.g. In particular, for the Meissner state one
has zero internal field B=0, thus M(H,;0)=—H,,. Inserting
this into Eq. (3) we obtain H.y=H,—N-(—H.), thus (1
_N)Heff:Ha or

-H

N C))

M:M(Ha;N) =M(Heff;0) =_Heff: :\]

This Meissner state exists in an increasing applied field as
long as 0<H.<H,, (H,, is the lower critical field) equiva-
lent to applied fields 0<H,<H!,=(1-N)H,,. Thus, for par-
allel geometry (N=0) one has H),=H,, but for thin films
(1-N<1) the magnetic field penetrates at a much lower
field H, <H,,.

In the limit of an infinitely extended film (N=1) one has
H!,=0, i.e., even a very small applied field H, penetrates; the
average internal field or induction always equals the applied
field, B=uoH,; and the above described definition of the
magnetization cannot be used since N— 1 and the denomi-
nator in Eq. (4) vanishes.

IV. THERMODYNAMIC DEFINITION

In this section we review the thermodynamic method to
obtain the magnetization M=m/V. For the infinite film con-
taining a periodic vortex lattice this method does not require
knowledge of the screening currents that may flow, e.g., near
the film edges and strongly depend on the shape of the film.3?
One only has to know the free energy of the ideally periodic
vortex lattice solution.

The applied field B,=uyH,, changed by an infinitesimal
amount OB, performs the work 6F=mdB,. We select z as
the direction perpendicular to the film surface such that B
=B,=uoH, and M are both along z as in Ref. 16. We obtain

A(FIV)
dB

(5)

F is the Helmholtz free energy of the film which is a function
of the average induction or vortex density, previously defined
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as B=(B(r)). We define the deviation from the average value
b(r) = B(r) - B = [bx(r)7by(r)sbz(r)]' (6)

The free-energy density of a planar film of arbitrary thick-
ness d (its usual value minus B/ u,) averaged over the film
or any vortex cell within GL theory reads

F_[IDyf > Bl b
V—<—2m + af Y] +2|¢| RATYA (7)

where o <0 and 8>0 are the usual GL coefficients and D
=(1/i)V-2eA. The brackets mean the 3D averages

dn
(...},:J £<...>S,

—d/2 d

* dz
()= J s ®

where S=®/B is the unit-cell area of the vortex lattice. We
also define the outer average

<...>3=<...>2-<...>1=2f LI 9)

dr2 d

The last term in Eq. (7) contains both the energy of the
magnetic field inside the film (minus B?/ = ,U«ng) and the
stray-field energy F,, of the periodic field variations out-
side the film. The periodic GL solution w(r)=|#{> and
Q(r)=A-(/2¢)V¢ [the gauge-invariant supervelocity,
with ¢ the phase of ¢=\w exp(i@)] for the film may be
computed as described in Ref. 16. When expressed in re-
duced units the free energy F/V, Eq. (7) coincides with the
F» Eq. (7) of Ref. 16.

V. SCALING

In this section we review the virial theorem* for the GL
superconductor that relates the sum of the kinetic energy plus
twice the field energy to the product of the induction B times
the equilibrium applied field H,:

3 2 2
B'Ha=f Q{M+B(_r):| (10)
v VL 2m Mo

This relation holds for bulk superconductors, that is, for a
superconductor that borders with itself due to periodic
boundary conditions. From it the magnetization is obtained
rendering the same result of the thermodynamic derivative of
Eq. (5).

This virial relation is derived by a scaling transformation
applied simultaneously to the three coordinates (x—Ax, y
—\y, and z—\z). The Gibbs free energy G=F-B-H, is
postulated to be extremal under this transformation
dG(N)/N|,_;=0. This elegant argument has been extended
to microscopic theory in the context of the Eilenberger
equations.® In the case when H, and B are aligned it yields
an explicit relation for H,(B), useful for determining the
properties of the vortex lattice3®

2 2
Ha=<M+w> /B, (11)
2m Mo [v

that can be expressed in terms of M=B/uy—H,:
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2 2
_M=<M+m> /B. (12)
2m Mo [v

Notice that Eq. (11) contains the field energy, whereas the
square of the deviation from the magnetic induction enters
Eq. (12). It is possible to obtain the three components of M
independently from such scaling arguments,’’ an important
matter in case of anisotropy. Here we focus on the isotropic
situation and in this case the scalar product M- B is sufficient
to determine M as a function of B since both vectors are
oriented along the same direction. Formula (12) can also be
regarded from another perspective, namely, of obtaining the
kinetic energy®® as a function of the magnetization and the
induction since these two quantities are experimentally ac-
cessible. Besides the product —MB is the kinetic energy as
long as the local induction B(r) does not deviate much from
its spatial average B. Indeed the last term in formula (12) can
be disregarded because the variance of the magnetic field of
the vortex lattice (b(r)?) is very small if the GL parameter
k=N/§ is large or B is close to the upper critical field B,
=uoH =D,/ (27&); one has> at not too large B/B,, a con-
stant variance (b(r)?)~0.0037®/\* and in general (b(r)?)
~B%(1-B/B,)*/Tk*<1.

VI. VIRIAL THEOREM FOR FILMS

In this section we derive a virial relation for the supercon-
ducting film. Scaling invariance just along the film is ap-
plied, which means that the coordinates parallel to the film
are scaled but not the perpendicular one (x— \x, y— \y, and
z—7z). In this way one obtains the following virial relation
for the magnetization of an infinite film, first with arbitrary
orientation of H,:

1 Dy bﬁ+2b3
(M +M_ | -B={ —— ) +{ — ), (13)
2 M z
2m [ 2po /2

with My=M,+M,, Dy=D,+D,, and bj=b;+b; b(r) is de-
fined in Eq. (6). If H, is along z, and thus also B and M, Eq.
(13) reduces to

2 2 2
_M={<|Dl’/’| > +<b+2bz> }/B. (14)
2m [ 2u /o

The distinct contributions to the magnetization can be treated
separately through this formula, which is the sum of the ki-
netic and two other magnetic terms associated to the energy
inside and outside the film:

b +2b2
-My;=\ ——/ /B, and
20 3

M=M1+M2+M3. (15)
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FIG. 1. The magnetization M of a superconducting infinite film
in a perpendicular magnetic field B,=B for film thicknesses d/§
=0.1, 0.5, 1. 2, 5, and %, and GL parameters «=0.5, 1/y2, 1, 1.5,
and 2. The solid lines are calculated from the energy-derivative Eq.
(5) and the dots are from the virial expression Eq. (13), rendering
excellent agreement. In the bulk limit d— at B—0, uoM(B)
reaches the value B, and has the slope —1.

Below we shall use Eq. (14) to compute the magnetization
M(B) and compare it with that obtained from the energy
derivative Eq. (5). The contribution from outside the film is
related to the stray-field energy Fg;, whose energy accord-
ing to Ref. 16 is

Fyayld = (b} + b} + b2)3/ 2. (16)

The periodic stray field above a planar surface satisfies the
Laplace equation V?b(r)=0; from this one can show that
<b§+b§>3:<b§>3. This relation directly yields for the second
term in Eq. (14) the outer contribution

3
~Fopay/d. (17)

(b} + b} +2b7)3/ 20 = 5

VII. NUMERICAL COMPARISON

To compare the M values of Egs. (5) and (14) we use the
numerical method of Ref. 16, where the trial functions for
the periodic functions |¢(x,y,z)|*, B(x,y,z), and the super-
velocity Q=A—(%/2¢)V o, are finite Fourier series. Then we
minimize the free energy with respect to the Fourier coeffi-
cients by means of iteration equations. Within this numerical
method the free energy decreases smoothly until it becomes
stationary with accuracy 107'# after 25-50 iteration steps.
For our infinite ideal vortex lattice we choose a triangular
symmetry. We are then left with three input parameters: GL
parameter k=MA/§, average induction B=puyH,, and film
thickness d. We do this computation, e.g., for B/B.,
=0.007,0.01,0.015,0.02,0.027, ...,0.9,0.95,0.98 and ob-
tain the derivative dF(B)/JB by numerical interpolation of
F(B). Figure 1 shows the resulting magnetization versus B in
units of B, for several values k=0.5, 1/v2, 1, 1.5, 2, and for
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o
)

x = 0.7071

°
~
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o
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~uM/B_-1+B/B,

FIG. 2. The same magnetization M as in Fig. 1 but only for GL
parameter k=1/+2, plotted with reference to the bulk result, repre-
sented by the d— o horizontal line: —uoM/B.,—1+B/B,,. This
large scale plot shows the excellent agreement between the dots
(virial expression) with the lines (energy derivative) also in the high
B region.

thicknesses d/€é=0.1,0.5,1,2,5,%. The solid lines show the
M=-9(F/V)/dB and the dots show the virial expression for
M, Eq. (14). One can see that all the dots are on top of the
lines, meaning that the virial argument yields the correct
magnetization both for thin and thick films.

The special case xk=1/2 is particularly useful for check-
ing the precision of our numerics, since then in the bulk limit
(d>N,¢ one has F/V:—%(l—BZ/sz), and thus
—puoM/B.,=1-B/B, is a straight line. This is indeed con-
firmed by our numerics to high precision. Figure 2 uses this
feature to plot the M for x=1/v2 in the form —u,M/B,
—1+B/B,,, which yields a horizontal line when d— . This
Fig. 2 clearly shows the perfect agreement between the two
theoretical methods to obtain M in the entire range 0<B
<B,.

For larger k> 1/ V2 the thick-film curve —M (B) is con-
cave, i.e., it has positive curvature. For smaller K<1/\s‘§
(type-I superconductors) —M(B) is convex for thick films,
which means the vortex lattice is unstablg. However, for suf-
ficiently thin films, even for x<<1/\2 the curvature of
—M(B) can be positive and may change sign at a certain
value of B. Indeed one can show that thin films of type-I
superconductors can contain a stable vortex lattice and thus
behave like type-II superconductors.

The curves —M(B) for various thicknesses d cut each
other in the same neighborhood, near the field B*~B,,/k
=dy/(2m\?), i.e., for this B value M is almost independent
of the film thickness. Thus for a fixed B> B* the magnetiza-
tion increases with d while it decreases for B<<B*. Such
peculiar properties are special features of the vortex state in
large thin superconducting films.

The following are useful exact results found for the film:
For thick films the initial slope is —M’(B)|z-o=—1 indepen-
dently of «, as confirmed by Fig. 1. -M(0)=H,,, where the
lower critical field with good accuracy for all « is*

PHYSICAL REVIEW B 78, 054407 (2008)

)
BL‘I = Iu‘OHCI = ﬁ[ln K+ a(K)]7 (18)
1 1+In2
alk) = -+ ————. (19)
2 2k- \E+2

This is so since when surface contributions to the energy
may be disregarded, one has for superconducting ellipsoids
-M=H,, at H,=H,=(1-N)H,,, where B=0, cf. Eq. (4).

Note that in Figs. 1 and 2 that for thin films, —M(B)
exhibits a sharp upturn at low inductions B<<B,,, such that
for d/¢=0.1, and —M is enhanced by more than a factor of 2
as compared to thick films or the bulk. This enhancement
stems from the energy of the magnetic stray field that en-
hances the self-energy of a vortex beyond its bulk value of
d®yH,,. This enhancement of the stray field on —M(B) may
also be brought out by plotting the various terms in the virial
expression, Eq. (15), separately. Figure 3 shows features of
the three contributions to M. One can see that for thin films
both M| and M5 exhibit a sharp increase as B— 0, and the
stray-field contribution M5 yields a considerable contribution
to M. This is so since at low B the vortex spacing becomes
larger than A and thus the periodic variation of the stray field
becomes large, while at higher B the vortex fields overlap
strongly and this variation is small. In the depicted cases of
small « the contribution of M, is negligibly small for thin
films but for thick films it is a considerable fraction of M at
low B. However, for larger « and at higher fields B, this M,
contribution is negligibly small even on thick films since it
decreases quadratically as (1-B/B,,)?/ k%, while the main
term M, and thus the total M, decreases only linearly as
(1-B/B_,)/ k. The variation of the inner magnetic field may
thus be safely disregarded in practically all cases except for
small k and B in thick films or bulk superconductors. See
Ref. 16 for a detailed discussion of the amplitudes and ener-
gies of the (outer) stray field and the “inner stray field,” i.e.,
the field variation inside the film but near the surface.

Finally, Fig. 4 shows the product MB plotted versus B for
k=0.71, 1, 1.5, and three film thicknesses. Due to the as-
sumed large extension of the film (large aspect ratio w/d
> 1) one has B=H,, thus the plot also may be interpreted as
showing MH, versus H,. According to the above discussion
following Eq. (12) these parabolalike plots show the kinetic
energy M B to a good approximation. The small deviation
(M,+M5)B may be seen from Fig. 3.

VIII. CONCLUSION

We have shown that the magnetization M of supercon-
ducting films with large aspect ratio w/d>1 can be com-
puted either by the usual thermodynamic energy derivative,
Eq. (5), or by a virial expression obtained here by scaling
arguments, Eq. (14). Notice that for such films the spatially
averaged inner field equals the (perpendicular) applied field
B=(B(r))=B,=uyH,. We numerically show here for a large
range of parameters B, k, and d that both methods yield the
same M.

We have pointed out here that the basic definition of m as
an integral over the circulating currents does not work for
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1.5F T T T T E

d/t = 0.1

FIG. 3. The virial terms that contribute to the magnetization, Eq.
(13), are shown here for k=1/2 (top) and x=1.5 (bottom) and
three values of the film thicknesses d=0.1¢, £,5&. While the kinetic-
energy term M, is monotonically increasing with decreasing thick-
ness d, the magnetic-field terms M, (from inside the film) and M5
(from outside) are nonmonotonic functions of d. Both the stray field
M35 and the main term M exhibit a sharp increase for thin films as
B—0. The inner field energy M, is considerable for thick films and
small B for the depicted cases of small «, but it is negligibly small
for thin films and always for large « and/or large B.

infinite films since the screening currents that flow over the
entire film are not known in this case because they depend on
the shape of the film. As opposed to this, the periodic part of
the currents (from the vortex lattice) is well known. Interest-
ingly, these screening currents (analogous to the surface cur-
rents of a long cylinder in parallel field) and the detailed
shape of the large film do not enter the other two definitions
of its magnetic moment, since they depend only on the peri-
odic parts of the current, field, and order parameter.
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FIG. 4. The product MB as a function of B=puyH, for «
=0.71,1,1.5 and film thicknesses d/&=0.1,1,%. Since M=M;
+M,+ M5 with typically M,+M;<<M, cf. Fig. 3, the plotted quan-
tity to a good approximation shows the kinetic energy M B.

We have extended for films the bulk result that the kinetic
energy of the condensate can be directly retrieved from the
reversible equilibrium magnetization M (Ref. 38) by means
of the virial relation® in case of a not too small «. The virial
relation for films encourages one to apply the vortex-shaking
method to measure the reversible magnetic moment in real-
istic, not pin-free superconducting films, and then obtain the
kinetic energy. Luckily, for flat film superconductors even in
the presence of vortex pinning the reversible perpendicular
magnetization can be measured. This is done by applying an
additional small ac magnetic field in the film plane®® that
forces the irreversible currents to relax. This intricate vortex
shaking effect has been explained for ac field transverse to*’
and parallel to*! the screening currents in a thin strip, as well
as for the circulating currents in a rectangular film*?> and also
for tilted applied dc field.** Recently the kinetic-energy den-
sity of low-T, (Nb) and high-T, (YBa,Cu;0;_, and
Bi,Sr,CaCu,0y, s) compounds was obtained from reversible
magnetization measurements showing very distinct behavior
in the neighborhood of the critical temperature T,..** The
present results suggest that such study be also done in films
made of low and high 7, compounds. As shown here, in this
case too, the kinetic-energy density can be read from mag-
netization measurements by means of the virial theorem for
not too small x superconductors.
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